mirror of
https://github.com/reactos/syzkaller.git
synced 2024-11-24 03:49:45 +00:00
4f9fc95501
Add a random hints test and fix bugs it uncovers.
227 lines
6.9 KiB
Go
227 lines
6.9 KiB
Go
// Copyright 2017 syzkaller project authors. All rights reserved.
|
|
// Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file.
|
|
|
|
package prog
|
|
|
|
// A hint is basically a tuple consisting of a pointer to an argument
|
|
// in one of the syscalls of a program and a value, which should be
|
|
// assigned to that argument (we call it a replacer).
|
|
|
|
// A simplified version of hints workflow looks like this:
|
|
// 1. Fuzzer launches a program (we call it a hint seed) and collects all
|
|
// the comparisons' data for every syscall in the program.
|
|
// 2. Next it tries to match the obtained comparison operands' values
|
|
// vs. the input arguments' values.
|
|
// 3. For every such match the fuzzer mutates the program by
|
|
// replacing the pointed argument with the saved value.
|
|
// 4. If a valid program is obtained, then fuzzer launches it and
|
|
// checks if new coverage is obtained.
|
|
// For more insights on particular mutations please see prog/hints_test.go.
|
|
|
|
import (
|
|
"encoding/binary"
|
|
)
|
|
|
|
type uint64Set map[uint64]bool
|
|
|
|
// Example: for comparisons {(op1, op2), (op1, op3), (op1, op4), (op2, op1)}
|
|
// this map will store the following:
|
|
// m = {
|
|
// op1: {map[op2]: true, map[op3]: true, map[op4]: true},
|
|
// op2: {map[op1]: true}
|
|
// }.
|
|
type CompMap map[uint64]uint64Set
|
|
|
|
const (
|
|
maxDataLength = 100
|
|
)
|
|
|
|
var specialIntsSet uint64Set
|
|
|
|
func (m CompMap) AddComp(arg1, arg2 uint64) {
|
|
if _, ok := m[arg1]; !ok {
|
|
m[arg1] = make(uint64Set)
|
|
}
|
|
m[arg1][arg2] = true
|
|
}
|
|
|
|
// Mutates the program using the comparison operands stored in compMaps.
|
|
// For each of the mutants executes the exec callback.
|
|
func (p *Prog) MutateWithHints(compMaps []CompMap, exec func(newP *Prog)) {
|
|
for i, c := range p.Calls {
|
|
if c.Meta == p.Target.MmapSyscall {
|
|
continue
|
|
}
|
|
foreachArg(c, func(arg, _ Arg, _ *[]Arg) {
|
|
generateHints(p, compMaps[i], c, arg, exec)
|
|
})
|
|
}
|
|
}
|
|
|
|
func generateHints(p *Prog, compMap CompMap, c *Call, arg Arg, exec func(p *Prog)) {
|
|
if arg.Type().Dir() == DirOut {
|
|
return
|
|
}
|
|
switch arg.Type().(type) {
|
|
case *ProcType:
|
|
// Random proc will not pass validation.
|
|
// We can mutate it, but only if the resulting value is within the legal range.
|
|
return
|
|
case *CsumType:
|
|
// Csum will not pass validation and is always computed.
|
|
return
|
|
case *LenType:
|
|
// Mutating len type causes panics during mmap/mremap analysis:
|
|
// panic: address is out of bounds: page=7 len=34359738367 bound=4096
|
|
// We can mutate len theoretically, but we need to be careful.
|
|
return
|
|
}
|
|
|
|
newP, argMap := p.cloneImpl(true)
|
|
var originalArg Arg
|
|
validateExec := func() {
|
|
if err := newP.validate(); err != nil {
|
|
panic("a program generated with hints did not pass validation: " +
|
|
err.Error())
|
|
}
|
|
exec(newP)
|
|
}
|
|
constArgCandidate := func(newArg Arg) {
|
|
oldArg := argMap[arg]
|
|
newP.replaceArg(c, oldArg, newArg, nil)
|
|
validateExec()
|
|
newP.replaceArg(c, oldArg, originalArg, nil)
|
|
}
|
|
|
|
dataArgCandidate := func(newArg Arg) {
|
|
// Data arg mutations are done in-place. No need to restore the original
|
|
// value - it gets restored in checkDataArg().
|
|
// dataArgCandidate is only needed for unit tests.
|
|
validateExec()
|
|
}
|
|
|
|
switch a := arg.(type) {
|
|
case *ConstArg:
|
|
originalArg = MakeConstArg(a.Type(), a.Val)
|
|
checkConstArg(a, compMap, constArgCandidate)
|
|
case *DataArg:
|
|
originalArg = dataArg(a.Type(), a.Data)
|
|
checkDataArg(a, compMap, dataArgCandidate)
|
|
}
|
|
}
|
|
|
|
func checkConstArg(arg *ConstArg, compMap CompMap, cb func(newArg Arg)) {
|
|
for replacer := range shrinkExpand(arg.Val, compMap) {
|
|
cb(MakeConstArg(arg.typ, replacer))
|
|
}
|
|
}
|
|
|
|
func checkDataArg(arg *DataArg, compMap CompMap, cb func(newArg Arg)) {
|
|
bytes := make([]byte, 8)
|
|
original := make([]byte, 8)
|
|
for i := 0; i < min(len(arg.Data), maxDataLength); i++ {
|
|
copy(original, arg.Data[i:])
|
|
val := sliceToUint64(arg.Data[i:])
|
|
for replacer := range shrinkExpand(val, compMap) {
|
|
binary.LittleEndian.PutUint64(bytes, replacer)
|
|
copy(arg.Data[i:], bytes)
|
|
cb(arg)
|
|
copy(arg.Data[i:], original)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Shrink and expand mutations model the cases when the syscall arguments
|
|
// are casted to narrower (and wider) integer types.
|
|
// ======================================================================
|
|
// Motivation for shrink:
|
|
// void f(u16 x) {
|
|
// u8 y = (u8)x;
|
|
// if (y == 0xab) {...}
|
|
// }
|
|
// If we call f(0x1234), then we'll see a comparison 0x34 vs 0xab and we'll
|
|
// be unable to match the argument 0x1234 with any of the comparison operands.
|
|
// Thus we shrink 0x1234 to 0x34 and try to match 0x34.
|
|
// If there's a match for the shrank value, then we replace the corresponding
|
|
// bytes of the input (in the given example we'll get 0x12ab).
|
|
// Sometimes the other comparison operand will be wider than the shrank value
|
|
// (in the example above consider comparison if (y == 0xdeadbeef) {...}).
|
|
// In this case we ignore such comparison because we couldn't come up with
|
|
// any valid code example that does similar things. To avoid such comparisons
|
|
// we check the sizes with leastSize().
|
|
// ======================================================================
|
|
// Motivation for expand:
|
|
// void f(i8 x) {
|
|
// i16 y = (i16)x;
|
|
// if (y == -2) {...}
|
|
// }
|
|
// Suppose we call f(-1), then we'll see a comparison 0xffff vs 0xfffe and be
|
|
// unable to match input vs any operands. Thus we sign extend the input and
|
|
// check the extension.
|
|
// As with shrink we ignore cases when the other operand is wider.
|
|
// Note that executor sign extends all the comparison operands to int64.
|
|
// ======================================================================
|
|
func shrinkExpand(v uint64, compMap CompMap) uint64Set {
|
|
replacers := make(uint64Set)
|
|
// Map: key is shrank/extended value, value is the maximal number of bits
|
|
// that can be replaced.
|
|
res := make(map[uint64]uint)
|
|
for _, size := range []uint{8, 16, 32} {
|
|
res[v&((1<<size)-1)] = size
|
|
if v&(1<<(size-1)) != 0 {
|
|
res[v|^((1<<size)-1)] = size
|
|
}
|
|
}
|
|
res[v] = 64
|
|
|
|
for mutant, size := range res {
|
|
for newV := range compMap[mutant] {
|
|
mask := uint64(1<<size - 1)
|
|
if newHi := newV & ^mask; newHi == 0 || newHi^^mask == 0 {
|
|
if !specialIntsSet[newV&mask] {
|
|
// Replace size least significant bits of v with
|
|
// corresponding bits of newV. Leave the rest of v as it was.
|
|
replacer := (v &^ mask) | (newV & mask)
|
|
replacers[replacer] = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return replacers
|
|
}
|
|
|
|
func init() {
|
|
specialIntsSet = make(uint64Set)
|
|
for _, v := range specialInts {
|
|
specialIntsSet[v] = true
|
|
}
|
|
}
|
|
|
|
// Transforms a slice of bytes into uint64 using Little Endian.
|
|
// Works fine if len(s) != 8.
|
|
func sliceToUint64(s []byte) uint64 {
|
|
padded := pad(s, 0x0, 8)
|
|
return binary.LittleEndian.Uint64(padded)
|
|
}
|
|
|
|
// If len(arr) >= size returns a subslice of arr.
|
|
// Else creates a copy of arr padded with value to size.
|
|
func pad(arr []byte, value byte, size int) []byte {
|
|
if len(arr) >= size {
|
|
return arr[0:size]
|
|
}
|
|
block := make([]byte, size)
|
|
copy(block, arr)
|
|
for j := len(arr); j < size; j++ {
|
|
block[j] = value
|
|
}
|
|
return block
|
|
}
|
|
|
|
func min(a, b int) int {
|
|
if a <= b {
|
|
return a
|
|
}
|
|
return b
|
|
}
|