syzkaller/prog/prio.go
Dmitry Vyukov 286edfb78e prog: fix TestMutateTable
Now works fast enough even for short mode.

Fixes #208
2017-12-17 11:39:14 +01:00

251 lines
6.1 KiB
Go

// Copyright 2015/2016 syzkaller project authors. All rights reserved.
// Use of this source code is governed by Apache 2 LICENSE that can be found in the LICENSE file.
package prog
import (
"fmt"
"math/rand"
"sort"
)
// Calulation of call-to-call priorities.
// For a given pair of calls X and Y, the priority is our guess as to whether
// additional of call Y into a program containing call X is likely to give
// new coverage or not.
// The current algorithm has two components: static and dynamic.
// The static component is based on analysis of argument types. For example,
// if call X and call Y both accept fd[sock], then they are more likely to give
// new coverage together.
// The dynamic component is based on frequency of occurrence of a particular
// pair of syscalls in a single program in corpus. For example, if socket and
// connect frequently occur in programs together, we give higher priority to
// this pair of syscalls.
// Note: the current implementation is very basic, there is no theory behind any
// constants.
func (target *Target) CalculatePriorities(corpus []*Prog) [][]float32 {
static := target.calcStaticPriorities()
dynamic := target.calcDynamicPrio(corpus)
for i, prios := range static {
for j, p := range prios {
dynamic[i][j] *= p
}
}
return dynamic
}
func (target *Target) calcStaticPriorities() [][]float32 {
uses := make(map[string]map[int]float32)
for _, c := range target.Syscalls {
noteUsage := func(weight float32, str string, args ...interface{}) {
id := fmt.Sprintf(str, args...)
if uses[id] == nil {
uses[id] = make(map[int]float32)
}
old := uses[id][c.ID]
if weight > old {
uses[id][c.ID] = weight
}
}
ForeachType(c, func(t Type) {
switch a := t.(type) {
case *ResourceType:
if a.Desc.Name == "pid" || a.Desc.Name == "uid" || a.Desc.Name == "gid" {
// Pid/uid/gid usually play auxiliary role,
// but massively happen in some structs.
noteUsage(0.1, "res%v", a.Desc.Name)
} else {
str := "res"
for i, k := range a.Desc.Kind {
str += "-" + k
w := 1.0
if i < len(a.Desc.Kind)-1 {
w = 0.2
}
noteUsage(float32(w), str)
}
}
case *PtrType:
if _, ok := a.Type.(*StructType); ok {
noteUsage(1.0, "ptrto-%v", a.Type.Name())
}
if _, ok := a.Type.(*UnionType); ok {
noteUsage(1.0, "ptrto-%v", a.Type.Name())
}
if arr, ok := a.Type.(*ArrayType); ok {
noteUsage(1.0, "ptrto-%v", arr.Type.Name())
}
case *BufferType:
switch a.Kind {
case BufferBlobRand, BufferBlobRange, BufferText:
case BufferString:
if a.SubKind != "" {
noteUsage(0.2, fmt.Sprintf("str-%v", a.SubKind))
}
case BufferFilename:
noteUsage(1.0, "filename")
default:
panic("unknown buffer kind")
}
case *VmaType:
noteUsage(0.5, "vma")
case *IntType:
switch a.Kind {
case IntPlain, IntFileoff, IntRange:
default:
panic("unknown int kind")
}
}
})
}
prios := make([][]float32, len(target.Syscalls))
for i := range prios {
prios[i] = make([]float32, len(target.Syscalls))
}
for _, calls := range uses {
for c0, w0 := range calls {
for c1, w1 := range calls {
if c0 == c1 {
// Self-priority is assigned below.
continue
}
prios[c0][c1] += w0 * w1
}
}
}
// Self-priority (call wrt itself) is assigned to the maximum priority
// this call has wrt other calls. This way the priority is high, but not too high.
for c0, pp := range prios {
var max float32
for _, p := range pp {
if max < p {
max = p
}
}
pp[c0] = max
}
normalizePrio(prios)
return prios
}
func (target *Target) calcDynamicPrio(corpus []*Prog) [][]float32 {
prios := make([][]float32, len(target.Syscalls))
for i := range prios {
prios[i] = make([]float32, len(target.Syscalls))
}
for _, p := range corpus {
for _, c0 := range p.Calls {
for _, c1 := range p.Calls {
id0 := c0.Meta.ID
id1 := c1.Meta.ID
// There are too many mmap's anyway.
if id0 == id1 || c0.Meta == target.MmapSyscall ||
c1.Meta == target.MmapSyscall {
continue
}
prios[id0][id1] += 1.0
}
}
}
normalizePrio(prios)
return prios
}
// normalizePrio assigns some minimal priorities to calls with zero priority,
// and then normalizes priorities to 0.1..1 range.
func normalizePrio(prios [][]float32) {
for _, prio := range prios {
max := float32(0)
min := float32(1e10)
nzero := 0
for _, p := range prio {
if max < p {
max = p
}
if p != 0 && min > p {
min = p
}
if p == 0 {
nzero++
}
}
if nzero != 0 {
min /= 2 * float32(nzero)
}
for i, p := range prio {
if max == 0 {
prio[i] = 1
continue
}
if p == 0 {
p = min
}
p = (p-min)/(max-min)*0.9 + 0.1
if p > 1 {
p = 1
}
prio[i] = p
}
}
}
// ChooseTable allows to do a weighted choice of a syscall for a given syscall
// based on call-to-call priorities and a set of enabled syscalls.
type ChoiceTable struct {
target *Target
run [][]int
enabledCalls []*Syscall
enabled map[*Syscall]bool
}
func (target *Target) BuildChoiceTable(prios [][]float32, enabled map[*Syscall]bool) *ChoiceTable {
if enabled == nil {
enabled = make(map[*Syscall]bool)
for _, c := range target.Syscalls {
enabled[c] = true
}
}
var enabledCalls []*Syscall
for c := range enabled {
enabledCalls = append(enabledCalls, c)
}
run := make([][]int, len(target.Syscalls))
for i := range run {
if !enabled[target.Syscalls[i]] {
continue
}
run[i] = make([]int, len(target.Syscalls))
sum := 0
for j := range run[i] {
if enabled[target.Syscalls[j]] {
w := 1
if prios != nil {
w = int(prios[i][j] * 1000)
}
sum += w
}
run[i][j] = sum
}
}
return &ChoiceTable{target, run, enabledCalls, enabled}
}
func (ct *ChoiceTable) Choose(r *rand.Rand, call int) int {
if call < 0 {
return ct.enabledCalls[r.Intn(len(ct.enabledCalls))].ID
}
run := ct.run[call]
if run == nil {
return ct.enabledCalls[r.Intn(len(ct.enabledCalls))].ID
}
for {
x := r.Intn(run[len(run)-1]) + 1
i := sort.SearchInts(run, x)
if ct.enabled[ct.target.Syscalls[i]] {
return i
}
}
}