syzkaller/syz-fuzzer/fuzzer.go
2015-12-17 17:31:11 +01:00

524 lines
13 KiB
Go

// Copyright 2015 syzkaller project authors. All rights reserved.
// Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file.
package main
// TODO: implement some form of smashing of new inputs.
// E.g. alter arguments while the program still gives the new coverage,
// i.e. aim at cracking new branches and triggering bugs in that new piece of code.
import (
"crypto/sha1"
"flag"
"fmt"
"log"
"math/rand"
"net/rpc"
"os"
"runtime/debug"
"strconv"
"strings"
"sync"
"sync/atomic"
"syscall"
"time"
"github.com/google/syzkaller/cover"
"github.com/google/syzkaller/ipc"
"github.com/google/syzkaller/prog"
. "github.com/google/syzkaller/rpctype"
"github.com/google/syzkaller/sys"
)
var (
flagName = flag.String("name", "", "unique name for manager")
flagExecutor = flag.String("executor", "", "path to executor binary")
flagManager = flag.String("manager", "", "manager rpc address")
flagStrace = flag.Bool("strace", false, "run executor under strace")
flagSaveProg = flag.Bool("saveprog", false, "save programs into local file before executing")
flagSyscalls = flag.String("calls", "", "comma-delimited list of enabled syscall IDs (empty string for all syscalls)")
flagNoCover = flag.Bool("nocover", false, "disable coverage collection/handling")
flagDropPrivs = flag.Bool("dropprivs", true, "impersonate into nobody")
flagProcs = flag.Int("procs", 1, "number of parallel test processes")
flagLeak = flag.Bool("leak", false, "detect memory leaks")
flagV = flag.Int("v", 0, "verbosity")
)
const (
programLength = 30
)
type Sig [sha1.Size]byte
func hash(data []byte) Sig {
return Sig(sha1.Sum(data))
}
type Input struct {
p *prog.Prog
call int
cover cover.Cover
}
var (
manager *rpc.Client
coverMu sync.RWMutex
corpusCover []cover.Cover
maxCover []cover.Cover
flakes cover.Cover
corpusMu sync.RWMutex
corpus []Input
corpusHashes map[Sig]struct{}
triageMu sync.RWMutex
triage []Input
candidates []*prog.Prog
gate *ipc.Gate
statExecGen uint64
statExecFuzz uint64
statExecCandidate uint64
statExecTriage uint64
statExecMinimize uint64
statNewInput uint64
allTriaged uint32
)
func main() {
debug.SetGCPercent(50)
flag.Parse()
logf(0, "started")
var calls []*sys.Call
if *flagSyscalls != "" {
for _, id := range strings.Split(*flagSyscalls, ",") {
n, err := strconv.ParseUint(id, 10, 64)
if err != nil || n >= uint64(len(sys.Calls)) {
panic(fmt.Sprintf("invalid syscall in -calls flag: '%v", id))
}
calls = append(calls, sys.Calls[n])
}
}
corpusCover = make([]cover.Cover, sys.CallCount)
maxCover = make([]cover.Cover, sys.CallCount)
corpusHashes = make(map[Sig]struct{})
conn, err := rpc.Dial("tcp", *flagManager)
if err != nil {
panic(err)
}
manager = conn
a := &ConnectArgs{*flagName}
r := &ConnectRes{}
if err := manager.Call("Manager.Connect", a, r); err != nil {
panic(err)
}
ct := prog.BuildChoiceTable(r.Prios, calls)
kmemleakInit()
flags := ipc.FlagThreaded | ipc.FlagCollide
if *flagStrace {
flags |= ipc.FlagStrace
}
if !*flagNoCover {
flags |= ipc.FlagCover | ipc.FlagDedupCover
}
if *flagDropPrivs {
flags |= ipc.FlagDropPrivs
}
if *flagProcs <= 0 {
*flagProcs = 1
}
gate = ipc.NewGate(2 * *flagProcs)
envs := make([]*ipc.Env, *flagProcs)
for pid := 0; pid < *flagProcs; pid++ {
env, err := ipc.MakeEnv(*flagExecutor, 10*time.Second, flags)
if err != nil {
panic(err)
}
envs[pid] = env
pid := pid
go func() {
rs := rand.NewSource(time.Now().UnixNano() + int64(pid)*1e12)
rnd := rand.New(rs)
for i := 0; ; i++ {
triageMu.RLock()
if len(triage) != 0 || len(candidates) != 0 {
triageMu.RUnlock()
triageMu.Lock()
if len(triage) != 0 {
last := len(triage) - 1
inp := triage[last]
triage = triage[:last]
triageMu.Unlock()
logf(1, "triaging : %s", inp.p)
triageInput(pid, env, inp)
continue
} else if len(candidates) != 0 {
last := len(candidates) - 1
p := candidates[last]
candidates = candidates[:last]
triageMu.Unlock()
execute(pid, env, p, &statExecCandidate)
continue
} else {
triageMu.Unlock()
}
} else {
triageMu.RUnlock()
}
corpusMu.RLock()
if len(corpus) == 0 || i%10 == 0 {
corpusMu.RUnlock()
p := prog.Generate(rnd, programLength, ct)
logf(1, "#%v: generated: %s", i, p)
execute(pid, env, p, &statExecGen)
p.Mutate(rnd, programLength, ct)
logf(1, "#%v: mutated: %s", i, p)
execute(pid, env, p, &statExecFuzz)
} else {
inp := corpus[rnd.Intn(len(corpus))]
corpusMu.RUnlock()
p := inp.p.Clone()
p.Mutate(rs, programLength, ct)
logf(1, "#%v: mutated: %s <- %s", i, p, inp.p)
execute(pid, env, p, &statExecFuzz)
}
}
}()
}
var lastPoll time.Time
var lastPrint time.Time
for range time.NewTicker(3 * time.Second).C {
if !*flagSaveProg && time.Since(lastPrint) > 10*time.Second {
// Keep-alive for manager.
logf(0, "alive")
lastPrint = time.Now()
}
if time.Since(lastPoll) > 10*time.Second {
triageMu.RLock()
if len(candidates) != 0 {
triageMu.RUnlock()
continue
}
triageMu.RUnlock()
a := &PollArgs{
Name: *flagName,
Stats: make(map[string]uint64),
}
for _, env := range envs {
a.Stats["exec total"] += atomic.SwapUint64(&env.StatExecs, 0)
a.Stats["executor restarts"] += atomic.SwapUint64(&env.StatRestarts, 0)
}
a.Stats["exec gen"] = atomic.SwapUint64(&statExecGen, 0)
a.Stats["exec fuzz"] = atomic.SwapUint64(&statExecFuzz, 0)
a.Stats["exec candidate"] = atomic.SwapUint64(&statExecCandidate, 0)
a.Stats["exec triage"] = atomic.SwapUint64(&statExecTriage, 0)
a.Stats["exec minimize"] = atomic.SwapUint64(&statExecMinimize, 0)
a.Stats["fuzzer new inputs"] = atomic.SwapUint64(&statNewInput, 0)
r := &PollRes{}
if err := manager.Call("Manager.Poll", a, r); err != nil {
panic(err)
}
for _, inp := range r.NewInputs {
addInput(inp)
}
for _, data := range r.Candidates {
p, err := prog.Deserialize(data)
if err != nil {
panic(err)
}
if *flagNoCover {
inp := Input{p, 0, nil}
corpusMu.Lock()
corpus = append(corpus, inp)
corpusMu.Unlock()
} else {
triageMu.Lock()
candidates = append(candidates, p)
triageMu.Unlock()
}
}
if len(r.Candidates) == 0 {
if atomic.LoadUint32(&allTriaged) == 0 {
if *flagLeak {
kmemleakScan(false)
}
atomic.StoreUint32(&allTriaged, 1)
}
}
if len(r.NewInputs) == 0 && len(r.Candidates) == 0 {
lastPoll = time.Now()
}
}
}
}
func addInput(inp RpcInput) {
corpusMu.Lock()
defer corpusMu.Unlock()
coverMu.Lock()
defer coverMu.Unlock()
if *flagNoCover {
panic("should not be called when coverage is disabled")
}
p, err := prog.Deserialize(inp.Prog)
if err != nil {
panic(err)
}
if inp.CallIndex < 0 || inp.CallIndex >= len(p.Calls) {
panic("bad call index")
}
call := p.Calls[inp.CallIndex].Meta
sig := hash(inp.Prog)
if _, ok := corpusHashes[sig]; ok {
return
}
cov := cover.Canonicalize(inp.Cover)
diff := cover.Difference(cov, maxCover[call.CallID])
diff = cover.Difference(diff, flakes)
if len(diff) == 0 {
return
}
inp1 := Input{p, inp.CallIndex, cov}
corpus = append(corpus, inp1)
corpusCover[call.CallID] = cover.Union(corpusCover[call.CallID], cov)
maxCover[call.CallID] = cover.Union(maxCover[call.CallID], cov)
corpusHashes[hash(inp.Prog)] = struct{}{}
}
func triageInput(pid int, env *ipc.Env, inp Input) {
if *flagNoCover {
panic("should not be called when coverage is disabled")
}
call := inp.p.Calls[inp.call].Meta
coverMu.RLock()
newCover := cover.Difference(inp.cover, corpusCover[call.CallID])
newCover = cover.Difference(newCover, flakes)
coverMu.RUnlock()
if len(newCover) == 0 {
return
}
corpusMu.RLock()
if _, ok := corpusHashes[hash(inp.p.Serialize())]; ok {
corpusMu.RUnlock()
return
}
corpusMu.RUnlock()
minCover := inp.cover
for i := 0; i < 3; i++ {
allCover := execute1(pid, env, inp.p, &statExecTriage)
if len(allCover[inp.call]) == 0 {
// The call was not executed. Happens sometimes, reason unknown.
continue
}
coverMu.RLock()
cov := allCover[inp.call]
diff := cover.SymmetricDifference(inp.cover, cov)
minCover = cover.Intersection(minCover, cov)
updateFlakes := len(diff) != 0 && len(cover.Difference(diff, flakes)) != 0
coverMu.RUnlock()
if updateFlakes {
coverMu.Lock()
flakes = cover.Union(flakes, diff)
coverMu.Unlock()
}
}
stableNewCover := cover.Intersection(newCover, minCover)
if len(stableNewCover) == 0 {
return
}
inp.p, inp.call = prog.Minimize(inp.p, inp.call, func(p1 *prog.Prog, call1 int) bool {
allCover := execute1(pid, env, p1, &statExecMinimize)
coverMu.RLock()
defer coverMu.RUnlock()
if len(allCover[call1]) == 0 {
return false // The call was not executed.
}
cov := allCover[call1]
if len(cover.Intersection(stableNewCover, cov)) != len(stableNewCover) {
return false
}
minCover = cover.Intersection(minCover, cov)
return true
})
inp.cover = minCover
atomic.AddUint64(&statNewInput, 1)
data := inp.p.Serialize()
logf(2, "added new input for %v to corpus:\n%s", call.CallName, data)
a := &NewInputArgs{*flagName, RpcInput{call.CallName, data, inp.call, []uint32(inp.cover)}}
if err := manager.Call("Manager.NewInput", a, nil); err != nil {
panic(err)
}
corpusMu.Lock()
defer corpusMu.Unlock()
coverMu.Lock()
defer coverMu.Unlock()
corpusCover[call.CallID] = cover.Union(corpusCover[call.CallID], minCover)
corpus = append(corpus, inp)
corpusHashes[hash(data)] = struct{}{}
}
func execute(pid int, env *ipc.Env, p *prog.Prog, stat *uint64) {
allCover := execute1(pid, env, p, stat)
coverMu.RLock()
defer coverMu.RUnlock()
for i, cov := range allCover {
if len(cov) == 0 {
continue
}
c := p.Calls[i].Meta
diff := cover.Difference(cov, maxCover[c.CallID])
diff = cover.Difference(diff, flakes)
if len(diff) != 0 {
coverMu.RUnlock()
coverMu.Lock()
maxCover[c.CallID] = cover.Union(maxCover[c.CallID], diff)
coverMu.Unlock()
coverMu.RLock()
inp := Input{p.Clone(), i, cover.Copy(cov)}
triageMu.Lock()
triage = append(triage, inp)
triageMu.Unlock()
}
}
}
var logMu sync.Mutex
func execute1(pid int, env *ipc.Env, p *prog.Prog, stat *uint64) []cover.Cover {
if false {
// For debugging, this function must not be executed with locks held.
corpusMu.Lock()
corpusMu.Unlock()
coverMu.Lock()
coverMu.Unlock()
triageMu.Lock()
triageMu.Unlock()
}
// Limit concurrency window and do leak checking once in a while.
idx := gate.Enter()
defer gate.Leave(idx, func() {
if idx == 0 && *flagLeak && atomic.LoadUint32(&allTriaged) != 0 {
// Scan for leaks once in a while (it is damn slow).
kmemleakScan(true)
}
})
if *flagSaveProg {
f, err := os.Create(fmt.Sprintf("%v-%v.prog", *flagName, pid))
if err == nil {
f.Write(p.Serialize())
f.Close()
}
} else {
// The following output helps to understand what program crashed kernel.
// It must not be intermixed.
data := p.Serialize()
logMu.Lock()
log.Printf("executing program %v:\n%s", pid, data)
logMu.Unlock()
}
try := 0
retry:
atomic.AddUint64(stat, 1)
output, strace, rawCover, failed, hanged, err := env.Exec(p)
if failed {
// BUG in output should be recognized by manager.
logf(0, "BUG: executor-detected bug:\n%s", output)
// Don't return any cover so that the input is not added to corpus.
return make([]cover.Cover, len(p.Calls))
}
if err != nil {
if try > 10 {
panic(err)
}
try++
debug.FreeOSMemory()
time.Sleep(time.Second)
goto retry
}
logf(4, "result failed=%v hanged=%v:\n%v\n", failed, hanged, string(output))
if len(strace) != 0 {
logf(4, "strace:\n%s\n", strace)
}
cov := make([]cover.Cover, len(p.Calls))
for i, c := range rawCover {
cov[i] = cover.Cover(c)
}
return cov
}
func logf(v int, msg string, args ...interface{}) {
if *flagV >= v {
log.Printf(msg, args...)
}
}
func kmemleakInit() {
fd, err := syscall.Open("/sys/kernel/debug/kmemleak", syscall.O_RDWR, 0)
if err != nil {
if *flagLeak {
panic(err)
} else {
return
}
}
defer syscall.Close(fd)
if _, err := syscall.Write(fd, []byte("scan=off")); err != nil {
panic(err)
}
}
var kmemleakBuf []byte
func kmemleakScan(report bool) {
fd, err := syscall.Open("/sys/kernel/debug/kmemleak", syscall.O_RDWR, 0)
if err != nil {
panic(err)
}
defer syscall.Close(fd)
if _, err := syscall.Write(fd, []byte("scan")); err != nil {
panic(err)
}
if report {
if kmemleakBuf == nil {
kmemleakBuf = make([]byte, 128<<10)
}
n, err := syscall.Read(fd, kmemleakBuf)
if err != nil {
panic(err)
}
if n != 0 {
// BUG in output should be recognized by manager.
logf(0, "BUG: memory leak:\n%s\n", kmemleakBuf[:n])
}
}
if _, err := syscall.Write(fd, []byte("clear")); err != nil {
panic(err)
}
}