/* * VARIANT * * Copyright 1998 Jean-Claude Cote * Copyright 2003 Jon Griffiths * Copyright 2005 Daniel Remenak * * The alorithm for conversion from Julian days to day/month/year is based on * that devised by Henry Fliegel, as implemented in PostgreSQL, which is * Copyright 1994-7 Regents of the University of California * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "config.h" #include #include #include #define COBJMACROS #define NONAMELESSUNION #define NONAMELESSSTRUCT #include "windef.h" #include "winbase.h" #include "wine/unicode.h" #include "winerror.h" #include "variant.h" #include "wine/debug.h" WINE_DEFAULT_DEBUG_CHANNEL(variant); const char* wine_vtypes[VT_CLSID] = { "VT_EMPTY","VT_NULL","VT_I2","VT_I4","VT_R4","VT_R8","VT_CY","VT_DATE", "VT_BSTR","VT_DISPATCH","VT_ERROR","VT_BOOL","VT_VARIANT","VT_UNKNOWN", "VT_DECIMAL","15","VT_I1","VT_UI1","VT_UI2","VT_UI4","VT_I8","VT_UI8", "VT_INT","VT_UINT","VT_VOID","VT_HRESULT","VT_PTR","VT_SAFEARRAY", "VT_CARRAY","VT_USERDEFINED","VT_LPSTR","VT_LPWSTR""32","33","34","35", "VT_RECORD","VT_INT_PTR","VT_UINT_PTR","39","40","41","42","43","44","45", "46","47","48","49","50","51","52","53","54","55","56","57","58","59","60", "61","62","63","VT_FILETIME","VT_BLOB","VT_STREAM","VT_STORAGE", "VT_STREAMED_OBJECT","VT_STORED_OBJECT","VT_BLOB_OBJECT","VT_CF","VT_CLSID" }; const char* wine_vflags[16] = { "", "|VT_VECTOR", "|VT_ARRAY", "|VT_VECTOR|VT_ARRAY", "|VT_BYREF", "|VT_VECTOR|VT_ARRAY", "|VT_ARRAY|VT_BYREF", "|VT_VECTOR|VT_ARRAY|VT_BYREF", "|VT_HARDTYPE", "|VT_VECTOR|VT_HARDTYPE", "|VT_ARRAY|VT_HARDTYPE", "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE", "|VT_BYREF|VT_HARDTYPE", "|VT_VECTOR|VT_ARRAY|VT_HARDTYPE", "|VT_ARRAY|VT_BYREF|VT_HARDTYPE", "|VT_VECTOR|VT_ARRAY|VT_BYREF|VT_HARDTYPE", }; /* Convert a variant from one type to another */ static inline HRESULT VARIANT_Coerce(VARIANTARG* pd, LCID lcid, USHORT wFlags, VARIANTARG* ps, VARTYPE vt) { HRESULT res = DISP_E_TYPEMISMATCH; VARTYPE vtFrom = V_TYPE(ps); BOOL bIgnoreOverflow = FALSE; DWORD dwFlags = 0; TRACE("(%p->(%s%s),0x%08lx,0x%04x,%p->(%s%s),%s%s)\n", pd, debugstr_VT(pd), debugstr_VF(pd), lcid, wFlags, ps, debugstr_VT(ps), debugstr_VF(ps), debugstr_vt(vt), debugstr_vf(vt)); if (vt == VT_BSTR || vtFrom == VT_BSTR) { /* All flags passed to low level function are only used for * changing to or from strings. Map these here. */ if (wFlags & VARIANT_LOCALBOOL) dwFlags |= VAR_LOCALBOOL; if (wFlags & VARIANT_CALENDAR_HIJRI) dwFlags |= VAR_CALENDAR_HIJRI; if (wFlags & VARIANT_CALENDAR_THAI) dwFlags |= VAR_CALENDAR_THAI; if (wFlags & VARIANT_CALENDAR_GREGORIAN) dwFlags |= VAR_CALENDAR_GREGORIAN; if (wFlags & VARIANT_NOUSEROVERRIDE) dwFlags |= LOCALE_NOUSEROVERRIDE; if (wFlags & VARIANT_USE_NLS) dwFlags |= LOCALE_USE_NLS; } /* Map int/uint to i4/ui4 */ if (vt == VT_INT) vt = VT_I4; else if (vt == VT_UINT) vt = VT_UI4; if (vtFrom == VT_INT) vtFrom = VT_I4; else if (vtFrom == VT_UINT) { vtFrom = VT_UI4; if (vt == VT_I4) bIgnoreOverflow = TRUE; } if (vt == vtFrom) return VariantCopy(pd, ps); if (wFlags & VARIANT_NOVALUEPROP && vtFrom == VT_DISPATCH && vt != VT_UNKNOWN) { /* VARIANT_NOVALUEPROP prevents IDispatch objects from being coerced by * accessing the default object property. */ return DISP_E_TYPEMISMATCH; } switch (vt) { case VT_EMPTY: if (vtFrom == VT_NULL) return DISP_E_TYPEMISMATCH; /* ... Fall through */ case VT_NULL: if (vtFrom <= VT_UINT && vtFrom != (VARTYPE)15 && vtFrom != VT_ERROR) { res = VariantClear( pd ); if (vt == VT_NULL && SUCCEEDED(res)) V_VT(pd) = VT_NULL; } return res; case VT_I1: switch (vtFrom) { case VT_EMPTY: V_I1(pd) = 0; return S_OK; case VT_I2: return VarI1FromI2(V_I2(ps), &V_I1(pd)); case VT_I4: return VarI1FromI4(V_I4(ps), &V_I1(pd)); case VT_UI1: return VarI1FromUI1(V_UI1(ps), &V_I1(pd)); case VT_UI2: return VarI1FromUI2(V_UI2(ps), &V_I1(pd)); case VT_UI4: return VarI1FromUI4(V_UI4(ps), &V_I1(pd)); case VT_I8: return VarI1FromI8(V_I8(ps), &V_I1(pd)); case VT_UI8: return VarI1FromUI8(V_UI8(ps), &V_I1(pd)); case VT_R4: return VarI1FromR4(V_R4(ps), &V_I1(pd)); case VT_R8: return VarI1FromR8(V_R8(ps), &V_I1(pd)); case VT_DATE: return VarI1FromDate(V_DATE(ps), &V_I1(pd)); case VT_BOOL: return VarI1FromBool(V_BOOL(ps), &V_I1(pd)); case VT_CY: return VarI1FromCy(V_CY(ps), &V_I1(pd)); case VT_DECIMAL: return VarI1FromDec(&V_DECIMAL(ps), &V_I1(pd) ); case VT_DISPATCH: return VarI1FromDisp(V_DISPATCH(ps), lcid, &V_I1(pd) ); case VT_BSTR: return VarI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_I1(pd) ); } break; case VT_I2: switch (vtFrom) { case VT_EMPTY: V_I2(pd) = 0; return S_OK; case VT_I1: return VarI2FromI1(V_I1(ps), &V_I2(pd)); case VT_I4: return VarI2FromI4(V_I4(ps), &V_I2(pd)); case VT_UI1: return VarI2FromUI1(V_UI1(ps), &V_I2(pd)); case VT_UI2: return VarI2FromUI2(V_UI2(ps), &V_I2(pd)); case VT_UI4: return VarI2FromUI4(V_UI4(ps), &V_I2(pd)); case VT_I8: return VarI2FromI8(V_I8(ps), &V_I2(pd)); case VT_UI8: return VarI2FromUI8(V_UI8(ps), &V_I2(pd)); case VT_R4: return VarI2FromR4(V_R4(ps), &V_I2(pd)); case VT_R8: return VarI2FromR8(V_R8(ps), &V_I2(pd)); case VT_DATE: return VarI2FromDate(V_DATE(ps), &V_I2(pd)); case VT_BOOL: return VarI2FromBool(V_BOOL(ps), &V_I2(pd)); case VT_CY: return VarI2FromCy(V_CY(ps), &V_I2(pd)); case VT_DECIMAL: return VarI2FromDec(&V_DECIMAL(ps), &V_I2(pd)); case VT_DISPATCH: return VarI2FromDisp(V_DISPATCH(ps), lcid, &V_I2(pd)); case VT_BSTR: return VarI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_I2(pd)); } break; case VT_I4: switch (vtFrom) { case VT_EMPTY: V_I4(pd) = 0; return S_OK; case VT_I1: return VarI4FromI1(V_I1(ps), &V_I4(pd)); case VT_I2: return VarI4FromI2(V_I2(ps), &V_I4(pd)); case VT_UI1: return VarI4FromUI1(V_UI1(ps), &V_I4(pd)); case VT_UI2: return VarI4FromUI2(V_UI2(ps), &V_I4(pd)); case VT_UI4: if (bIgnoreOverflow) { V_VT(pd) = VT_I4; V_I4(pd) = V_I4(ps); return S_OK; } return VarI4FromUI4(V_UI4(ps), &V_I4(pd)); case VT_I8: return VarI4FromI8(V_I8(ps), &V_I4(pd)); case VT_UI8: return VarI4FromUI8(V_UI8(ps), &V_I4(pd)); case VT_R4: return VarI4FromR4(V_R4(ps), &V_I4(pd)); case VT_R8: return VarI4FromR8(V_R8(ps), &V_I4(pd)); case VT_DATE: return VarI4FromDate(V_DATE(ps), &V_I4(pd)); case VT_BOOL: return VarI4FromBool(V_BOOL(ps), &V_I4(pd)); case VT_CY: return VarI4FromCy(V_CY(ps), &V_I4(pd)); case VT_DECIMAL: return VarI4FromDec(&V_DECIMAL(ps), &V_I4(pd)); case VT_DISPATCH: return VarI4FromDisp(V_DISPATCH(ps), lcid, &V_I4(pd)); case VT_BSTR: return VarI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_I4(pd)); } break; case VT_UI1: switch (vtFrom) { case VT_EMPTY: V_UI1(pd) = 0; return S_OK; case VT_I1: return VarUI1FromI1(V_I1(ps), &V_UI1(pd)); case VT_I2: return VarUI1FromI2(V_I2(ps), &V_UI1(pd)); case VT_I4: return VarUI1FromI4(V_I4(ps), &V_UI1(pd)); case VT_UI2: return VarUI1FromUI2(V_UI2(ps), &V_UI1(pd)); case VT_UI4: return VarUI1FromUI4(V_UI4(ps), &V_UI1(pd)); case VT_I8: return VarUI1FromI8(V_I8(ps), &V_UI1(pd)); case VT_UI8: return VarUI1FromUI8(V_UI8(ps), &V_UI1(pd)); case VT_R4: return VarUI1FromR4(V_R4(ps), &V_UI1(pd)); case VT_R8: return VarUI1FromR8(V_R8(ps), &V_UI1(pd)); case VT_DATE: return VarUI1FromDate(V_DATE(ps), &V_UI1(pd)); case VT_BOOL: return VarUI1FromBool(V_BOOL(ps), &V_UI1(pd)); case VT_CY: return VarUI1FromCy(V_CY(ps), &V_UI1(pd)); case VT_DECIMAL: return VarUI1FromDec(&V_DECIMAL(ps), &V_UI1(pd)); case VT_DISPATCH: return VarUI1FromDisp(V_DISPATCH(ps), lcid, &V_UI1(pd)); case VT_BSTR: return VarUI1FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI1(pd)); } break; case VT_UI2: switch (vtFrom) { case VT_EMPTY: V_UI2(pd) = 0; return S_OK; case VT_I1: return VarUI2FromI1(V_I1(ps), &V_UI2(pd)); case VT_I2: return VarUI2FromI2(V_I2(ps), &V_UI2(pd)); case VT_I4: return VarUI2FromI4(V_I4(ps), &V_UI2(pd)); case VT_UI1: return VarUI2FromUI1(V_UI1(ps), &V_UI2(pd)); case VT_UI4: return VarUI2FromUI4(V_UI4(ps), &V_UI2(pd)); case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd)); case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd)); case VT_R4: return VarUI2FromR4(V_R4(ps), &V_UI2(pd)); case VT_R8: return VarUI2FromR8(V_R8(ps), &V_UI2(pd)); case VT_DATE: return VarUI2FromDate(V_DATE(ps), &V_UI2(pd)); case VT_BOOL: return VarUI2FromBool(V_BOOL(ps), &V_UI2(pd)); case VT_CY: return VarUI2FromCy(V_CY(ps), &V_UI2(pd)); case VT_DECIMAL: return VarUI2FromDec(&V_DECIMAL(ps), &V_UI2(pd)); case VT_DISPATCH: return VarUI2FromDisp(V_DISPATCH(ps), lcid, &V_UI2(pd)); case VT_BSTR: return VarUI2FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI2(pd)); } break; case VT_UI4: switch (vtFrom) { case VT_EMPTY: V_UI4(pd) = 0; return S_OK; case VT_I1: return VarUI4FromI1(V_I1(ps), &V_UI4(pd)); case VT_I2: return VarUI4FromI2(V_I2(ps), &V_UI4(pd)); case VT_I4: return VarUI4FromI4(V_I4(ps), &V_UI4(pd)); case VT_UI1: return VarUI4FromUI1(V_UI1(ps), &V_UI4(pd)); case VT_UI2: return VarUI4FromUI2(V_UI2(ps), &V_UI4(pd)); case VT_I8: return VarUI4FromI8(V_I8(ps), &V_UI4(pd)); case VT_UI8: return VarUI4FromUI8(V_UI8(ps), &V_UI4(pd)); case VT_R4: return VarUI4FromR4(V_R4(ps), &V_UI4(pd)); case VT_R8: return VarUI4FromR8(V_R8(ps), &V_UI4(pd)); case VT_DATE: return VarUI4FromDate(V_DATE(ps), &V_UI4(pd)); case VT_BOOL: return VarUI4FromBool(V_BOOL(ps), &V_UI4(pd)); case VT_CY: return VarUI4FromCy(V_CY(ps), &V_UI4(pd)); case VT_DECIMAL: return VarUI4FromDec(&V_DECIMAL(ps), &V_UI4(pd)); case VT_DISPATCH: return VarUI4FromDisp(V_DISPATCH(ps), lcid, &V_UI4(pd)); case VT_BSTR: return VarUI4FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI4(pd)); } break; case VT_UI8: switch (vtFrom) { case VT_EMPTY: V_UI8(pd) = 0; return S_OK; case VT_I4: if (V_I4(ps) < 0) return DISP_E_OVERFLOW; V_UI8(pd) = V_I4(ps); return S_OK; case VT_I1: return VarUI8FromI1(V_I1(ps), &V_UI8(pd)); case VT_I2: return VarUI8FromI2(V_I2(ps), &V_UI8(pd)); case VT_UI1: return VarUI8FromUI1(V_UI1(ps), &V_UI8(pd)); case VT_UI2: return VarUI8FromUI2(V_UI2(ps), &V_UI8(pd)); case VT_UI4: return VarUI8FromUI4(V_UI4(ps), &V_UI8(pd)); case VT_I8: return VarUI8FromI8(V_I8(ps), &V_UI8(pd)); case VT_R4: return VarUI8FromR4(V_R4(ps), &V_UI8(pd)); case VT_R8: return VarUI8FromR8(V_R8(ps), &V_UI8(pd)); case VT_DATE: return VarUI8FromDate(V_DATE(ps), &V_UI8(pd)); case VT_BOOL: return VarUI8FromBool(V_BOOL(ps), &V_UI8(pd)); case VT_CY: return VarUI8FromCy(V_CY(ps), &V_UI8(pd)); case VT_DECIMAL: return VarUI8FromDec(&V_DECIMAL(ps), &V_UI8(pd)); case VT_DISPATCH: return VarUI8FromDisp(V_DISPATCH(ps), lcid, &V_UI8(pd)); case VT_BSTR: return VarUI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_UI8(pd)); } break; case VT_I8: switch (vtFrom) { case VT_EMPTY: V_I8(pd) = 0; return S_OK; case VT_I4: V_I8(pd) = V_I4(ps); return S_OK; case VT_I1: return VarI8FromI1(V_I1(ps), &V_I8(pd)); case VT_I2: return VarI8FromI2(V_I2(ps), &V_I8(pd)); case VT_UI1: return VarI8FromUI1(V_UI1(ps), &V_I8(pd)); case VT_UI2: return VarI8FromUI2(V_UI2(ps), &V_I8(pd)); case VT_UI4: return VarI8FromUI4(V_UI4(ps), &V_I8(pd)); case VT_UI8: return VarI8FromUI8(V_I8(ps), &V_I8(pd)); case VT_R4: return VarI8FromR4(V_R4(ps), &V_I8(pd)); case VT_R8: return VarI8FromR8(V_R8(ps), &V_I8(pd)); case VT_DATE: return VarI8FromDate(V_DATE(ps), &V_I8(pd)); case VT_BOOL: return VarI8FromBool(V_BOOL(ps), &V_I8(pd)); case VT_CY: return VarI8FromCy(V_CY(ps), &V_I8(pd)); case VT_DECIMAL: return VarI8FromDec(&V_DECIMAL(ps), &V_I8(pd)); case VT_DISPATCH: return VarI8FromDisp(V_DISPATCH(ps), lcid, &V_I8(pd)); case VT_BSTR: return VarI8FromStr(V_BSTR(ps), lcid, dwFlags, &V_I8(pd)); } break; case VT_R4: switch (vtFrom) { case VT_EMPTY: V_R4(pd) = 0.0f; return S_OK; case VT_I1: return VarR4FromI1(V_I1(ps), &V_R4(pd)); case VT_I2: return VarR4FromI2(V_I2(ps), &V_R4(pd)); case VT_I4: return VarR4FromI4(V_I4(ps), &V_R4(pd)); case VT_UI1: return VarR4FromUI1(V_UI1(ps), &V_R4(pd)); case VT_UI2: return VarR4FromUI2(V_UI2(ps), &V_R4(pd)); case VT_UI4: return VarR4FromUI4(V_UI4(ps), &V_R4(pd)); case VT_I8: return VarR4FromI8(V_I8(ps), &V_R4(pd)); case VT_UI8: return VarR4FromUI8(V_UI8(ps), &V_R4(pd)); case VT_R8: return VarR4FromR8(V_R8(ps), &V_R4(pd)); case VT_DATE: return VarR4FromDate(V_DATE(ps), &V_R4(pd)); case VT_BOOL: return VarR4FromBool(V_BOOL(ps), &V_R4(pd)); case VT_CY: return VarR4FromCy(V_CY(ps), &V_R4(pd)); case VT_DECIMAL: return VarR4FromDec(&V_DECIMAL(ps), &V_R4(pd)); case VT_DISPATCH: return VarR4FromDisp(V_DISPATCH(ps), lcid, &V_R4(pd)); case VT_BSTR: return VarR4FromStr(V_BSTR(ps), lcid, dwFlags, &V_R4(pd)); } break; case VT_R8: switch (vtFrom) { case VT_EMPTY: V_R8(pd) = 0.0; return S_OK; case VT_I1: return VarR8FromI1(V_I1(ps), &V_R8(pd)); case VT_I2: return VarR8FromI2(V_I2(ps), &V_R8(pd)); case VT_I4: return VarR8FromI4(V_I4(ps), &V_R8(pd)); case VT_UI1: return VarR8FromUI1(V_UI1(ps), &V_R8(pd)); case VT_UI2: return VarR8FromUI2(V_UI2(ps), &V_R8(pd)); case VT_UI4: return VarR8FromUI4(V_UI4(ps), &V_R8(pd)); case VT_I8: return VarR8FromI8(V_I8(ps), &V_R8(pd)); case VT_UI8: return VarR8FromUI8(V_UI8(ps), &V_R8(pd)); case VT_R4: return VarR8FromR4(V_R4(ps), &V_R8(pd)); case VT_DATE: return VarR8FromDate(V_DATE(ps), &V_R8(pd)); case VT_BOOL: return VarR8FromBool(V_BOOL(ps), &V_R8(pd)); case VT_CY: return VarR8FromCy(V_CY(ps), &V_R8(pd)); case VT_DECIMAL: return VarR8FromDec(&V_DECIMAL(ps), &V_R8(pd)); case VT_DISPATCH: return VarR8FromDisp(V_DISPATCH(ps), lcid, &V_R8(pd)); case VT_BSTR: return VarR8FromStr(V_BSTR(ps), lcid, dwFlags, &V_R8(pd)); } break; case VT_DATE: switch (vtFrom) { case VT_EMPTY: V_DATE(pd) = 0.0; return S_OK; case VT_I1: return VarDateFromI1(V_I1(ps), &V_DATE(pd)); case VT_I2: return VarDateFromI2(V_I2(ps), &V_DATE(pd)); case VT_I4: return VarDateFromI4(V_I4(ps), &V_DATE(pd)); case VT_UI1: return VarDateFromUI1(V_UI1(ps), &V_DATE(pd)); case VT_UI2: return VarDateFromUI2(V_UI2(ps), &V_DATE(pd)); case VT_UI4: return VarDateFromUI4(V_UI4(ps), &V_DATE(pd)); case VT_I8: return VarDateFromI8(V_I8(ps), &V_DATE(pd)); case VT_UI8: return VarDateFromUI8(V_UI8(ps), &V_DATE(pd)); case VT_R4: return VarDateFromR4(V_R4(ps), &V_DATE(pd)); case VT_R8: return VarDateFromR8(V_R8(ps), &V_DATE(pd)); case VT_BOOL: return VarDateFromBool(V_BOOL(ps), &V_DATE(pd)); case VT_CY: return VarDateFromCy(V_CY(ps), &V_DATE(pd)); case VT_DECIMAL: return VarDateFromDec(&V_DECIMAL(ps), &V_DATE(pd)); case VT_DISPATCH: return VarDateFromDisp(V_DISPATCH(ps), lcid, &V_DATE(pd)); case VT_BSTR: return VarDateFromStr(V_BSTR(ps), lcid, dwFlags, &V_DATE(pd)); } break; case VT_BOOL: switch (vtFrom) { case VT_EMPTY: V_BOOL(pd) = 0; return S_OK; case VT_I1: return VarBoolFromI1(V_I1(ps), &V_BOOL(pd)); case VT_I2: return VarBoolFromI2(V_I2(ps), &V_BOOL(pd)); case VT_I4: return VarBoolFromI4(V_I4(ps), &V_BOOL(pd)); case VT_UI1: return VarBoolFromUI1(V_UI1(ps), &V_BOOL(pd)); case VT_UI2: return VarBoolFromUI2(V_UI2(ps), &V_BOOL(pd)); case VT_UI4: return VarBoolFromUI4(V_UI4(ps), &V_BOOL(pd)); case VT_I8: return VarBoolFromI8(V_I8(ps), &V_BOOL(pd)); case VT_UI8: return VarBoolFromUI8(V_UI8(ps), &V_BOOL(pd)); case VT_R4: return VarBoolFromR4(V_R4(ps), &V_BOOL(pd)); case VT_R8: return VarBoolFromR8(V_R8(ps), &V_BOOL(pd)); case VT_DATE: return VarBoolFromDate(V_DATE(ps), &V_BOOL(pd)); case VT_CY: return VarBoolFromCy(V_CY(ps), &V_BOOL(pd)); case VT_DECIMAL: return VarBoolFromDec(&V_DECIMAL(ps), &V_BOOL(pd)); case VT_DISPATCH: return VarBoolFromDisp(V_DISPATCH(ps), lcid, &V_BOOL(pd)); case VT_BSTR: return VarBoolFromStr(V_BSTR(ps), lcid, dwFlags, &V_BOOL(pd)); } break; case VT_BSTR: switch (vtFrom) { case VT_EMPTY: V_BSTR(pd) = SysAllocStringLen(NULL, 0); return V_BSTR(pd) ? S_OK : E_OUTOFMEMORY; case VT_BOOL: if (wFlags & (VARIANT_ALPHABOOL|VARIANT_LOCALBOOL)) return VarBstrFromBool(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd)); return VarBstrFromI2(V_BOOL(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_I1: return VarBstrFromI1(V_I1(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_I2: return VarBstrFromI2(V_I2(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_I4: return VarBstrFromI4(V_I4(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_UI1: return VarBstrFromUI1(V_UI1(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_UI2: return VarBstrFromUI2(V_UI2(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_UI4: return VarBstrFromUI4(V_UI4(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_I8: return VarBstrFromI8(V_I8(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_UI8: return VarBstrFromUI8(V_UI8(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_R4: return VarBstrFromR4(V_R4(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_R8: return VarBstrFromR8(V_R8(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_DATE: return VarBstrFromDate(V_DATE(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_CY: return VarBstrFromCy(V_CY(ps), lcid, dwFlags, &V_BSTR(pd)); case VT_DECIMAL: return VarBstrFromDec(&V_DECIMAL(ps), lcid, dwFlags, &V_BSTR(pd)); /* case VT_DISPATCH: return VarBstrFromDisp(V_DISPATCH(ps), lcid, dwFlags, &V_BSTR(pd)); */ } break; case VT_CY: switch (vtFrom) { case VT_EMPTY: V_CY(pd).int64 = 0; return S_OK; case VT_I1: return VarCyFromI1(V_I1(ps), &V_CY(pd)); case VT_I2: return VarCyFromI2(V_I2(ps), &V_CY(pd)); case VT_I4: return VarCyFromI4(V_I4(ps), &V_CY(pd)); case VT_UI1: return VarCyFromUI1(V_UI1(ps), &V_CY(pd)); case VT_UI2: return VarCyFromUI2(V_UI2(ps), &V_CY(pd)); case VT_UI4: return VarCyFromUI4(V_UI4(ps), &V_CY(pd)); case VT_I8: return VarCyFromI8(V_I8(ps), &V_CY(pd)); case VT_UI8: return VarCyFromUI8(V_UI8(ps), &V_CY(pd)); case VT_R4: return VarCyFromR4(V_R4(ps), &V_CY(pd)); case VT_R8: return VarCyFromR8(V_R8(ps), &V_CY(pd)); case VT_DATE: return VarCyFromDate(V_DATE(ps), &V_CY(pd)); case VT_BOOL: return VarCyFromBool(V_BOOL(ps), &V_CY(pd)); case VT_DECIMAL: return VarCyFromDec(&V_DECIMAL(ps), &V_CY(pd)); case VT_DISPATCH: return VarCyFromDisp(V_DISPATCH(ps), lcid, &V_CY(pd)); case VT_BSTR: return VarCyFromStr(V_BSTR(ps), lcid, dwFlags, &V_CY(pd)); } break; case VT_DECIMAL: switch (vtFrom) { case VT_EMPTY: case VT_BOOL: DEC_SIGNSCALE(&V_DECIMAL(pd)) = SIGNSCALE(DECIMAL_POS,0); DEC_HI32(&V_DECIMAL(pd)) = 0; DEC_MID32(&V_DECIMAL(pd)) = 0; /* VarDecFromBool() coerces to -1/0, ChangeTypeEx() coerces to 1/0. * VT_NULL and VT_EMPTY always give a 0 value. */ DEC_LO32(&V_DECIMAL(pd)) = vtFrom == VT_BOOL && V_BOOL(ps) ? 1 : 0; return S_OK; case VT_I1: return VarDecFromI1(V_I1(ps), &V_DECIMAL(pd)); case VT_I2: return VarDecFromI2(V_I2(ps), &V_DECIMAL(pd)); case VT_I4: return VarDecFromI4(V_I4(ps), &V_DECIMAL(pd)); case VT_UI1: return VarDecFromUI1(V_UI1(ps), &V_DECIMAL(pd)); case VT_UI2: return VarDecFromUI2(V_UI2(ps), &V_DECIMAL(pd)); case VT_UI4: return VarDecFromUI4(V_UI4(ps), &V_DECIMAL(pd)); case VT_I8: return VarDecFromI8(V_I8(ps), &V_DECIMAL(pd)); case VT_UI8: return VarDecFromUI8(V_UI8(ps), &V_DECIMAL(pd)); case VT_R4: return VarDecFromR4(V_R4(ps), &V_DECIMAL(pd)); case VT_R8: return VarDecFromR8(V_R8(ps), &V_DECIMAL(pd)); case VT_DATE: return VarDecFromDate(V_DATE(ps), &V_DECIMAL(pd)); case VT_CY: return VarDecFromCy(V_CY(ps), &V_DECIMAL(pd)); case VT_DISPATCH: return VarDecFromDisp(V_DISPATCH(ps), lcid, &V_DECIMAL(pd)); case VT_BSTR: return VarDecFromStr(V_BSTR(ps), lcid, dwFlags, &V_DECIMAL(pd)); } break; case VT_UNKNOWN: switch (vtFrom) { case VT_DISPATCH: if (V_DISPATCH(ps) == NULL) V_UNKNOWN(pd) = NULL; else res = IDispatch_QueryInterface(V_DISPATCH(ps), &IID_IUnknown, (LPVOID*)&V_UNKNOWN(pd)); break; } break; case VT_DISPATCH: switch (vtFrom) { case VT_UNKNOWN: if (V_UNKNOWN(ps) == NULL) V_DISPATCH(pd) = NULL; else res = IUnknown_QueryInterface(V_UNKNOWN(ps), &IID_IDispatch, (LPVOID*)&V_DISPATCH(pd)); break; } break; case VT_RECORD: break; } return res; } /* Coerce to/from an array */ static inline HRESULT VARIANT_CoerceArray(VARIANTARG* pd, VARIANTARG* ps, VARTYPE vt) { if (vt == VT_BSTR && V_VT(ps) == (VT_ARRAY|VT_UI1)) return BstrFromVector(V_ARRAY(ps), &V_BSTR(pd)); if (V_VT(ps) == VT_BSTR && vt == (VT_ARRAY|VT_UI1)) return VectorFromBstr(V_BSTR(ps), &V_ARRAY(ps)); if (V_VT(ps) == vt) return SafeArrayCopy(V_ARRAY(ps), &V_ARRAY(pd)); return DISP_E_TYPEMISMATCH; } /****************************************************************************** * Check if a variants type is valid. */ static inline HRESULT VARIANT_ValidateType(VARTYPE vt) { VARTYPE vtExtra = vt & VT_EXTRA_TYPE; vt &= VT_TYPEMASK; if (!(vtExtra & (VT_VECTOR|VT_RESERVED))) { if (vt < VT_VOID || vt == VT_RECORD || vt == VT_CLSID) { if ((vtExtra & (VT_BYREF|VT_ARRAY)) && vt <= VT_NULL) return DISP_E_BADVARTYPE; if (vt != (VARTYPE)15) return S_OK; } } return DISP_E_BADVARTYPE; } /****************************************************************************** * VariantInit [OLEAUT32.8] * * Initialise a variant. * * PARAMS * pVarg [O] Variant to initialise * * RETURNS * Nothing. * * NOTES * This function simply sets the type of the variant to VT_EMPTY. It does not * free any existing value, use VariantClear() for that. */ void WINAPI VariantInit(VARIANTARG* pVarg) { TRACE("(%p)\n", pVarg); V_VT(pVarg) = VT_EMPTY; /* Native doesn't set any other fields */ } /****************************************************************************** * VariantClear [OLEAUT32.9] * * Clear a variant. * * PARAMS * pVarg [I/O] Variant to clear * * RETURNS * Success: S_OK. Any previous value in pVarg is freed and its type is set to VT_EMPTY. * Failure: DISP_E_BADVARTYPE, if the variant is a not a valid variant type. */ HRESULT WINAPI VariantClear(VARIANTARG* pVarg) { HRESULT hres = S_OK; TRACE("(%p->(%s%s))\n", pVarg, debugstr_VT(pVarg), debugstr_VF(pVarg)); hres = VARIANT_ValidateType(V_VT(pVarg)); if (SUCCEEDED(hres)) { if (!V_ISBYREF(pVarg)) { if (V_ISARRAY(pVarg) || V_VT(pVarg) == VT_SAFEARRAY) { if (V_ARRAY(pVarg)) hres = SafeArrayDestroy(V_ARRAY(pVarg)); } else if (V_VT(pVarg) == VT_BSTR) { if (V_BSTR(pVarg)) SysFreeString(V_BSTR(pVarg)); } else if (V_VT(pVarg) == VT_RECORD) { struct __tagBRECORD* pBr = &V_UNION(pVarg,brecVal); if (pBr->pRecInfo) { IRecordInfo_RecordClear(pBr->pRecInfo, pBr->pvRecord); IRecordInfo_Release(pBr->pRecInfo); } } else if (V_VT(pVarg) == VT_DISPATCH || V_VT(pVarg) == VT_UNKNOWN) { if (V_UNKNOWN(pVarg)) IUnknown_Release(V_UNKNOWN(pVarg)); } else if (V_VT(pVarg) == VT_VARIANT) { if (V_VARIANTREF(pVarg)) VariantClear(V_VARIANTREF(pVarg)); } } V_VT(pVarg) = VT_EMPTY; } return hres; } /****************************************************************************** * Copy an IRecordInfo object contained in a variant. */ static HRESULT VARIANT_CopyIRecordInfo(struct __tagBRECORD* pBr) { HRESULT hres = S_OK; if (pBr->pRecInfo) { ULONG ulSize; hres = IRecordInfo_GetSize(pBr->pRecInfo, &ulSize); if (SUCCEEDED(hres)) { PVOID pvRecord = HeapAlloc(GetProcessHeap(), 0, ulSize); if (!pvRecord) hres = E_OUTOFMEMORY; else { memcpy(pvRecord, pBr->pvRecord, ulSize); pBr->pvRecord = pvRecord; hres = IRecordInfo_RecordCopy(pBr->pRecInfo, pvRecord, pvRecord); if (SUCCEEDED(hres)) IRecordInfo_AddRef(pBr->pRecInfo); } } } else if (pBr->pvRecord) hres = E_INVALIDARG; return hres; } /****************************************************************************** * VariantCopy [OLEAUT32.10] * * Copy a variant. * * PARAMS * pvargDest [O] Destination for copy * pvargSrc [I] Source variant to copy * * RETURNS * Success: S_OK. pvargDest contains a copy of pvargSrc. * Failure: DISP_E_BADVARTYPE, if either variant has an invalid type. * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(), * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc. * * NOTES * - If pvargSrc == pvargDest, this function does nothing, and succeeds if * pvargSrc is valid. Otherwise, pvargDest is always cleared using * VariantClear() before pvargSrc is copied to it. If clearing pvargDest * fails, so does this function. * - VT_CLSID is a valid type type for pvargSrc, but not for pvargDest. * - For by-value non-intrinsic types, a deep copy is made, i.e. The whole value * is copied rather than just any pointers to it. * - For by-value object types the object pointer is copied and the objects * reference count increased using IUnknown_AddRef(). * - For all by-reference types, only the referencing pointer is copied. */ HRESULT WINAPI VariantCopy(VARIANTARG* pvargDest, VARIANTARG* pvargSrc) { HRESULT hres = S_OK; TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc), debugstr_VF(pvargSrc)); if (V_TYPE(pvargSrc) == VT_CLSID || /* VT_CLSID is a special case */ FAILED(VARIANT_ValidateType(V_VT(pvargSrc)))) return DISP_E_BADVARTYPE; if (pvargSrc != pvargDest && SUCCEEDED(hres = VariantClear(pvargDest))) { *pvargDest = *pvargSrc; /* Shallow copy the value */ if (!V_ISBYREF(pvargSrc)) { if (V_ISARRAY(pvargSrc)) { if (V_ARRAY(pvargSrc)) hres = SafeArrayCopy(V_ARRAY(pvargSrc), &V_ARRAY(pvargDest)); } else if (V_VT(pvargSrc) == VT_BSTR) { if (V_BSTR(pvargSrc)) { V_BSTR(pvargDest) = SysAllocStringByteLen((char*)V_BSTR(pvargSrc), SysStringByteLen(V_BSTR(pvargSrc))); if (!V_BSTR(pvargDest)) { TRACE("!V_BSTR(pvargDest), SysAllocStringByteLen() failed to allocate %d bytes\n", SysStringByteLen(V_BSTR(pvargSrc))); hres = E_OUTOFMEMORY; } } } else if (V_VT(pvargSrc) == VT_RECORD) { hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal)); } else if (V_VT(pvargSrc) == VT_DISPATCH || V_VT(pvargSrc) == VT_UNKNOWN) { if (V_UNKNOWN(pvargSrc)) IUnknown_AddRef(V_UNKNOWN(pvargSrc)); } } } return hres; } /* Return the byte size of a variants data */ static inline size_t VARIANT_DataSize(const VARIANT* pv) { switch (V_TYPE(pv)) { case VT_I1: case VT_UI1: return sizeof(BYTE); case VT_I2: case VT_UI2: return sizeof(SHORT); case VT_INT: case VT_UINT: case VT_I4: case VT_UI4: return sizeof(LONG); case VT_I8: case VT_UI8: return sizeof(LONGLONG); case VT_R4: return sizeof(float); case VT_R8: return sizeof(double); case VT_DATE: return sizeof(DATE); case VT_BOOL: return sizeof(VARIANT_BOOL); case VT_DISPATCH: case VT_UNKNOWN: case VT_BSTR: return sizeof(void*); case VT_CY: return sizeof(CY); case VT_ERROR: return sizeof(SCODE); } TRACE("Shouldn't be called for vt %s%s!\n", debugstr_VT(pv), debugstr_VF(pv)); return 0; } /****************************************************************************** * VariantCopyInd [OLEAUT32.11] * * Copy a variant, dereferencing it it is by-reference. * * PARAMS * pvargDest [O] Destination for copy * pvargSrc [I] Source variant to copy * * RETURNS * Success: S_OK. pvargDest contains a copy of pvargSrc. * Failure: An HRESULT error code indicating the error. * * NOTES * Failure: DISP_E_BADVARTYPE, if either variant has an invalid by-value type. * E_INVALIDARG, if pvargSrc is an invalid by-reference type. * E_OUTOFMEMORY, if memory cannot be allocated. Otherwise an * HRESULT error code from SafeArrayCopy(), IRecordInfo_GetSize(), * or IRecordInfo_RecordCopy(), depending on the type of pvargSrc. * * NOTES * - If pvargSrc is by-value, this function behaves exactly as VariantCopy(). * - If pvargSrc is by-reference, the value copied to pvargDest is the pointed-to * value. * - if pvargSrc == pvargDest, this function dereferences in place. Otherwise, * pvargDest is always cleared using VariantClear() before pvargSrc is copied * to it. If clearing pvargDest fails, so does this function. */ HRESULT WINAPI VariantCopyInd(VARIANT* pvargDest, VARIANTARG* pvargSrc) { VARIANTARG vTmp, *pSrc = pvargSrc; VARTYPE vt; HRESULT hres = S_OK; TRACE("(%p->(%s%s),%p->(%s%s))\n", pvargDest, debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc), debugstr_VF(pvargSrc)); if (!V_ISBYREF(pvargSrc)) return VariantCopy(pvargDest, pvargSrc); /* Argument checking is more lax than VariantCopy()... */ vt = V_TYPE(pvargSrc); if (V_ISARRAY(pvargSrc) || (vt > VT_NULL && vt != (VARTYPE)15 && vt < VT_VOID && !(V_VT(pvargSrc) & (VT_VECTOR|VT_RESERVED)))) { /* OK */ } else return E_INVALIDARG; /* ...And the return value for invalid types differs too */ if (pvargSrc == pvargDest) { /* In place copy. Use a shallow copy of pvargSrc & init pvargDest. * This avoids an expensive VariantCopy() call - e.g. SafeArrayCopy(). */ vTmp = *pvargSrc; pSrc = &vTmp; V_VT(pvargDest) = VT_EMPTY; } else { /* Copy into another variant. Free the variant in pvargDest */ if (FAILED(hres = VariantClear(pvargDest))) { TRACE("VariantClear() of destination failed\n"); return hres; } } if (V_ISARRAY(pSrc)) { /* Native doesn't check that *V_ARRAYREF(pSrc) is valid */ hres = SafeArrayCopy(*V_ARRAYREF(pSrc), &V_ARRAY(pvargDest)); } else if (V_VT(pSrc) == (VT_BSTR|VT_BYREF)) { /* Native doesn't check that *V_BSTRREF(pSrc) is valid */ V_BSTR(pvargDest) = SysAllocStringByteLen((char*)*V_BSTRREF(pSrc), SysStringByteLen(*V_BSTRREF(pSrc))); } else if (V_VT(pSrc) == (VT_RECORD|VT_BYREF)) { V_UNION(pvargDest,brecVal) = V_UNION(pvargSrc,brecVal); hres = VARIANT_CopyIRecordInfo(&V_UNION(pvargDest,brecVal)); } else if (V_VT(pSrc) == (VT_DISPATCH|VT_BYREF) || V_VT(pSrc) == (VT_UNKNOWN|VT_BYREF)) { /* Native doesn't check that *V_UNKNOWNREF(pSrc) is valid */ V_UNKNOWN(pvargDest) = *V_UNKNOWNREF(pSrc); if (*V_UNKNOWNREF(pSrc)) IUnknown_AddRef(*V_UNKNOWNREF(pSrc)); } else if (V_VT(pSrc) == (VT_VARIANT|VT_BYREF)) { /* Native doesn't check that *V_VARIANTREF(pSrc) is valid */ if (V_VT(V_VARIANTREF(pSrc)) == (VT_VARIANT|VT_BYREF)) hres = E_INVALIDARG; /* Don't dereference more than one level */ else hres = VariantCopyInd(pvargDest, V_VARIANTREF(pSrc)); /* Use the dereferenced variants type value, not VT_VARIANT */ goto VariantCopyInd_Return; } else if (V_VT(pSrc) == (VT_DECIMAL|VT_BYREF)) { memcpy(&DEC_SCALE(&V_DECIMAL(pvargDest)), &DEC_SCALE(V_DECIMALREF(pSrc)), sizeof(DECIMAL) - sizeof(USHORT)); } else { /* Copy the pointed to data into this variant */ memcpy(&V_BYREF(pvargDest), V_BYREF(pSrc), VARIANT_DataSize(pSrc)); } V_VT(pvargDest) = V_VT(pSrc) & ~VT_BYREF; VariantCopyInd_Return: if (pSrc != pvargSrc) VariantClear(pSrc); TRACE("returning 0x%08lx, %p->(%s%s)\n", hres, pvargDest, debugstr_VT(pvargDest), debugstr_VF(pvargDest)); return hres; } /****************************************************************************** * VariantChangeType [OLEAUT32.12] * * Change the type of a variant. * * PARAMS * pvargDest [O] Destination for the converted variant * pvargSrc [O] Source variant to change the type of * wFlags [I] VARIANT_ flags from "oleauto.h" * vt [I] Variant type to change pvargSrc into * * RETURNS * Success: S_OK. pvargDest contains the converted value. * Failure: An HRESULT error code describing the failure. * * NOTES * The LCID used for the conversion is LOCALE_USER_DEFAULT. * See VariantChangeTypeEx. */ HRESULT WINAPI VariantChangeType(VARIANTARG* pvargDest, VARIANTARG* pvargSrc, USHORT wFlags, VARTYPE vt) { return VariantChangeTypeEx( pvargDest, pvargSrc, LOCALE_USER_DEFAULT, wFlags, vt ); } /****************************************************************************** * VariantChangeTypeEx [OLEAUT32.147] * * Change the type of a variant. * * PARAMS * pvargDest [O] Destination for the converted variant * pvargSrc [O] Source variant to change the type of * lcid [I] LCID for the conversion * wFlags [I] VARIANT_ flags from "oleauto.h" * vt [I] Variant type to change pvargSrc into * * RETURNS * Success: S_OK. pvargDest contains the converted value. * Failure: An HRESULT error code describing the failure. * * NOTES * pvargDest and pvargSrc can point to the same variant to perform an in-place * conversion. If the conversion is successful, pvargSrc will be freed. */ HRESULT WINAPI VariantChangeTypeEx(VARIANTARG* pvargDest, VARIANTARG* pvargSrc, LCID lcid, USHORT wFlags, VARTYPE vt) { HRESULT res = S_OK; TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%04x,%s%s)\n", pvargDest, debugstr_VT(pvargDest), debugstr_VF(pvargDest), pvargSrc, debugstr_VT(pvargSrc), debugstr_VF(pvargSrc), lcid, wFlags, debugstr_vt(vt), debugstr_vf(vt)); if (vt == VT_CLSID) res = DISP_E_BADVARTYPE; else { res = VARIANT_ValidateType(V_VT(pvargSrc)); if (SUCCEEDED(res)) { res = VARIANT_ValidateType(vt); if (SUCCEEDED(res)) { VARIANTARG vTmp, vSrcDeref; if(V_ISBYREF(pvargSrc) && !V_BYREF(pvargSrc)) res = DISP_E_TYPEMISMATCH; else { V_VT(&vTmp) = VT_EMPTY; V_VT(&vSrcDeref) = VT_EMPTY; VariantClear(&vTmp); VariantClear(&vSrcDeref); } if (SUCCEEDED(res)) { res = VariantCopyInd(&vSrcDeref, pvargSrc); if (SUCCEEDED(res)) { if (V_ISARRAY(&vSrcDeref) || (vt & VT_ARRAY)) res = VARIANT_CoerceArray(&vTmp, &vSrcDeref, vt); else res = VARIANT_Coerce(&vTmp, lcid, wFlags, &vSrcDeref, vt); if (SUCCEEDED(res)) { V_VT(&vTmp) = vt; VariantCopy(pvargDest, &vTmp); } VariantClear(&vTmp); VariantClear(&vSrcDeref); } } } } } TRACE("returning 0x%08lx, %p->(%s%s)\n", res, pvargDest, debugstr_VT(pvargDest), debugstr_VF(pvargDest)); return res; } /* Date Conversions */ #define IsLeapYear(y) (((y % 4) == 0) && (((y % 100) != 0) || ((y % 400) == 0))) /* Convert a VT_DATE value to a Julian Date */ static inline int VARIANT_JulianFromDate(int dateIn) { int julianDays = dateIn; julianDays -= DATE_MIN; /* Convert to + days from 1 Jan 100 AD */ julianDays += 1757585; /* Convert to + days from 23 Nov 4713 BC (Julian) */ return julianDays; } /* Convert a Julian Date to a VT_DATE value */ static inline int VARIANT_DateFromJulian(int dateIn) { int julianDays = dateIn; julianDays -= 1757585; /* Convert to + days from 1 Jan 100 AD */ julianDays += DATE_MIN; /* Convert to +/- days from 1 Jan 1899 AD */ return julianDays; } /* Convert a Julian date to Day/Month/Year - from PostgreSQL */ static inline void VARIANT_DMYFromJulian(int jd, USHORT *year, USHORT *month, USHORT *day) { int j, i, l, n; l = jd + 68569; n = l * 4 / 146097; l -= (n * 146097 + 3) / 4; i = (4000 * (l + 1)) / 1461001; l += 31 - (i * 1461) / 4; j = (l * 80) / 2447; *day = l - (j * 2447) / 80; l = j / 11; *month = (j + 2) - (12 * l); *year = 100 * (n - 49) + i + l; } /* Convert Day/Month/Year to a Julian date - from PostgreSQL */ static inline double VARIANT_JulianFromDMY(USHORT year, USHORT month, USHORT day) { int m12 = (month - 14) / 12; return ((1461 * (year + 4800 + m12)) / 4 + (367 * (month - 2 - 12 * m12)) / 12 - (3 * ((year + 4900 + m12) / 100)) / 4 + day - 32075); } /* Macros for accessing DOS format date/time fields */ #define DOS_YEAR(x) (1980 + (x >> 9)) #define DOS_MONTH(x) ((x >> 5) & 0xf) #define DOS_DAY(x) (x & 0x1f) #define DOS_HOUR(x) (x >> 11) #define DOS_MINUTE(x) ((x >> 5) & 0x3f) #define DOS_SECOND(x) ((x & 0x1f) << 1) /* Create a DOS format date/time */ #define DOS_DATE(d,m,y) (d | (m << 5) | ((y-1980) << 9)) #define DOS_TIME(h,m,s) ((s >> 1) | (m << 5) | (h << 11)) /* Roll a date forwards or backwards to correct it */ static HRESULT VARIANT_RollUdate(UDATE *lpUd) { static const BYTE days[] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; TRACE("Raw date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth, lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond); /* Years < 100 are treated as 1900 + year */ if (lpUd->st.wYear < 100) lpUd->st.wYear += 1900; if (!lpUd->st.wMonth) { /* Roll back to December of the previous year */ lpUd->st.wMonth = 12; lpUd->st.wYear--; } else while (lpUd->st.wMonth > 12) { /* Roll forward the correct number of months */ lpUd->st.wYear++; lpUd->st.wMonth -= 12; } if (lpUd->st.wYear > 9999 || lpUd->st.wHour > 23 || lpUd->st.wMinute > 59 || lpUd->st.wSecond > 59) return E_INVALIDARG; /* Invalid values */ if (!lpUd->st.wDay) { /* Roll back the date one day */ if (lpUd->st.wMonth == 1) { /* Roll back to December 31 of the previous year */ lpUd->st.wDay = 31; lpUd->st.wMonth = 12; lpUd->st.wYear--; } else { lpUd->st.wMonth--; /* Previous month */ if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear)) lpUd->st.wDay = 29; /* Februaury has 29 days on leap years */ else lpUd->st.wDay = days[lpUd->st.wMonth]; /* Last day of the month */ } } else if (lpUd->st.wDay > 28) { int rollForward = 0; /* Possibly need to roll the date forward */ if (lpUd->st.wMonth == 2 && IsLeapYear(lpUd->st.wYear)) rollForward = lpUd->st.wDay - 29; /* Februaury has 29 days on leap years */ else rollForward = lpUd->st.wDay - days[lpUd->st.wMonth]; if (rollForward > 0) { lpUd->st.wDay = rollForward; lpUd->st.wMonth++; if (lpUd->st.wMonth > 12) { lpUd->st.wMonth = 1; /* Roll forward into January of the next year */ lpUd->st.wYear++; } } } TRACE("Rolled date: %d/%d/%d %d:%d:%d\n", lpUd->st.wDay, lpUd->st.wMonth, lpUd->st.wYear, lpUd->st.wHour, lpUd->st.wMinute, lpUd->st.wSecond); return S_OK; } /********************************************************************** * DosDateTimeToVariantTime [OLEAUT32.14] * * Convert a Dos format date and time into variant VT_DATE format. * * PARAMS * wDosDate [I] Dos format date * wDosTime [I] Dos format time * pDateOut [O] Destination for VT_DATE format * * RETURNS * Success: TRUE. pDateOut contains the converted time. * Failure: FALSE, if wDosDate or wDosTime are invalid (see notes). * * NOTES * - Dos format dates can only hold dates from 1-Jan-1980 to 31-Dec-2099. * - Dos format times are accurate to only 2 second precision. * - The format of a Dos Date is: *| Bits Values Meaning *| ---- ------ ------- *| 0-4 1-31 Day of the week. 0 rolls back one day. A value greater than *| the days in the month rolls forward the extra days. *| 5-8 1-12 Month of the year. 0 rolls back to December of the previous *| year. 13-15 are invalid. *| 9-15 0-119 Year based from 1980 (Max 2099). 120-127 are invalid. * - The format of a Dos Time is: *| Bits Values Meaning *| ---- ------ ------- *| 0-4 0-29 Seconds/2. 30 and 31 are invalid. *| 5-10 0-59 Minutes. 60-63 are invalid. *| 11-15 0-23 Hours (24 hour clock). 24-32 are invalid. */ INT WINAPI DosDateTimeToVariantTime(USHORT wDosDate, USHORT wDosTime, double *pDateOut) { UDATE ud; TRACE("(0x%x(%d/%d/%d),0x%x(%d:%d:%d),%p)\n", wDosDate, DOS_YEAR(wDosDate), DOS_MONTH(wDosDate), DOS_DAY(wDosDate), wDosTime, DOS_HOUR(wDosTime), DOS_MINUTE(wDosTime), DOS_SECOND(wDosTime), pDateOut); ud.st.wYear = DOS_YEAR(wDosDate); ud.st.wMonth = DOS_MONTH(wDosDate); if (ud.st.wYear > 2099 || ud.st.wMonth > 12) return FALSE; ud.st.wDay = DOS_DAY(wDosDate); ud.st.wHour = DOS_HOUR(wDosTime); ud.st.wMinute = DOS_MINUTE(wDosTime); ud.st.wSecond = DOS_SECOND(wDosTime); ud.st.wDayOfWeek = ud.st.wMilliseconds = 0; return !VarDateFromUdate(&ud, 0, pDateOut); } /********************************************************************** * VariantTimeToDosDateTime [OLEAUT32.13] * * Convert a variant format date into a Dos format date and time. * * dateIn [I] VT_DATE time format * pwDosDate [O] Destination for Dos format date * pwDosTime [O] Destination for Dos format time * * RETURNS * Success: TRUE. pwDosDate and pwDosTime contains the converted values. * Failure: FALSE, if dateIn cannot be represented in Dos format. * * NOTES * See DosDateTimeToVariantTime() for Dos format details and bugs. */ INT WINAPI VariantTimeToDosDateTime(double dateIn, USHORT *pwDosDate, USHORT *pwDosTime) { UDATE ud; TRACE("(%g,%p,%p)\n", dateIn, pwDosDate, pwDosTime); if (FAILED(VarUdateFromDate(dateIn, 0, &ud))) return FALSE; if (ud.st.wYear < 1980 || ud.st.wYear > 2099) return FALSE; *pwDosDate = DOS_DATE(ud.st.wDay, ud.st.wMonth, ud.st.wYear); *pwDosTime = DOS_TIME(ud.st.wHour, ud.st.wMinute, ud.st.wSecond); TRACE("Returning 0x%x(%d/%d/%d), 0x%x(%d:%d:%d)\n", *pwDosDate, DOS_YEAR(*pwDosDate), DOS_MONTH(*pwDosDate), DOS_DAY(*pwDosDate), *pwDosTime, DOS_HOUR(*pwDosTime), DOS_MINUTE(*pwDosTime), DOS_SECOND(*pwDosTime)); return TRUE; } /*********************************************************************** * SystemTimeToVariantTime [OLEAUT32.184] * * Convert a System format date and time into variant VT_DATE format. * * PARAMS * lpSt [I] System format date and time * pDateOut [O] Destination for VT_DATE format date * * RETURNS * Success: TRUE. *pDateOut contains the converted value. * Failure: FALSE, if lpSt cannot be represented in VT_DATE format. */ INT WINAPI SystemTimeToVariantTime(LPSYSTEMTIME lpSt, double *pDateOut) { UDATE ud; TRACE("(%p->%d/%d/%d %d:%d:%d,%p)\n", lpSt, lpSt->wDay, lpSt->wMonth, lpSt->wYear, lpSt->wHour, lpSt->wMinute, lpSt->wSecond, pDateOut); if (lpSt->wMonth > 12) return FALSE; memcpy(&ud.st, lpSt, sizeof(ud.st)); return !VarDateFromUdate(&ud, 0, pDateOut); } /*********************************************************************** * VariantTimeToSystemTime [OLEAUT32.185] * * Convert a variant VT_DATE into a System format date and time. * * PARAMS * datein [I] Variant VT_DATE format date * lpSt [O] Destination for System format date and time * * RETURNS * Success: TRUE. *lpSt contains the converted value. * Failure: FALSE, if dateIn is too large or small. */ INT WINAPI VariantTimeToSystemTime(double dateIn, LPSYSTEMTIME lpSt) { UDATE ud; TRACE("(%g,%p)\n", dateIn, lpSt); if (FAILED(VarUdateFromDate(dateIn, 0, &ud))) return FALSE; memcpy(lpSt, &ud.st, sizeof(ud.st)); return TRUE; } /*********************************************************************** * VarDateFromUdateEx [OLEAUT32.319] * * Convert an unpacked format date and time to a variant VT_DATE. * * PARAMS * pUdateIn [I] Unpacked format date and time to convert * lcid [I] Locale identifier for the conversion * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h") * pDateOut [O] Destination for variant VT_DATE. * * RETURNS * Success: S_OK. *pDateOut contains the converted value. * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format. */ HRESULT WINAPI VarDateFromUdateEx(UDATE *pUdateIn, LCID lcid, ULONG dwFlags, DATE *pDateOut) { UDATE ud; double dateVal; TRACE("(%p->%d/%d/%d %d:%d:%d:%d %d %d,0x%08lx,0x%08lx,%p)\n", pUdateIn, pUdateIn->st.wMonth, pUdateIn->st.wDay, pUdateIn->st.wYear, pUdateIn->st.wHour, pUdateIn->st.wMinute, pUdateIn->st.wSecond, pUdateIn->st.wMilliseconds, pUdateIn->st.wDayOfWeek, pUdateIn->wDayOfYear, lcid, dwFlags, pDateOut); if (lcid != MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT)) FIXME("lcid possibly not handled, treating as en-us\n"); memcpy(&ud, pUdateIn, sizeof(ud)); if (dwFlags & VAR_VALIDDATE) WARN("Ignoring VAR_VALIDDATE\n"); if (FAILED(VARIANT_RollUdate(&ud))) return E_INVALIDARG; /* Date */ dateVal = VARIANT_DateFromJulian(VARIANT_JulianFromDMY(ud.st.wYear, ud.st.wMonth, ud.st.wDay)); /* Time */ dateVal += ud.st.wHour / 24.0; dateVal += ud.st.wMinute / 1440.0; dateVal += ud.st.wSecond / 86400.0; dateVal += ud.st.wMilliseconds / 86400000.0; TRACE("Returning %g\n", dateVal); *pDateOut = dateVal; return S_OK; } /*********************************************************************** * VarDateFromUdate [OLEAUT32.330] * * Convert an unpacked format date and time to a variant VT_DATE. * * PARAMS * pUdateIn [I] Unpacked format date and time to convert * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h") * pDateOut [O] Destination for variant VT_DATE. * * RETURNS * Success: S_OK. *pDateOut contains the converted value. * Failure: E_INVALIDARG, if pUdateIn cannot be represented in VT_DATE format. * * NOTES * This function uses the United States English locale for the conversion. Use * VarDateFromUdateEx() for alternate locales. */ HRESULT WINAPI VarDateFromUdate(UDATE *pUdateIn, ULONG dwFlags, DATE *pDateOut) { LCID lcid = MAKELCID(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US), SORT_DEFAULT); return VarDateFromUdateEx(pUdateIn, lcid, dwFlags, pDateOut); } /*********************************************************************** * VarUdateFromDate [OLEAUT32.331] * * Convert a variant VT_DATE into an unpacked format date and time. * * PARAMS * datein [I] Variant VT_DATE format date * dwFlags [I] Flags controlling the conversion (VAR_ flags from "oleauto.h") * lpUdate [O] Destination for unpacked format date and time * * RETURNS * Success: S_OK. *lpUdate contains the converted value. * Failure: E_INVALIDARG, if dateIn is too large or small. */ HRESULT WINAPI VarUdateFromDate(DATE dateIn, ULONG dwFlags, UDATE *lpUdate) { /* Cumulative totals of days per month */ static const USHORT cumulativeDays[] = { 0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; double datePart, timePart; int julianDays; TRACE("(%g,0x%08lx,%p)\n", dateIn, dwFlags, lpUdate); if (dateIn <= (DATE_MIN - 1.0) || dateIn >= (DATE_MAX + 1.0)) return E_INVALIDARG; datePart = dateIn < 0.0 ? ceil(dateIn) : floor(dateIn); /* Compensate for int truncation (always downwards) */ timePart = dateIn - datePart + 0.00000000001; if (timePart >= 1.0) timePart -= 0.00000000001; /* Date */ julianDays = VARIANT_JulianFromDate(dateIn); VARIANT_DMYFromJulian(julianDays, &lpUdate->st.wYear, &lpUdate->st.wMonth, &lpUdate->st.wDay); datePart = (datePart + 1.5) / 7.0; lpUdate->st.wDayOfWeek = (datePart - floor(datePart)) * 7; if (lpUdate->st.wDayOfWeek == 0) lpUdate->st.wDayOfWeek = 5; else if (lpUdate->st.wDayOfWeek == 1) lpUdate->st.wDayOfWeek = 6; else lpUdate->st.wDayOfWeek -= 2; if (lpUdate->st.wMonth > 2 && IsLeapYear(lpUdate->st.wYear)) lpUdate->wDayOfYear = 1; /* After February, in a leap year */ else lpUdate->wDayOfYear = 0; lpUdate->wDayOfYear += cumulativeDays[lpUdate->st.wMonth]; lpUdate->wDayOfYear += lpUdate->st.wDay; /* Time */ timePart *= 24.0; lpUdate->st.wHour = timePart; timePart -= lpUdate->st.wHour; timePart *= 60.0; lpUdate->st.wMinute = timePart; timePart -= lpUdate->st.wMinute; timePart *= 60.0; lpUdate->st.wSecond = timePart; timePart -= lpUdate->st.wSecond; lpUdate->st.wMilliseconds = 0; if (timePart > 0.5) { /* Round the milliseconds, adjusting the time/date forward if needed */ if (lpUdate->st.wSecond < 59) lpUdate->st.wSecond++; else { lpUdate->st.wSecond = 0; if (lpUdate->st.wMinute < 59) lpUdate->st.wMinute++; else { lpUdate->st.wMinute = 0; if (lpUdate->st.wHour < 23) lpUdate->st.wHour++; else { lpUdate->st.wHour = 0; /* Roll over a whole day */ if (++lpUdate->st.wDay > 28) VARIANT_RollUdate(lpUdate); } } } } return S_OK; } #define GET_NUMBER_TEXT(fld,name) \ buff[0] = 0; \ if (!GetLocaleInfoW(lcid, lctype|fld, buff, 2)) \ WARN("buffer too small for " #fld "\n"); \ else \ if (buff[0]) lpChars->name = buff[0]; \ TRACE("lcid 0x%lx, " #name "=%d '%c'\n", lcid, lpChars->name, lpChars->name) /* Get the valid number characters for an lcid */ void VARIANT_GetLocalisedNumberChars(VARIANT_NUMBER_CHARS *lpChars, LCID lcid, DWORD dwFlags) { static const VARIANT_NUMBER_CHARS defaultChars = { '-','+','.',',','$',0,'.',',' }; LCTYPE lctype = dwFlags & LOCALE_NOUSEROVERRIDE; WCHAR buff[4]; memcpy(lpChars, &defaultChars, sizeof(defaultChars)); GET_NUMBER_TEXT(LOCALE_SNEGATIVESIGN, cNegativeSymbol); GET_NUMBER_TEXT(LOCALE_SPOSITIVESIGN, cPositiveSymbol); GET_NUMBER_TEXT(LOCALE_SDECIMAL, cDecimalPoint); GET_NUMBER_TEXT(LOCALE_STHOUSAND, cDigitSeperator); GET_NUMBER_TEXT(LOCALE_SMONDECIMALSEP, cCurrencyDecimalPoint); GET_NUMBER_TEXT(LOCALE_SMONTHOUSANDSEP, cCurrencyDigitSeperator); /* Local currency symbols are often 2 characters */ lpChars->cCurrencyLocal2 = '\0'; switch(GetLocaleInfoW(lcid, lctype|LOCALE_SCURRENCY, buff, sizeof(buff)/sizeof(WCHAR))) { case 3: lpChars->cCurrencyLocal2 = buff[1]; /* Fall through */ case 2: lpChars->cCurrencyLocal = buff[0]; break; default: WARN("buffer too small for LOCALE_SCURRENCY\n"); } TRACE("lcid 0x%lx, cCurrencyLocal =%d,%d '%c','%c'\n", lcid, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2, lpChars->cCurrencyLocal, lpChars->cCurrencyLocal2); } /* Number Parsing States */ #define B_PROCESSING_EXPONENT 0x1 #define B_NEGATIVE_EXPONENT 0x2 #define B_EXPONENT_START 0x4 #define B_INEXACT_ZEROS 0x8 #define B_LEADING_ZERO 0x10 #define B_PROCESSING_HEX 0x20 #define B_PROCESSING_OCT 0x40 /********************************************************************** * VarParseNumFromStr [OLEAUT32.46] * * Parse a string containing a number into a NUMPARSE structure. * * PARAMS * lpszStr [I] String to parse number from * lcid [I] Locale Id for the conversion * dwFlags [I] 0, or LOCALE_NOUSEROVERRIDE to use system default number chars * pNumprs [I/O] Destination for parsed number * rgbDig [O] Destination for digits read in * * RETURNS * Success: S_OK. pNumprs and rgbDig contain the parsed representation of * the number. * Failure: E_INVALIDARG, if any parameter is invalid. * DISP_E_TYPEMISMATCH, if the string is not a number or is formatted * incorrectly. * DISP_E_OVERFLOW, if rgbDig is too small to hold the number. * * NOTES * pNumprs must have the following fields set: * cDig: Set to the size of rgbDig. * dwInFlags: Set to the allowable syntax of the number using NUMPRS_ flags * from "oleauto.h". * * FIXME * - I am unsure if this function should parse non-arabic (e.g. Thai) * numerals, so this has not been implemented. */ HRESULT WINAPI VarParseNumFromStr(OLECHAR *lpszStr, LCID lcid, ULONG dwFlags, NUMPARSE *pNumprs, BYTE *rgbDig) { VARIANT_NUMBER_CHARS chars; BYTE rgbTmp[1024]; DWORD dwState = B_EXPONENT_START|B_INEXACT_ZEROS; int iMaxDigits = sizeof(rgbTmp) / sizeof(BYTE); int cchUsed = 0; TRACE("(%s,%ld,0x%08lx,%p,%p)\n", debugstr_w(lpszStr), lcid, dwFlags, pNumprs, rgbDig); if (!pNumprs || !rgbDig) return E_INVALIDARG; if (pNumprs->cDig < iMaxDigits) iMaxDigits = pNumprs->cDig; pNumprs->cDig = 0; pNumprs->dwOutFlags = 0; pNumprs->cchUsed = 0; pNumprs->nBaseShift = 0; pNumprs->nPwr10 = 0; if (!lpszStr) return DISP_E_TYPEMISMATCH; VARIANT_GetLocalisedNumberChars(&chars, lcid, dwFlags); /* First consume all the leading symbols and space from the string */ while (1) { if (pNumprs->dwInFlags & NUMPRS_LEADING_WHITE && isspaceW(*lpszStr)) { pNumprs->dwOutFlags |= NUMPRS_LEADING_WHITE; do { cchUsed++; lpszStr++; } while (isspaceW(*lpszStr)); } else if (pNumprs->dwInFlags & NUMPRS_LEADING_PLUS && *lpszStr == chars.cPositiveSymbol && !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS)) { pNumprs->dwOutFlags |= NUMPRS_LEADING_PLUS; cchUsed++; lpszStr++; } else if (pNumprs->dwInFlags & NUMPRS_LEADING_MINUS && *lpszStr == chars.cNegativeSymbol && !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS)) { pNumprs->dwOutFlags |= (NUMPRS_LEADING_MINUS|NUMPRS_NEG); cchUsed++; lpszStr++; } else if (pNumprs->dwInFlags & NUMPRS_CURRENCY && !(pNumprs->dwOutFlags & NUMPRS_CURRENCY) && *lpszStr == chars.cCurrencyLocal && (!chars.cCurrencyLocal2 || lpszStr[1] == chars.cCurrencyLocal2)) { pNumprs->dwOutFlags |= NUMPRS_CURRENCY; cchUsed++; lpszStr++; /* Only accept currency characters */ chars.cDecimalPoint = chars.cCurrencyDecimalPoint; chars.cDigitSeperator = chars.cCurrencyDigitSeperator; } else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == '(' && !(pNumprs->dwOutFlags & NUMPRS_PARENS)) { pNumprs->dwOutFlags |= NUMPRS_PARENS; cchUsed++; lpszStr++; } else break; } if (!(pNumprs->dwOutFlags & NUMPRS_CURRENCY)) { /* Only accept non-currency characters */ chars.cCurrencyDecimalPoint = chars.cDecimalPoint; chars.cCurrencyDigitSeperator = chars.cDigitSeperator; } if ((*lpszStr == '&' && (*(lpszStr+1) == 'H' || *(lpszStr+1) == 'h')) && pNumprs->dwInFlags & NUMPRS_HEX_OCT) { dwState |= B_PROCESSING_HEX; pNumprs->dwOutFlags |= NUMPRS_HEX_OCT; cchUsed=cchUsed+2; lpszStr=lpszStr+2; } else if ((*lpszStr == '&' && (*(lpszStr+1) == 'O' || *(lpszStr+1) == 'o')) && pNumprs->dwInFlags & NUMPRS_HEX_OCT) { dwState |= B_PROCESSING_OCT; pNumprs->dwOutFlags |= NUMPRS_HEX_OCT; cchUsed=cchUsed+2; lpszStr=lpszStr+2; } /* Strip Leading zeros */ while (*lpszStr == '0') { dwState |= B_LEADING_ZERO; cchUsed++; lpszStr++; } while (*lpszStr) { if (isdigitW(*lpszStr)) { if (dwState & B_PROCESSING_EXPONENT) { int exponentSize = 0; if (dwState & B_EXPONENT_START) { if (!isdigitW(*lpszStr)) break; /* No exponent digits - invalid */ while (*lpszStr == '0') { /* Skip leading zero's in the exponent */ cchUsed++; lpszStr++; } } while (isdigitW(*lpszStr)) { exponentSize *= 10; exponentSize += *lpszStr - '0'; cchUsed++; lpszStr++; } if (dwState & B_NEGATIVE_EXPONENT) exponentSize = -exponentSize; /* Add the exponent into the powers of 10 */ pNumprs->nPwr10 += exponentSize; dwState &= ~(B_PROCESSING_EXPONENT|B_EXPONENT_START); lpszStr--; /* back up to allow processing of next char */ } else { if ((pNumprs->cDig >= iMaxDigits) && !(dwState & B_PROCESSING_HEX) && !(dwState & B_PROCESSING_OCT)) { pNumprs->dwOutFlags |= NUMPRS_INEXACT; if (*lpszStr != '0') dwState &= ~B_INEXACT_ZEROS; /* Inexact number with non-trailing zeros */ /* This digit can't be represented, but count it in nPwr10 */ if (pNumprs->dwOutFlags & NUMPRS_DECIMAL) pNumprs->nPwr10--; else pNumprs->nPwr10++; } else { if ((dwState & B_PROCESSING_OCT) && ((*lpszStr == '8') || (*lpszStr == '9'))) { return DISP_E_TYPEMISMATCH; } if (pNumprs->dwOutFlags & NUMPRS_DECIMAL) pNumprs->nPwr10--; /* Count decimal points in nPwr10 */ rgbTmp[pNumprs->cDig] = *lpszStr - '0'; } pNumprs->cDig++; cchUsed++; } } else if (*lpszStr == chars.cDigitSeperator && pNumprs->dwInFlags & NUMPRS_THOUSANDS) { pNumprs->dwOutFlags |= NUMPRS_THOUSANDS; cchUsed++; } else if (*lpszStr == chars.cDecimalPoint && pNumprs->dwInFlags & NUMPRS_DECIMAL && !(pNumprs->dwOutFlags & (NUMPRS_DECIMAL|NUMPRS_EXPONENT))) { pNumprs->dwOutFlags |= NUMPRS_DECIMAL; cchUsed++; /* If we have no digits so far, skip leading zeros */ if (!pNumprs->cDig) { while (lpszStr[1] == '0') { dwState |= B_LEADING_ZERO; cchUsed++; lpszStr++; pNumprs->nPwr10--; } } } else if ((*lpszStr == 'e' || *lpszStr == 'E') && pNumprs->dwInFlags & NUMPRS_EXPONENT && !(pNumprs->dwOutFlags & NUMPRS_EXPONENT)) { dwState |= B_PROCESSING_EXPONENT; pNumprs->dwOutFlags |= NUMPRS_EXPONENT; cchUsed++; } else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cPositiveSymbol) { cchUsed++; /* Ignore positive exponent */ } else if (dwState & B_PROCESSING_EXPONENT && *lpszStr == chars.cNegativeSymbol) { dwState |= B_NEGATIVE_EXPONENT; cchUsed++; } else if (((*lpszStr >= 'a' && *lpszStr <= 'f') || (*lpszStr >= 'A' && *lpszStr <= 'F')) && dwState & B_PROCESSING_HEX) { if (pNumprs->cDig >= iMaxDigits) { return DISP_E_OVERFLOW; } else { if (*lpszStr >= 'a') rgbTmp[pNumprs->cDig] = *lpszStr - 'a' + 10; else rgbTmp[pNumprs->cDig] = *lpszStr - 'A' + 10; } pNumprs->cDig++; cchUsed++; } else break; /* Stop at an unrecognised character */ lpszStr++; } if (!pNumprs->cDig && dwState & B_LEADING_ZERO) { /* Ensure a 0 on its own gets stored */ pNumprs->cDig = 1; rgbTmp[0] = 0; } if (pNumprs->dwOutFlags & NUMPRS_EXPONENT && dwState & B_PROCESSING_EXPONENT) { pNumprs->cchUsed = cchUsed; return DISP_E_TYPEMISMATCH; /* Failed to completely parse the exponent */ } if (pNumprs->dwOutFlags & NUMPRS_INEXACT) { if (dwState & B_INEXACT_ZEROS) pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* All zeros doesn't set NUMPRS_INEXACT */ } else if(pNumprs->dwInFlags & NUMPRS_HEX_OCT) { /* copy all of the digits into the output digit buffer */ /* this is exactly what windows does although it also returns */ /* cDig of X and writes X+Y where Y>=0 number of digits to rgbDig */ memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE)); if (dwState & B_PROCESSING_HEX) { /* hex numbers have always the same format */ pNumprs->nPwr10=0; pNumprs->nBaseShift=4; } else { if (dwState & B_PROCESSING_OCT) { /* oct numbers have always the same format */ pNumprs->nPwr10=0; pNumprs->nBaseShift=3; } else { while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1]) { pNumprs->nPwr10++; pNumprs->cDig--; } } } } else { /* Remove trailing zeros from the last (whole number or decimal) part */ while (pNumprs->cDig > 1 && !rgbTmp[pNumprs->cDig - 1]) { pNumprs->nPwr10++; pNumprs->cDig--; } } if (pNumprs->cDig <= iMaxDigits) pNumprs->dwOutFlags &= ~NUMPRS_INEXACT; /* Ignore stripped zeros for NUMPRS_INEXACT */ else pNumprs->cDig = iMaxDigits; /* Only return iMaxDigits worth of digits */ /* Copy the digits we processed into rgbDig */ memcpy(rgbDig, rgbTmp, pNumprs->cDig * sizeof(BYTE)); /* Consume any trailing symbols and space */ while (1) { if ((pNumprs->dwInFlags & NUMPRS_TRAILING_WHITE) && isspaceW(*lpszStr)) { pNumprs->dwOutFlags |= NUMPRS_TRAILING_WHITE; do { cchUsed++; lpszStr++; } while (isspaceW(*lpszStr)); } else if (pNumprs->dwInFlags & NUMPRS_TRAILING_PLUS && !(pNumprs->dwOutFlags & NUMPRS_LEADING_PLUS) && *lpszStr == chars.cPositiveSymbol) { pNumprs->dwOutFlags |= NUMPRS_TRAILING_PLUS; cchUsed++; lpszStr++; } else if (pNumprs->dwInFlags & NUMPRS_TRAILING_MINUS && !(pNumprs->dwOutFlags & NUMPRS_LEADING_MINUS) && *lpszStr == chars.cNegativeSymbol) { pNumprs->dwOutFlags |= (NUMPRS_TRAILING_MINUS|NUMPRS_NEG); cchUsed++; lpszStr++; } else if (pNumprs->dwInFlags & NUMPRS_PARENS && *lpszStr == ')' && pNumprs->dwOutFlags & NUMPRS_PARENS) { cchUsed++; lpszStr++; pNumprs->dwOutFlags |= NUMPRS_NEG; } else break; } if (pNumprs->dwOutFlags & NUMPRS_PARENS && !(pNumprs->dwOutFlags & NUMPRS_NEG)) { pNumprs->cchUsed = cchUsed; return DISP_E_TYPEMISMATCH; /* Opening parenthesis not matched */ } if (pNumprs->dwInFlags & NUMPRS_USE_ALL && *lpszStr != '\0') return DISP_E_TYPEMISMATCH; /* Not all chars were consumed */ if (!pNumprs->cDig) return DISP_E_TYPEMISMATCH; /* No Number found */ pNumprs->cchUsed = cchUsed; return S_OK; } /* VTBIT flags indicating an integer value */ #define INTEGER_VTBITS (VTBIT_I1|VTBIT_UI1|VTBIT_I2|VTBIT_UI2|VTBIT_I4|VTBIT_UI4|VTBIT_I8|VTBIT_UI8) /* VTBIT flags indicating a real number value */ #define REAL_VTBITS (VTBIT_R4|VTBIT_R8|VTBIT_CY) /* Helper macros to check whether bit pattern fits in VARIANT (x is a ULONG64 ) */ #define FITS_AS_I1(x) ((x) >> 8 == 0) #define FITS_AS_I2(x) ((x) >> 16 == 0) #define FITS_AS_I4(x) ((x) >> 32 == 0) /********************************************************************** * VarNumFromParseNum [OLEAUT32.47] * * Convert a NUMPARSE structure into a numeric Variant type. * * PARAMS * pNumprs [I] Source for parsed number. cDig must be set to the size of rgbDig * rgbDig [I] Source for the numbers digits * dwVtBits [I] VTBIT_ flags from "oleauto.h" indicating the acceptable dest types * pVarDst [O] Destination for the converted Variant value. * * RETURNS * Success: S_OK. pVarDst contains the converted value. * Failure: E_INVALIDARG, if any parameter is invalid. * DISP_E_OVERFLOW, if the number is too big for the types set in dwVtBits. * * NOTES * - The smallest favoured type present in dwVtBits that can represent the * number in pNumprs without losing precision is used. * - Signed types are preferrred over unsigned types of the same size. * - Preferred types in order are: integer, float, double, currency then decimal. * - Rounding (dropping of decimal points) occurs without error. See VarI8FromR8() * for details of the rounding method. * - pVarDst is not cleared before the result is stored in it. */ HRESULT WINAPI VarNumFromParseNum(NUMPARSE *pNumprs, BYTE *rgbDig, ULONG dwVtBits, VARIANT *pVarDst) { /* Scale factors and limits for double arithmetic */ static const double dblMultipliers[11] = { 1.0, 10.0, 100.0, 1000.0, 10000.0, 100000.0, 1000000.0, 10000000.0, 100000000.0, 1000000000.0, 10000000000.0 }; static const double dblMinimums[11] = { R8_MIN, R8_MIN*10.0, R8_MIN*100.0, R8_MIN*1000.0, R8_MIN*10000.0, R8_MIN*100000.0, R8_MIN*1000000.0, R8_MIN*10000000.0, R8_MIN*100000000.0, R8_MIN*1000000000.0, R8_MIN*10000000000.0 }; static const double dblMaximums[11] = { R8_MAX, R8_MAX/10.0, R8_MAX/100.0, R8_MAX/1000.0, R8_MAX/10000.0, R8_MAX/100000.0, R8_MAX/1000000.0, R8_MAX/10000000.0, R8_MAX/100000000.0, R8_MAX/1000000000.0, R8_MAX/10000000000.0 }; int wholeNumberDigits, fractionalDigits, divisor10 = 0, multiplier10 = 0; TRACE("(%p,%p,0x%lx,%p)\n", pNumprs, rgbDig, dwVtBits, pVarDst); if (pNumprs->nBaseShift) { /* nBaseShift indicates a hex or octal number */ ULONG64 ul64 = 0; LONG64 l64; int i; /* Convert the hex or octal number string into a UI64 */ for (i = 0; i < pNumprs->cDig; i++) { if (ul64 > ((UI8_MAX>>pNumprs->nBaseShift) - rgbDig[i])) { TRACE("Overflow multiplying digits\n"); return DISP_E_OVERFLOW; } ul64 = (ul64<nBaseShift) + rgbDig[i]; } /* also make a negative representation */ l64=-ul64; /* Try signed and unsigned types in size order */ if (dwVtBits & VTBIT_I1 && FITS_AS_I1(ul64)) { V_VT(pVarDst) = VT_I1; V_I1(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_UI1 && FITS_AS_I1(ul64)) { V_VT(pVarDst) = VT_UI1; V_UI1(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_I2 && FITS_AS_I2(ul64)) { V_VT(pVarDst) = VT_I2; V_I2(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_UI2 && FITS_AS_I2(ul64)) { V_VT(pVarDst) = VT_UI2; V_UI2(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_I4 && FITS_AS_I4(ul64)) { V_VT(pVarDst) = VT_I4; V_I4(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_UI4 && FITS_AS_I4(ul64)) { V_VT(pVarDst) = VT_UI4; V_UI4(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_I8 && ((ul64 <= I8_MAX)||(l64>=I8_MIN))) { V_VT(pVarDst) = VT_I8; V_I8(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_UI8) { V_VT(pVarDst) = VT_UI8; V_UI8(pVarDst) = ul64; return S_OK; } else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL) { V_VT(pVarDst) = VT_DECIMAL; DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0); DEC_HI32(&V_DECIMAL(pVarDst)) = 0; DEC_LO64(&V_DECIMAL(pVarDst)) = ul64; return S_OK; } else if (dwVtBits & VTBIT_R4 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN))) { V_VT(pVarDst) = VT_R4; if (ul64 <= I4_MAX) V_R4(pVarDst) = ul64; else V_R4(pVarDst) = l64; return S_OK; } else if (dwVtBits & VTBIT_R8 && ((ul64 <= I4_MAX)||(l64 >= I4_MIN))) { V_VT(pVarDst) = VT_R8; if (ul64 <= I4_MAX) V_R8(pVarDst) = ul64; else V_R8(pVarDst) = l64; return S_OK; } TRACE("Overflow: possible return types: 0x%lx, value: %s\n", dwVtBits, wine_dbgstr_longlong(ul64)); return DISP_E_OVERFLOW; } /* Count the number of relevant fractional and whole digits stored, * And compute the divisor/multiplier to scale the number by. */ if (pNumprs->nPwr10 < 0) { if (-pNumprs->nPwr10 >= pNumprs->cDig) { /* A real number < +/- 1.0 e.g. 0.1024 or 0.01024 */ wholeNumberDigits = 0; fractionalDigits = pNumprs->cDig; divisor10 = -pNumprs->nPwr10; } else { /* An exactly represented real number e.g. 1.024 */ wholeNumberDigits = pNumprs->cDig + pNumprs->nPwr10; fractionalDigits = pNumprs->cDig - wholeNumberDigits; divisor10 = pNumprs->cDig - wholeNumberDigits; } } else if (pNumprs->nPwr10 == 0) { /* An exactly represented whole number e.g. 1024 */ wholeNumberDigits = pNumprs->cDig; fractionalDigits = 0; } else /* pNumprs->nPwr10 > 0 */ { /* A whole number followed by nPwr10 0's e.g. 102400 */ wholeNumberDigits = pNumprs->cDig; fractionalDigits = 0; multiplier10 = pNumprs->nPwr10; } TRACE("cDig %d; nPwr10 %d, whole %d, frac %d ", pNumprs->cDig, pNumprs->nPwr10, wholeNumberDigits, fractionalDigits); TRACE("mult %d; div %d\n", multiplier10, divisor10); if (dwVtBits & (INTEGER_VTBITS|VTBIT_DECIMAL) && (!fractionalDigits || !(dwVtBits & (REAL_VTBITS|VTBIT_CY|VTBIT_DECIMAL)))) { /* We have one or more integer output choices, and either: * 1) An integer input value, or * 2) A real number input value but no floating output choices. * Alternately, we have a DECIMAL output available and an integer input. * * So, place the integer value into pVarDst, using the smallest type * possible and preferring signed over unsigned types. */ BOOL bOverflow = FALSE, bNegative; ULONG64 ul64 = 0; int i; /* Convert the integer part of the number into a UI8 */ for (i = 0; i < wholeNumberDigits; i++) { if (ul64 > (UI8_MAX / 10 - rgbDig[i])) { TRACE("Overflow multiplying digits\n"); bOverflow = TRUE; break; } ul64 = ul64 * 10 + rgbDig[i]; } /* Account for the scale of the number */ if (!bOverflow && multiplier10) { for (i = 0; i < multiplier10; i++) { if (ul64 > (UI8_MAX / 10)) { TRACE("Overflow scaling number\n"); bOverflow = TRUE; break; } ul64 = ul64 * 10; } } /* If we have any fractional digits, round the value. * Note we don't have to do this if divisor10 is < 1, * because this means the fractional part must be < 0.5 */ if (!bOverflow && fractionalDigits && divisor10 > 0) { const BYTE* fracDig = rgbDig + wholeNumberDigits; BOOL bAdjust = FALSE; TRACE("first decimal value is %d\n", *fracDig); if (*fracDig > 5) bAdjust = TRUE; /* > 0.5 */ else if (*fracDig == 5) { for (i = 1; i < fractionalDigits; i++) { if (fracDig[i]) { bAdjust = TRUE; /* > 0.5 */ break; } } /* If exactly 0.5, round only odd values */ if (i == fractionalDigits && (ul64 & 1)) bAdjust = TRUE; } if (bAdjust) { if (ul64 == UI8_MAX) { TRACE("Overflow after rounding\n"); bOverflow = TRUE; } ul64++; } } /* Zero is not a negative number */ bNegative = pNumprs->dwOutFlags & NUMPRS_NEG && ul64 ? TRUE : FALSE; TRACE("Integer value is %lld, bNeg %d\n", ul64, bNegative); /* For negative integers, try the signed types in size order */ if (!bOverflow && bNegative) { if (dwVtBits & (VTBIT_I1|VTBIT_I2|VTBIT_I4|VTBIT_I8)) { if (dwVtBits & VTBIT_I1 && ul64 <= -I1_MIN) { V_VT(pVarDst) = VT_I1; V_I1(pVarDst) = -ul64; return S_OK; } else if (dwVtBits & VTBIT_I2 && ul64 <= -I2_MIN) { V_VT(pVarDst) = VT_I2; V_I2(pVarDst) = -ul64; return S_OK; } else if (dwVtBits & VTBIT_I4 && ul64 <= -((LONGLONG)I4_MIN)) { V_VT(pVarDst) = VT_I4; V_I4(pVarDst) = -ul64; return S_OK; } else if (dwVtBits & VTBIT_I8 && ul64 <= (ULONGLONG)I8_MAX + 1) { V_VT(pVarDst) = VT_I8; V_I8(pVarDst) = -ul64; return S_OK; } else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL) { /* Decimal is only output choice left - fast path */ V_VT(pVarDst) = VT_DECIMAL; DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_NEG,0); DEC_HI32(&V_DECIMAL(pVarDst)) = 0; DEC_LO64(&V_DECIMAL(pVarDst)) = -ul64; return S_OK; } } } else if (!bOverflow) { /* For positive integers, try signed then unsigned types in size order */ if (dwVtBits & VTBIT_I1 && ul64 <= I1_MAX) { V_VT(pVarDst) = VT_I1; V_I1(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_UI1 && ul64 <= UI1_MAX) { V_VT(pVarDst) = VT_UI1; V_UI1(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_I2 && ul64 <= I2_MAX) { V_VT(pVarDst) = VT_I2; V_I2(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_UI2 && ul64 <= UI2_MAX) { V_VT(pVarDst) = VT_UI2; V_UI2(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_I4 && ul64 <= I4_MAX) { V_VT(pVarDst) = VT_I4; V_I4(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_UI4 && ul64 <= UI4_MAX) { V_VT(pVarDst) = VT_UI4; V_UI4(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_I8 && ul64 <= I8_MAX) { V_VT(pVarDst) = VT_I8; V_I8(pVarDst) = ul64; return S_OK; } else if (dwVtBits & VTBIT_UI8) { V_VT(pVarDst) = VT_UI8; V_UI8(pVarDst) = ul64; return S_OK; } else if ((dwVtBits & REAL_VTBITS) == VTBIT_DECIMAL) { /* Decimal is only output choice left - fast path */ V_VT(pVarDst) = VT_DECIMAL; DEC_SIGNSCALE(&V_DECIMAL(pVarDst)) = SIGNSCALE(DECIMAL_POS,0); DEC_HI32(&V_DECIMAL(pVarDst)) = 0; DEC_LO64(&V_DECIMAL(pVarDst)) = ul64; return S_OK; } } } if (dwVtBits & REAL_VTBITS) { /* Try to put the number into a float or real */ BOOL bOverflow = FALSE, bNegative = pNumprs->dwOutFlags & NUMPRS_NEG; double whole = 0.0; int i; /* Convert the number into a double */ for (i = 0; i < pNumprs->cDig; i++) whole = whole * 10.0 + rgbDig[i]; TRACE("Whole double value is %16.16g\n", whole); /* Account for the scale */ while (multiplier10 > 10) { if (whole > dblMaximums[10]) { dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); bOverflow = TRUE; break; } whole = whole * dblMultipliers[10]; multiplier10 -= 10; } if (multiplier10) { if (whole > dblMaximums[multiplier10]) { dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); bOverflow = TRUE; } else whole = whole * dblMultipliers[multiplier10]; } TRACE("Scaled double value is %16.16g\n", whole); while (divisor10 > 10) { if (whole < dblMinimums[10] && whole != 0) { dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */ bOverflow = TRUE; break; } whole = whole / dblMultipliers[10]; divisor10 -= 10; } if (divisor10) { if (whole < dblMinimums[divisor10] && whole != 0) { dwVtBits &= ~(VTBIT_R4|VTBIT_R8|VTBIT_CY); /* Underflow */ bOverflow = TRUE; } else whole = whole / dblMultipliers[divisor10]; } if (!bOverflow) TRACE("Final double value is %16.16g\n", whole); if (dwVtBits & VTBIT_R4 && ((whole <= R4_MAX && whole >= R4_MIN) || whole == 0.0)) { TRACE("Set R4 to final value\n"); V_VT(pVarDst) = VT_R4; /* Fits into a float */ V_R4(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole; return S_OK; } if (dwVtBits & VTBIT_R8) { TRACE("Set R8 to final value\n"); V_VT(pVarDst) = VT_R8; /* Fits into a double */ V_R8(pVarDst) = pNumprs->dwOutFlags & NUMPRS_NEG ? -whole : whole; return S_OK; } if (dwVtBits & VTBIT_CY) { if (SUCCEEDED(VarCyFromR8(bNegative ? -whole : whole, &V_CY(pVarDst)))) { V_VT(pVarDst) = VT_CY; /* Fits into a currency */ TRACE("Set CY to final value\n"); return S_OK; } TRACE("Value Overflows CY\n"); } } if (dwVtBits & VTBIT_DECIMAL) { int i; ULONG carry; ULONG64 tmp; DECIMAL* pDec = &V_DECIMAL(pVarDst); DECIMAL_SETZERO(*pDec); DEC_LO32(pDec) = 0; if (pNumprs->dwOutFlags & NUMPRS_NEG) DEC_SIGN(pDec) = DECIMAL_NEG; else DEC_SIGN(pDec) = DECIMAL_POS; /* Factor the significant digits */ for (i = 0; i < pNumprs->cDig; i++) { tmp = (ULONG64)DEC_LO32(pDec) * 10 + rgbDig[i]; carry = (ULONG)(tmp >> 32); DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX); tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry; carry = (ULONG)(tmp >> 32); DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX); tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry; DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX); if (tmp >> 32 & UI4_MAX) { VarNumFromParseNum_DecOverflow: TRACE("Overflow\n"); DEC_LO32(pDec) = DEC_MID32(pDec) = DEC_HI32(pDec) = UI4_MAX; return DISP_E_OVERFLOW; } } /* Account for the scale of the number */ while (multiplier10 > 0) { tmp = (ULONG64)DEC_LO32(pDec) * 10; carry = (ULONG)(tmp >> 32); DEC_LO32(pDec) = (ULONG)(tmp & UI4_MAX); tmp = (ULONG64)DEC_MID32(pDec) * 10 + carry; carry = (ULONG)(tmp >> 32); DEC_MID32(pDec) = (ULONG)(tmp & UI4_MAX); tmp = (ULONG64)DEC_HI32(pDec) * 10 + carry; DEC_HI32(pDec) = (ULONG)(tmp & UI4_MAX); if (tmp >> 32 & UI4_MAX) goto VarNumFromParseNum_DecOverflow; multiplier10--; } DEC_SCALE(pDec) = divisor10; V_VT(pVarDst) = VT_DECIMAL; return S_OK; } return DISP_E_OVERFLOW; /* No more output choices */ } /********************************************************************** * VarCat [OLEAUT32.318] */ HRESULT WINAPI VarCat(LPVARIANT left, LPVARIANT right, LPVARIANT out) { TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), out); /* Should we VariantClear out? */ /* Can we handle array, vector, by ref etc. */ if ((V_VT(left)&VT_TYPEMASK) == VT_NULL && (V_VT(right)&VT_TYPEMASK) == VT_NULL) { V_VT(out) = VT_NULL; return S_OK; } if (V_VT(left) == VT_BSTR && V_VT(right) == VT_BSTR) { V_VT(out) = VT_BSTR; VarBstrCat (V_BSTR(left), V_BSTR(right), &V_BSTR(out)); return S_OK; } if (V_VT(left) == VT_BSTR) { VARIANT bstrvar; HRESULT hres; V_VT(out) = VT_BSTR; VariantInit(&bstrvar); hres = VariantChangeTypeEx(&bstrvar,right,0,0,VT_BSTR); if (hres) { FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right)); return hres; } VarBstrCat (V_BSTR(left), V_BSTR(&bstrvar), &V_BSTR(out)); return S_OK; } if (V_VT(right) == VT_BSTR) { VARIANT bstrvar; HRESULT hres; V_VT(out) = VT_BSTR; VariantInit(&bstrvar); hres = VariantChangeTypeEx(&bstrvar,left,0,0,VT_BSTR); if (hres) { FIXME("Failed to convert right side from vt %d to VT_BSTR?\n",V_VT(right)); return hres; } VarBstrCat (V_BSTR(&bstrvar), V_BSTR(right), &V_BSTR(out)); return S_OK; } FIXME ("types %d / %d not supported\n",V_VT(left)&VT_TYPEMASK, V_VT(right)&VT_TYPEMASK); return S_OK; } /********************************************************************** * VarCmp [OLEAUT32.176] * * flags can be: * NORM_IGNORECASE, NORM_IGNORENONSPACE, NORM_IGNORESYMBOLS * NORM_IGNOREWIDTH, NORM_IGNOREKANATYPE, NORM_IGNOREKASHIDA * */ HRESULT WINAPI VarCmp(LPVARIANT left, LPVARIANT right, LCID lcid, DWORD flags) { BOOL lOk = TRUE; BOOL rOk = TRUE; LONGLONG lVal = -1; LONGLONG rVal = -1; VARIANT rv,lv; DWORD xmask; HRESULT rc; TRACE("(%p->(%s%s),%p->(%s%s),0x%08lx,0x%08lx)\n", left, debugstr_VT(left), debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), lcid, flags); VariantInit(&lv);VariantInit(&rv); V_VT(right) &= ~0x8000; /* hack since we sometime get this flag. */ V_VT(left) &= ~0x8000; /* hack since we sometime get this flag. */ /* If either are null, then return VARCMP_NULL */ if ((V_VT(left)&VT_TYPEMASK) == VT_NULL || (V_VT(right)&VT_TYPEMASK) == VT_NULL) return VARCMP_NULL; /* Strings - use VarBstrCmp */ if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR && (V_VT(right)&VT_TYPEMASK) == VT_BSTR) { return VarBstrCmp(V_BSTR(left), V_BSTR(right), lcid, flags); } xmask = (1<<(V_VT(left)&VT_TYPEMASK))|(1<<(V_VT(right)&VT_TYPEMASK)); if (xmask & VTBIT_R8) { rc = VariantChangeType(&lv,left,0,VT_R8); if (FAILED(rc)) return rc; rc = VariantChangeType(&rv,right,0,VT_R8); if (FAILED(rc)) return rc; if (V_R8(&lv) == V_R8(&rv)) return VARCMP_EQ; if (V_R8(&lv) < V_R8(&rv)) return VARCMP_LT; if (V_R8(&lv) > V_R8(&rv)) return VARCMP_GT; return E_FAIL; /* can't get here */ } if (xmask & VTBIT_R4) { rc = VariantChangeType(&lv,left,0,VT_R4); if (FAILED(rc)) return rc; rc = VariantChangeType(&rv,right,0,VT_R4); if (FAILED(rc)) return rc; if (V_R4(&lv) == V_R4(&rv)) return VARCMP_EQ; if (V_R4(&lv) < V_R4(&rv)) return VARCMP_LT; if (V_R4(&lv) > V_R4(&rv)) return VARCMP_GT; return E_FAIL; /* can't get here */ } /* Integers - Ideally like to use VarDecCmp, but no Dec support yet Use LONGLONG to maximize ranges */ lOk = TRUE; switch (V_VT(left)&VT_TYPEMASK) { case VT_I1 : lVal = V_I1(left); break; case VT_I2 : lVal = V_I2(left); break; case VT_I4 : case VT_INT : lVal = V_I4(left); break; case VT_UI1 : lVal = V_UI1(left); break; case VT_UI2 : lVal = V_UI2(left); break; case VT_UI4 : case VT_UINT : lVal = V_UI4(left); break; case VT_BOOL : lVal = V_BOOL(left); break; default: lOk = FALSE; } rOk = TRUE; switch (V_VT(right)&VT_TYPEMASK) { case VT_I1 : rVal = V_I1(right); break; case VT_I2 : rVal = V_I2(right); break; case VT_I4 : case VT_INT : rVal = V_I4(right); break; case VT_UI1 : rVal = V_UI1(right); break; case VT_UI2 : rVal = V_UI2(right); break; case VT_UI4 : case VT_UINT : rVal = V_UI4(right); break; case VT_BOOL : rVal = V_BOOL(right); break; default: rOk = FALSE; } if (lOk && rOk) { if (lVal < rVal) { return VARCMP_LT; } else if (lVal > rVal) { return VARCMP_GT; } else { return VARCMP_EQ; } } /* Strings - use VarBstrCmp */ if ((V_VT(left)&VT_TYPEMASK) == VT_DATE && (V_VT(right)&VT_TYPEMASK) == VT_DATE) { if (floor(V_DATE(left)) == floor(V_DATE(right))) { /* Due to floating point rounding errors, calculate varDate in whole numbers) */ double wholePart = 0.0; double leftR; double rightR; /* Get the fraction * 24*60*60 to make it into whole seconds */ wholePart = (double) floor( V_DATE(left) ); if (wholePart == 0) wholePart = 1; leftR = floor(fmod( V_DATE(left), wholePart ) * (24*60*60)); wholePart = (double) floor( V_DATE(right) ); if (wholePart == 0) wholePart = 1; rightR = floor(fmod( V_DATE(right), wholePart ) * (24*60*60)); if (leftR < rightR) { return VARCMP_LT; } else if (leftR > rightR) { return VARCMP_GT; } else { return VARCMP_EQ; } } else if (V_DATE(left) < V_DATE(right)) { return VARCMP_LT; } else if (V_DATE(left) > V_DATE(right)) { return VARCMP_GT; } } FIXME("VarCmp partial implementation, doesn't support vt 0x%x / 0x%x\n",V_VT(left), V_VT(right)); return E_FAIL; } /********************************************************************** * VarAnd [OLEAUT32.142] * */ HRESULT WINAPI VarAnd(LPVARIANT left, LPVARIANT right, LPVARIANT result) { HRESULT rc = E_FAIL; TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result); if ((V_VT(left)&VT_TYPEMASK) == VT_BOOL && (V_VT(right)&VT_TYPEMASK) == VT_BOOL) { V_VT(result) = VT_BOOL; if (V_BOOL(left) && V_BOOL(right)) { V_BOOL(result) = VARIANT_TRUE; } else { V_BOOL(result) = VARIANT_FALSE; } rc = S_OK; } else { /* Integers */ BOOL lOk = TRUE; BOOL rOk = TRUE; LONGLONG lVal = -1; LONGLONG rVal = -1; LONGLONG res = -1; int resT = 0; /* Testing has shown I2 & I2 == I2, all else becomes I4, even unsigned ints (incl. UI2) */ lOk = TRUE; switch (V_VT(left)&VT_TYPEMASK) { case VT_I1 : lVal = V_I1(left); resT=VT_I4; break; case VT_I2 : lVal = V_I2(left); resT=VT_I2; break; case VT_I4 : case VT_INT : lVal = V_I4(left); resT=VT_I4; break; case VT_UI1 : lVal = V_UI1(left); resT=VT_I4; break; case VT_UI2 : lVal = V_UI2(left); resT=VT_I4; break; case VT_UI4 : case VT_UINT : lVal = V_UI4(left); resT=VT_I4; break; case VT_BOOL : rVal = V_BOOL(left); resT=VT_I4; break; default: lOk = FALSE; } rOk = TRUE; switch (V_VT(right)&VT_TYPEMASK) { case VT_I1 : rVal = V_I1(right); resT=VT_I4; break; case VT_I2 : rVal = V_I2(right); resT=max(VT_I2, resT); break; case VT_I4 : case VT_INT : rVal = V_I4(right); resT=VT_I4; break; case VT_UI1 : rVal = V_UI1(right); resT=VT_I4; break; case VT_UI2 : rVal = V_UI2(right); resT=VT_I4; break; case VT_UI4 : case VT_UINT : rVal = V_UI4(right); resT=VT_I4; break; case VT_BOOL : rVal = V_BOOL(right); resT=VT_I4; break; default: rOk = FALSE; } if (lOk && rOk) { res = (lVal & rVal); V_VT(result) = resT; switch (resT) { case VT_I2 : V_I2(result) = res; break; case VT_I4 : V_I4(result) = res; break; default: FIXME("Unexpected result variant type %x\n", resT); V_I4(result) = res; } rc = S_OK; } else { FIXME("VarAnd stub\n"); } } TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result), debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result)); return rc; } /********************************************************************** * VarAdd [OLEAUT32.141] * FIXME: From MSDN: If ... Then * Both expressions are of the string type Concatenated. * One expression is a string type and the other a character Addition. * One expression is numeric and the other is a string Addition. * Both expressions are numeric Addition. * Either expression is NULL NULL is returned. * Both expressions are empty Integer subtype is returned. * */ HRESULT WINAPI VarAdd(LPVARIANT left, LPVARIANT right, LPVARIANT result) { HRESULT rc = E_FAIL; TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result); if ((V_VT(left)&VT_TYPEMASK) == VT_EMPTY) return VariantCopy(result,right); if ((V_VT(right)&VT_TYPEMASK) == VT_EMPTY) return VariantCopy(result,left); /* check if we add doubles */ if (((V_VT(left)&VT_TYPEMASK) == VT_R8) || ((V_VT(right)&VT_TYPEMASK) == VT_R8)) { BOOL lOk = TRUE; BOOL rOk = TRUE; double lVal = -1; double rVal = -1; double res = -1; lOk = TRUE; switch (V_VT(left)&VT_TYPEMASK) { case VT_I1 : lVal = V_I1(left); break; case VT_I2 : lVal = V_I2(left); break; case VT_I4 : case VT_INT : lVal = V_I4(left); break; case VT_UI1 : lVal = V_UI1(left); break; case VT_UI2 : lVal = V_UI2(left); break; case VT_UI4 : case VT_UINT : lVal = V_UI4(left); break; case VT_R4 : lVal = V_R4(left); break; case VT_R8 : lVal = V_R8(left); break; case VT_NULL : lVal = 0.0; break; default: lOk = FALSE; } rOk = TRUE; switch (V_VT(right)&VT_TYPEMASK) { case VT_I1 : rVal = V_I1(right); break; case VT_I2 : rVal = V_I2(right); break; case VT_I4 : case VT_INT : rVal = V_I4(right); break; case VT_UI1 : rVal = V_UI1(right); break; case VT_UI2 : rVal = V_UI2(right); break; case VT_UI4 : case VT_UINT : rVal = V_UI4(right); break; case VT_R4 : rVal = V_R4(right);break; case VT_R8 : rVal = V_R8(right);break; case VT_NULL : rVal = 0.0; break; default: rOk = FALSE; } if (lOk && rOk) { res = (lVal + rVal); V_VT(result) = VT_R8; V_R8(result) = res; rc = S_OK; } else { FIXME("Unhandled type pair %d / %d in double addition.\n", (V_VT(left)&VT_TYPEMASK), (V_VT(right)&VT_TYPEMASK) ); } return rc; } /* now check if we add floats. VT_R8 can no longer happen here! */ if (((V_VT(left)&VT_TYPEMASK) == VT_R4) || ((V_VT(right)&VT_TYPEMASK) == VT_R4)) { BOOL lOk = TRUE; BOOL rOk = TRUE; float lVal = -1; float rVal = -1; float res = -1; lOk = TRUE; switch (V_VT(left)&VT_TYPEMASK) { case VT_I1 : lVal = V_I1(left); break; case VT_I2 : lVal = V_I2(left); break; case VT_I4 : case VT_INT : lVal = V_I4(left); break; case VT_UI1 : lVal = V_UI1(left); break; case VT_UI2 : lVal = V_UI2(left); break; case VT_UI4 : case VT_UINT : lVal = V_UI4(left); break; case VT_R4 : lVal = V_R4(left); break; case VT_NULL : lVal = 0.0; break; default: lOk = FALSE; } rOk = TRUE; switch (V_VT(right)&VT_TYPEMASK) { case VT_I1 : rVal = V_I1(right); break; case VT_I2 : rVal = V_I2(right); break; case VT_I4 : case VT_INT : rVal = V_I4(right); break; case VT_UI1 : rVal = V_UI1(right); break; case VT_UI2 : rVal = V_UI2(right); break; case VT_UI4 : case VT_UINT : rVal = V_UI4(right); break; case VT_R4 : rVal = V_R4(right);break; case VT_NULL : rVal = 0.0; break; default: rOk = FALSE; } if (lOk && rOk) { res = (lVal + rVal); V_VT(result) = VT_R4; V_R4(result) = res; rc = S_OK; } else { FIXME("Unhandled type pair %d / %d in float addition.\n", (V_VT(left)&VT_TYPEMASK), (V_VT(right)&VT_TYPEMASK) ); } return rc; } /* Handle strings as concat */ if ((V_VT(left)&VT_TYPEMASK) == VT_BSTR && (V_VT(right)&VT_TYPEMASK) == VT_BSTR) { V_VT(result) = VT_BSTR; return VarBstrCat(V_BSTR(left), V_BSTR(right), &V_BSTR(result)); } else { /* Integers */ BOOL lOk = TRUE; BOOL rOk = TRUE; LONGLONG lVal = -1; LONGLONG rVal = -1; LONGLONG res = -1; int resT = 0; /* Testing has shown I2 + I2 == I2, all else becomes I4 */ lOk = TRUE; switch (V_VT(left)&VT_TYPEMASK) { case VT_I1 : lVal = V_I1(left); resT=VT_I4; break; case VT_I2 : lVal = V_I2(left); resT=VT_I2; break; case VT_I4 : case VT_INT : lVal = V_I4(left); resT=VT_I4; break; case VT_UI1 : lVal = V_UI1(left); resT=VT_I4; break; case VT_UI2 : lVal = V_UI2(left); resT=VT_I4; break; case VT_UI4 : case VT_UINT : lVal = V_UI4(left); resT=VT_I4; break; case VT_NULL : lVal = 0; resT = VT_I4; break; default: lOk = FALSE; } rOk = TRUE; switch (V_VT(right)&VT_TYPEMASK) { case VT_I1 : rVal = V_I1(right); resT=VT_I4; break; case VT_I2 : rVal = V_I2(right); resT=max(VT_I2, resT); break; case VT_I4 : case VT_INT : rVal = V_I4(right); resT=VT_I4; break; case VT_UI1 : rVal = V_UI1(right); resT=VT_I4; break; case VT_UI2 : rVal = V_UI2(right); resT=VT_I4; break; case VT_UI4 : case VT_UINT : rVal = V_UI4(right); resT=VT_I4; break; case VT_NULL : rVal = 0; resT=VT_I4; break; default: rOk = FALSE; } if (lOk && rOk) { res = (lVal + rVal); V_VT(result) = resT; switch (resT) { case VT_I2 : V_I2(result) = res; break; case VT_I4 : V_I4(result) = res; break; default: FIXME("Unexpected result variant type %x\n", resT); V_I4(result) = res; } rc = S_OK; } else { FIXME("unimplemented part (0x%x + 0x%x)\n",V_VT(left), V_VT(right)); } } TRACE("returning 0x%8lx (%s%s),%ld\n", rc, debugstr_VT(result), debugstr_VF(result), V_VT(result) == VT_I4 ? V_I4(result) : V_I2(result)); return rc; } /********************************************************************** * VarMul [OLEAUT32.156] * */ HRESULT WINAPI VarMul(LPVARIANT left, LPVARIANT right, LPVARIANT result) { HRESULT rc = E_FAIL; VARTYPE lvt,rvt,resvt; VARIANT lv,rv; BOOL found; TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result); VariantInit(&lv);VariantInit(&rv); lvt = V_VT(left)&VT_TYPEMASK; rvt = V_VT(right)&VT_TYPEMASK; found = FALSE;resvt=VT_VOID; if (((1<(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result); VariantInit(&lv);VariantInit(&rv); lvt = V_VT(left)&VT_TYPEMASK; rvt = V_VT(right)&VT_TYPEMASK; found = FALSE;resvt = VT_VOID; if (((1<(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result); VariantInit(&lv);VariantInit(&rv); lvt = V_VT(left)&VT_TYPEMASK; rvt = V_VT(right)&VT_TYPEMASK; found = FALSE;resvt = VT_VOID; if (((1<(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft), debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight), debugstr_VF(pVarRight), pVarOut); if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) || V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN || V_VT(pVarLeft) == VT_DISPATCH || V_VT(pVarRight) == VT_DISPATCH || V_VT(pVarLeft) == VT_RECORD || V_VT(pVarRight) == VT_RECORD) return DISP_E_BADVARTYPE; V_VT(&varLeft) = V_VT(&varRight) = V_VT(&varStr) = VT_EMPTY; if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL) { /* NULL OR Zero is NULL, NULL OR value is value */ if (V_VT(pVarLeft) == VT_NULL) pVarLeft = pVarRight; /* point to the non-NULL var */ V_VT(pVarOut) = VT_NULL; V_I4(pVarOut) = 0; switch (V_VT(pVarLeft)) { case VT_DATE: case VT_R8: if (V_R8(pVarLeft)) goto VarOr_AsEmpty; return S_OK; case VT_BOOL: if (V_BOOL(pVarLeft)) *pVarOut = *pVarLeft; return S_OK; case VT_I2: case VT_UI2: if (V_I2(pVarLeft)) goto VarOr_AsEmpty; return S_OK; case VT_I1: if (V_I1(pVarLeft)) goto VarOr_AsEmpty; return S_OK; case VT_UI1: if (V_UI1(pVarLeft)) *pVarOut = *pVarLeft; return S_OK; case VT_R4: if (V_R4(pVarLeft)) goto VarOr_AsEmpty; return S_OK; case VT_I4: case VT_UI4: case VT_INT: case VT_UINT: if (V_I4(pVarLeft)) goto VarOr_AsEmpty; return S_OK; case VT_CY: if (V_CY(pVarLeft).int64) goto VarOr_AsEmpty; return S_OK; case VT_I8: case VT_UI8: if (V_I8(pVarLeft)) goto VarOr_AsEmpty; return S_OK; case VT_DECIMAL: if (DEC_HI32(&V_DECIMAL(pVarLeft)) || DEC_LO64(&V_DECIMAL(pVarLeft))) goto VarOr_AsEmpty; return S_OK; case VT_BSTR: { VARIANT_BOOL b; if (!V_BSTR(pVarLeft)) return DISP_E_BADVARTYPE; hRet = VarBoolFromStr(V_BSTR(pVarLeft), LOCALE_USER_DEFAULT, VAR_LOCALBOOL, &b); if (SUCCEEDED(hRet) && b) { V_VT(pVarOut) = VT_BOOL; V_BOOL(pVarOut) = b; } return hRet; } case VT_NULL: case VT_EMPTY: V_VT(pVarOut) = VT_NULL; return S_OK; default: return DISP_E_BADVARTYPE; } } if (V_VT(pVarLeft) == VT_EMPTY || V_VT(pVarRight) == VT_EMPTY) { if (V_VT(pVarLeft) == VT_EMPTY) pVarLeft = pVarRight; /* point to the non-EMPTY var */ VarOr_AsEmpty: /* Since one argument is empty (0), OR'ing it with the other simply * gives the others value (as 0|x => x). So just convert the other * argument to the required result type. */ switch (V_VT(pVarLeft)) { case VT_BSTR: if (!V_BSTR(pVarLeft)) return DISP_E_BADVARTYPE; hRet = VariantCopy(&varStr, pVarLeft); if (FAILED(hRet)) goto VarOr_Exit; pVarLeft = &varStr; hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL); if (FAILED(hRet)) goto VarOr_Exit; /* Fall Through ... */ case VT_EMPTY: case VT_UI1: case VT_BOOL: case VT_I2: V_VT(pVarOut) = VT_I2; break; case VT_DATE: case VT_CY: case VT_DECIMAL: case VT_R4: case VT_R8: case VT_I1: case VT_UI2: case VT_I4: case VT_UI4: case VT_INT: case VT_UINT: case VT_UI8: V_VT(pVarOut) = VT_I4; break; case VT_I8: V_VT(pVarOut) = VT_I8; break; default: return DISP_E_BADVARTYPE; } hRet = VariantCopy(&varLeft, pVarLeft); if (FAILED(hRet)) goto VarOr_Exit; pVarLeft = &varLeft; hRet = VariantChangeType(pVarOut, pVarLeft, 0, V_VT(pVarOut)); goto VarOr_Exit; } if (V_VT(pVarLeft) == VT_BOOL && V_VT(pVarRight) == VT_BOOL) { V_VT(pVarOut) = VT_BOOL; V_BOOL(pVarOut) = V_BOOL(pVarLeft) | V_BOOL(pVarRight); return S_OK; } if (V_VT(pVarLeft) == VT_UI1 && V_VT(pVarRight) == VT_UI1) { V_VT(pVarOut) = VT_UI1; V_UI1(pVarOut) = V_UI1(pVarLeft) | V_UI1(pVarRight); return S_OK; } if (V_VT(pVarLeft) == VT_BSTR) { hRet = VariantCopy(&varStr, pVarLeft); if (FAILED(hRet)) goto VarOr_Exit; pVarLeft = &varStr; hRet = VariantChangeType(pVarLeft, pVarLeft, 0, VT_BOOL); if (FAILED(hRet)) goto VarOr_Exit; } if (V_VT(pVarLeft) == VT_BOOL && (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_BSTR)) { vt = VT_BOOL; } else if ((V_VT(pVarLeft) == VT_BOOL || V_VT(pVarLeft) == VT_UI1 || V_VT(pVarLeft) == VT_I2 || V_VT(pVarLeft) == VT_BSTR) && (V_VT(pVarRight) == VT_BOOL || V_VT(pVarRight) == VT_UI1 || V_VT(pVarRight) == VT_I2 || V_VT(pVarRight) == VT_BSTR)) { vt = VT_I2; } else if (V_VT(pVarLeft) == VT_I8 || V_VT(pVarRight) == VT_I8) { if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT) return DISP_E_TYPEMISMATCH; vt = VT_I8; } hRet = VariantCopy(&varLeft, pVarLeft); if (FAILED(hRet)) goto VarOr_Exit; hRet = VariantCopy(&varRight, pVarRight); if (FAILED(hRet)) goto VarOr_Exit; if (vt == VT_I4 && V_VT(&varLeft) == VT_UI4) V_VT(&varLeft) = VT_I4; /* Don't overflow */ else { double d; if (V_VT(&varLeft) == VT_BSTR && FAILED(VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d))) hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, VT_BOOL); if (SUCCEEDED(hRet) && V_VT(&varLeft) != vt) hRet = VariantChangeType(&varLeft, &varLeft, 0, vt); if (FAILED(hRet)) goto VarOr_Exit; } if (vt == VT_I4 && V_VT(&varRight) == VT_UI4) V_VT(&varRight) = VT_I4; /* Don't overflow */ else { double d; if (V_VT(&varRight) == VT_BSTR && FAILED(VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d))) hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, VT_BOOL); if (SUCCEEDED(hRet) && V_VT(&varRight) != vt) hRet = VariantChangeType(&varRight, &varRight, 0, vt); if (FAILED(hRet)) goto VarOr_Exit; } V_VT(pVarOut) = vt; if (vt == VT_I8) { V_I8(pVarOut) = V_I8(&varLeft) | V_I8(&varRight); } else if (vt == VT_I4) { V_I4(pVarOut) = V_I4(&varLeft) | V_I4(&varRight); } else { V_I2(pVarOut) = V_I2(&varLeft) | V_I2(&varRight); } VarOr_Exit: VariantClear(&varStr); VariantClear(&varLeft); VariantClear(&varRight); return hRet; } /********************************************************************** * VarAbs [OLEAUT32.168] * * Convert a variant to its absolute value. * * PARAMS * pVarIn [I] Source variant * pVarOut [O] Destination for converted value * * RETURNS * Success: S_OK. pVarOut contains the absolute value of pVarIn. * Failure: An HRESULT error code indicating the error. * * NOTES * - This function does not process by-reference variants. * - The type of the value stored in pVarOut depends on the type of pVarIn, * according to the following table: *| Input Type Output Type *| ---------- ----------- *| VT_BOOL VT_I2 *| VT_BSTR VT_R8 *| (All others) Unchanged */ HRESULT WINAPI VarAbs(LPVARIANT pVarIn, LPVARIANT pVarOut) { VARIANT varIn; HRESULT hRet = S_OK; TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), pVarOut); if (V_ISARRAY(pVarIn) || V_VT(pVarIn) == VT_UNKNOWN || V_VT(pVarIn) == VT_DISPATCH || V_VT(pVarIn) == VT_RECORD || V_VT(pVarIn) == VT_ERROR) return DISP_E_TYPEMISMATCH; *pVarOut = *pVarIn; /* Shallow copy the value, and invert it if needed */ #define ABS_CASE(typ,min) \ case VT_##typ: if (V_##typ(pVarIn) == min) hRet = DISP_E_OVERFLOW; \ else if (V_##typ(pVarIn) < 0) V_##typ(pVarOut) = -V_##typ(pVarIn); \ break switch (V_VT(pVarIn)) { ABS_CASE(I1,I1_MIN); case VT_BOOL: V_VT(pVarOut) = VT_I2; /* BOOL->I2, Fall through ... */ ABS_CASE(I2,I2_MIN); case VT_INT: ABS_CASE(I4,I4_MIN); ABS_CASE(I8,I8_MIN); ABS_CASE(R4,R4_MIN); case VT_BSTR: hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn)); if (FAILED(hRet)) break; V_VT(pVarOut) = VT_R8; pVarIn = &varIn; /* Fall through ... */ case VT_DATE: ABS_CASE(R8,R8_MIN); case VT_CY: hRet = VarCyAbs(V_CY(pVarIn), & V_CY(pVarOut)); break; case VT_DECIMAL: DEC_SIGN(&V_DECIMAL(pVarOut)) &= ~DECIMAL_NEG; break; case VT_UI1: case VT_UI2: case VT_UINT: case VT_UI4: case VT_UI8: /* No-Op */ break; case VT_EMPTY: V_VT(pVarOut) = VT_I2; case VT_NULL: V_I2(pVarOut) = 0; break; default: hRet = DISP_E_BADVARTYPE; } return hRet; } /********************************************************************** * VarFix [OLEAUT32.169] * * Truncate a variants value to a whole number. * * PARAMS * pVarIn [I] Source variant * pVarOut [O] Destination for converted value * * RETURNS * Success: S_OK. pVarOut contains the converted value. * Failure: An HRESULT error code indicating the error. * * NOTES * - The type of the value stored in pVarOut depends on the type of pVarIn, * according to the following table: *| Input Type Output Type *| ---------- ----------- *| VT_BOOL VT_I2 *| VT_EMPTY VT_I2 *| VT_BSTR VT_R8 *| All Others Unchanged * - The difference between this function and VarInt() is that VarInt() rounds * negative numbers away from 0, while this function rounds them towards zero. */ HRESULT WINAPI VarFix(LPVARIANT pVarIn, LPVARIANT pVarOut) { HRESULT hRet = S_OK; TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), pVarOut); V_VT(pVarOut) = V_VT(pVarIn); switch (V_VT(pVarIn)) { case VT_UI1: V_UI1(pVarOut) = V_UI1(pVarIn); break; case VT_BOOL: V_VT(pVarOut) = VT_I2; /* Fall through */ case VT_I2: V_I2(pVarOut) = V_I2(pVarIn); break; case VT_I4: V_I4(pVarOut) = V_I4(pVarIn); break; case VT_I8: V_I8(pVarOut) = V_I8(pVarIn); break; case VT_R4: if (V_R4(pVarIn) < 0.0f) V_R4(pVarOut) = (float)ceil(V_R4(pVarIn)); else V_R4(pVarOut) = (float)floor(V_R4(pVarIn)); break; case VT_BSTR: V_VT(pVarOut) = VT_R8; hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut)); pVarIn = pVarOut; /* Fall through */ case VT_DATE: case VT_R8: if (V_R8(pVarIn) < 0.0) V_R8(pVarOut) = ceil(V_R8(pVarIn)); else V_R8(pVarOut) = floor(V_R8(pVarIn)); break; case VT_CY: hRet = VarCyFix(V_CY(pVarIn), &V_CY(pVarOut)); break; case VT_DECIMAL: hRet = VarDecFix(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut)); break; case VT_EMPTY: V_VT(pVarOut) = VT_I2; V_I2(pVarOut) = 0; break; case VT_NULL: /* No-Op */ break; default: if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */ FAILED(VARIANT_ValidateType(V_VT(pVarIn)))) hRet = DISP_E_BADVARTYPE; else hRet = DISP_E_TYPEMISMATCH; } if (FAILED(hRet)) V_VT(pVarOut) = VT_EMPTY; return hRet; } /********************************************************************** * VarInt [OLEAUT32.172] * * Truncate a variants value to a whole number. * * PARAMS * pVarIn [I] Source variant * pVarOut [O] Destination for converted value * * RETURNS * Success: S_OK. pVarOut contains the converted value. * Failure: An HRESULT error code indicating the error. * * NOTES * - The type of the value stored in pVarOut depends on the type of pVarIn, * according to the following table: *| Input Type Output Type *| ---------- ----------- *| VT_BOOL VT_I2 *| VT_EMPTY VT_I2 *| VT_BSTR VT_R8 *| All Others Unchanged * - The difference between this function and VarFix() is that VarFix() rounds * negative numbers towards 0, while this function rounds them away from zero. */ HRESULT WINAPI VarInt(LPVARIANT pVarIn, LPVARIANT pVarOut) { HRESULT hRet = S_OK; TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), pVarOut); V_VT(pVarOut) = V_VT(pVarIn); switch (V_VT(pVarIn)) { case VT_R4: V_R4(pVarOut) = (float)floor(V_R4(pVarIn)); break; case VT_BSTR: V_VT(pVarOut) = VT_R8; hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut)); pVarIn = pVarOut; /* Fall through */ case VT_DATE: case VT_R8: V_R8(pVarOut) = floor(V_R8(pVarIn)); break; case VT_CY: hRet = VarCyInt(V_CY(pVarIn), &V_CY(pVarOut)); break; case VT_DECIMAL: hRet = VarDecInt(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut)); break; default: return VarFix(pVarIn, pVarOut); } return hRet; } /********************************************************************** * VarXor [OLEAUT32.167] * * Perform a logical exclusive-or (XOR) operation on two variants. * * PARAMS * pVarLeft [I] First variant * pVarRight [I] Variant to XOR with pVarLeft * pVarOut [O] Destination for XOR result * * RETURNS * Success: S_OK. pVarOut contains the result of the operation with its type * taken from the table below). * Failure: An HRESULT error code indicating the error. * * NOTES * - Neither pVarLeft or pVarRight are modified by this function. * - This function does not process by-reference variants. * - Input types of VT_BSTR may be numeric strings or boolean text. * - The type of result stored in pVarOut depends on the types of pVarLeft * and pVarRight, and will be one of VT_UI1, VT_I2, VT_I4, VT_I8, VT_BOOL, * or VT_NULL if the function succeeds. * - Type promotion is inconsistent and as a result certain combinations of * values will return DISP_E_OVERFLOW even when they could be represented. * This matches the behaviour of native oleaut32. */ HRESULT WINAPI VarXor(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut) { VARTYPE vt; VARIANT varLeft, varRight; double d; HRESULT hRet; TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft), debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight), debugstr_VF(pVarRight), pVarOut); if (V_EXTRA_TYPE(pVarLeft) || V_EXTRA_TYPE(pVarRight) || V_VT(pVarLeft) > VT_UINT || V_VT(pVarRight) > VT_UINT || V_VT(pVarLeft) == VT_VARIANT || V_VT(pVarRight) == VT_VARIANT || V_VT(pVarLeft) == VT_UNKNOWN || V_VT(pVarRight) == VT_UNKNOWN || V_VT(pVarLeft) == (VARTYPE)15 || V_VT(pVarRight) == (VARTYPE)15 || V_VT(pVarLeft) == VT_ERROR || V_VT(pVarRight) == VT_ERROR) return DISP_E_BADVARTYPE; if (V_VT(pVarLeft) == VT_NULL || V_VT(pVarRight) == VT_NULL) { /* NULL XOR anything valid is NULL */ V_VT(pVarOut) = VT_NULL; return S_OK; } /* Copy our inputs so we don't disturb anything */ V_VT(&varLeft) = V_VT(&varRight) = VT_EMPTY; hRet = VariantCopy(&varLeft, pVarLeft); if (FAILED(hRet)) goto VarXor_Exit; hRet = VariantCopy(&varRight, pVarRight); if (FAILED(hRet)) goto VarXor_Exit; /* Try any strings first as numbers, then as VT_BOOL */ if (V_VT(&varLeft) == VT_BSTR) { hRet = VarR8FromStr(V_BSTR(&varLeft), LOCALE_USER_DEFAULT, 0, &d); hRet = VariantChangeType(&varLeft, &varLeft, VARIANT_LOCALBOOL, FAILED(hRet) ? VT_BOOL : VT_I4); if (FAILED(hRet)) goto VarXor_Exit; } if (V_VT(&varRight) == VT_BSTR) { hRet = VarR8FromStr(V_BSTR(&varRight), LOCALE_USER_DEFAULT, 0, &d); hRet = VariantChangeType(&varRight, &varRight, VARIANT_LOCALBOOL, FAILED(hRet) ? VT_BOOL : VT_I4); if (FAILED(hRet)) goto VarXor_Exit; } /* Determine the result type */ if (V_VT(&varLeft) == VT_I8 || V_VT(&varRight) == VT_I8) { if (V_VT(pVarLeft) == VT_INT || V_VT(pVarRight) == VT_INT) return DISP_E_TYPEMISMATCH; vt = VT_I8; } else { switch ((V_VT(&varLeft) << 16) | V_VT(&varRight)) { case (VT_BOOL << 16) | VT_BOOL: vt = VT_BOOL; break; case (VT_UI1 << 16) | VT_UI1: vt = VT_UI1; break; case (VT_EMPTY << 16) | VT_EMPTY: case (VT_EMPTY << 16) | VT_UI1: case (VT_EMPTY << 16) | VT_I2: case (VT_EMPTY << 16) | VT_BOOL: case (VT_UI1 << 16) | VT_EMPTY: case (VT_UI1 << 16) | VT_I2: case (VT_UI1 << 16) | VT_BOOL: case (VT_I2 << 16) | VT_EMPTY: case (VT_I2 << 16) | VT_UI1: case (VT_I2 << 16) | VT_I2: case (VT_I2 << 16) | VT_BOOL: case (VT_BOOL << 16) | VT_EMPTY: case (VT_BOOL << 16) | VT_UI1: case (VT_BOOL << 16) | VT_I2: vt = VT_I2; break; default: vt = VT_I4; break; } } /* VT_UI4 does not overflow */ if (vt != VT_I8) { if (V_VT(&varLeft) == VT_UI4) V_VT(&varLeft) = VT_I4; if (V_VT(&varRight) == VT_UI4) V_VT(&varRight) = VT_I4; } /* Convert our input copies to the result type */ if (V_VT(&varLeft) != vt) hRet = VariantChangeType(&varLeft, &varLeft, 0, vt); if (FAILED(hRet)) goto VarXor_Exit; if (V_VT(&varRight) != vt) hRet = VariantChangeType(&varRight, &varRight, 0, vt); if (FAILED(hRet)) goto VarXor_Exit; V_VT(pVarOut) = vt; /* Calculate the result */ switch (vt) { case VT_I8: V_I8(pVarOut) = V_I8(&varLeft) ^ V_I8(&varRight); break; case VT_I4: V_I4(pVarOut) = V_I4(&varLeft) ^ V_I4(&varRight); break; case VT_BOOL: case VT_I2: V_I2(pVarOut) = V_I2(&varLeft) ^ V_I2(&varRight); break; case VT_UI1: V_UI1(pVarOut) = V_UI1(&varLeft) ^ V_UI1(&varRight); break; } VarXor_Exit: VariantClear(&varLeft); VariantClear(&varRight); return hRet; } /********************************************************************** * VarEqv [OLEAUT32.172] * * Determine if two variants contain the same value. * * PARAMS * pVarLeft [I] First variant to compare * pVarRight [I] Variant to compare to pVarLeft * pVarOut [O] Destination for comparison result * * RETURNS * Success: S_OK. pVarOut contains the result of the comparison (VARIANT_TRUE * if equivalent or non-zero otherwise. * Failure: An HRESULT error code indicating the error. * * NOTES * - This function simply calls VarXor() on pVarLeft and pVarRight and inverts * the result. */ HRESULT WINAPI VarEqv(LPVARIANT pVarLeft, LPVARIANT pVarRight, LPVARIANT pVarOut) { HRESULT hRet; TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", pVarLeft, debugstr_VT(pVarLeft), debugstr_VF(pVarLeft), pVarRight, debugstr_VT(pVarRight), debugstr_VF(pVarRight), pVarOut); hRet = VarXor(pVarLeft, pVarRight, pVarOut); if (SUCCEEDED(hRet)) { if (V_VT(pVarOut) == VT_I8) V_I8(pVarOut) = ~V_I8(pVarOut); else V_UI4(pVarOut) = ~V_UI4(pVarOut); } return hRet; } /********************************************************************** * VarNeg [OLEAUT32.173] * * Negate the value of a variant. * * PARAMS * pVarIn [I] Source variant * pVarOut [O] Destination for converted value * * RETURNS * Success: S_OK. pVarOut contains the converted value. * Failure: An HRESULT error code indicating the error. * * NOTES * - The type of the value stored in pVarOut depends on the type of pVarIn, * according to the following table: *| Input Type Output Type *| ---------- ----------- *| VT_EMPTY VT_I2 *| VT_UI1 VT_I2 *| VT_BOOL VT_I2 *| VT_BSTR VT_R8 *| All Others Unchanged (unless promoted) * - Where the negated value of a variant does not fit in its base type, the type * is promoted according to the following table: *| Input Type Promoted To *| ---------- ----------- *| VT_I2 VT_I4 *| VT_I4 VT_R8 *| VT_I8 VT_R8 * - The native version of this function returns DISP_E_BADVARTYPE for valid * variant types that cannot be negated, and returns DISP_E_TYPEMISMATCH * for types which are not valid. Since this is in contravention of the * meaning of those error codes and unlikely to be relied on by applications, * this implementation returns errors consistent with the other high level * variant math functions. */ HRESULT WINAPI VarNeg(LPVARIANT pVarIn, LPVARIANT pVarOut) { HRESULT hRet = S_OK; TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), pVarOut); V_VT(pVarOut) = V_VT(pVarIn); switch (V_VT(pVarIn)) { case VT_UI1: V_VT(pVarOut) = VT_I2; V_I2(pVarOut) = -V_UI1(pVarIn); break; case VT_BOOL: V_VT(pVarOut) = VT_I2; /* Fall through */ case VT_I2: if (V_I2(pVarIn) == I2_MIN) { V_VT(pVarOut) = VT_I4; V_I4(pVarOut) = -(int)V_I2(pVarIn); } else V_I2(pVarOut) = -V_I2(pVarIn); break; case VT_I4: if (V_I4(pVarIn) == I4_MIN) { V_VT(pVarOut) = VT_R8; V_R8(pVarOut) = -(double)V_I4(pVarIn); } else V_I4(pVarOut) = -V_I4(pVarIn); break; case VT_I8: if (V_I8(pVarIn) == I8_MIN) { V_VT(pVarOut) = VT_R8; hRet = VarR8FromI8(V_I8(pVarIn), &V_R8(pVarOut)); V_R8(pVarOut) *= -1.0; } else V_I8(pVarOut) = -V_I8(pVarIn); break; case VT_R4: V_R4(pVarOut) = -V_R4(pVarIn); break; case VT_DATE: case VT_R8: V_R8(pVarOut) = -V_R8(pVarIn); break; case VT_CY: hRet = VarCyNeg(V_CY(pVarIn), &V_CY(pVarOut)); break; case VT_DECIMAL: hRet = VarDecNeg(&V_DECIMAL(pVarIn), &V_DECIMAL(pVarOut)); break; case VT_BSTR: V_VT(pVarOut) = VT_R8; hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(pVarOut)); V_R8(pVarOut) = -V_R8(pVarOut); break; case VT_EMPTY: V_VT(pVarOut) = VT_I2; V_I2(pVarOut) = 0; break; case VT_NULL: /* No-Op */ break; default: if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */ FAILED(VARIANT_ValidateType(V_VT(pVarIn)))) hRet = DISP_E_BADVARTYPE; else hRet = DISP_E_TYPEMISMATCH; } if (FAILED(hRet)) V_VT(pVarOut) = VT_EMPTY; return hRet; } /********************************************************************** * VarNot [OLEAUT32.174] * * Perform a not operation on a variant. * * PARAMS * pVarIn [I] Source variant * pVarOut [O] Destination for converted value * * RETURNS * Success: S_OK. pVarOut contains the converted value. * Failure: An HRESULT error code indicating the error. * * NOTES * - Strictly speaking, this function performs a bitwise ones complement * on the variants value (after possibly converting to VT_I4, see below). * This only behaves like a boolean not operation if the value in * pVarIn is either VARIANT_TRUE or VARIANT_FALSE and the type is signed. * - To perform a genuine not operation, convert the variant to a VT_BOOL * before calling this function. * - This function does not process by-reference variants. * - The type of the value stored in pVarOut depends on the type of pVarIn, * according to the following table: *| Input Type Output Type *| ---------- ----------- *| VT_EMPTY VT_I2 *| VT_R4 VT_I4 *| VT_R8 VT_I4 *| VT_BSTR VT_I4 *| VT_DECIMAL VT_I4 *| VT_CY VT_I4 *| (All others) Unchanged */ HRESULT WINAPI VarNot(LPVARIANT pVarIn, LPVARIANT pVarOut) { VARIANT varIn; HRESULT hRet = S_OK; TRACE("(%p->(%s%s),%p)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), pVarOut); V_VT(pVarOut) = V_VT(pVarIn); switch (V_VT(pVarIn)) { case VT_I1: V_I4(pVarOut) = ~V_I1(pVarIn); V_VT(pVarOut) = VT_I4; break; case VT_UI1: V_UI1(pVarOut) = ~V_UI1(pVarIn); break; case VT_BOOL: case VT_I2: V_I2(pVarOut) = ~V_I2(pVarIn); break; case VT_UI2: V_I4(pVarOut) = ~V_UI2(pVarIn); V_VT(pVarOut) = VT_I4; break; case VT_DECIMAL: hRet = VarI4FromDec(&V_DECIMAL(pVarIn), &V_I4(&varIn)); if (FAILED(hRet)) break; pVarIn = &varIn; /* Fall through ... */ case VT_INT: V_VT(pVarOut) = VT_I4; /* Fall through ... */ case VT_I4: V_I4(pVarOut) = ~V_I4(pVarIn); break; case VT_UINT: case VT_UI4: V_I4(pVarOut) = ~V_UI4(pVarIn); V_VT(pVarOut) = VT_I4; break; case VT_I8: V_I8(pVarOut) = ~V_I8(pVarIn); break; case VT_UI8: V_I4(pVarOut) = ~V_UI8(pVarIn); V_VT(pVarOut) = VT_I4; break; case VT_R4: hRet = VarI4FromR4(V_R4(pVarIn), &V_I4(pVarOut)); V_I4(pVarOut) = ~V_I4(pVarOut); V_VT(pVarOut) = VT_I4; break; case VT_BSTR: hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn)); if (FAILED(hRet)) break; pVarIn = &varIn; /* Fall through ... */ case VT_DATE: case VT_R8: hRet = VarI4FromR8(V_R8(pVarIn), &V_I4(pVarOut)); V_I4(pVarOut) = ~V_I4(pVarOut); V_VT(pVarOut) = VT_I4; break; case VT_CY: hRet = VarI4FromCy(V_CY(pVarIn), &V_I4(pVarOut)); V_I4(pVarOut) = ~V_I4(pVarOut); V_VT(pVarOut) = VT_I4; break; case VT_EMPTY: V_I2(pVarOut) = ~0; V_VT(pVarOut) = VT_I2; break; case VT_NULL: /* No-Op */ break; default: if (V_TYPE(pVarIn) == VT_CLSID || /* VT_CLSID is a special case */ FAILED(VARIANT_ValidateType(V_VT(pVarIn)))) hRet = DISP_E_BADVARTYPE; else hRet = DISP_E_TYPEMISMATCH; } if (FAILED(hRet)) V_VT(pVarOut) = VT_EMPTY; return hRet; } /********************************************************************** * VarRound [OLEAUT32.175] * * Perform a round operation on a variant. * * PARAMS * pVarIn [I] Source variant * deci [I] Number of decimals to round to * pVarOut [O] Destination for converted value * * RETURNS * Success: S_OK. pVarOut contains the converted value. * Failure: An HRESULT error code indicating the error. * * NOTES * - Floating point values are rounded to the desired number of decimals. * - Some integer types are just copied to the return variable. * - Some other integer types are not handled and fail. */ HRESULT WINAPI VarRound(LPVARIANT pVarIn, int deci, LPVARIANT pVarOut) { VARIANT varIn; HRESULT hRet = S_OK; float factor; TRACE("(%p->(%s%s),%d)\n", pVarIn, debugstr_VT(pVarIn), debugstr_VF(pVarIn), deci); switch (V_VT(pVarIn)) { /* cases that fail on windows */ case VT_I1: case VT_I8: case VT_UI2: case VT_UI4: hRet = DISP_E_BADVARTYPE; break; /* cases just copying in to out */ case VT_UI1: V_VT(pVarOut) = V_VT(pVarIn); V_UI1(pVarOut) = V_UI1(pVarIn); break; case VT_I2: V_VT(pVarOut) = V_VT(pVarIn); V_I2(pVarOut) = V_I2(pVarIn); break; case VT_I4: V_VT(pVarOut) = V_VT(pVarIn); V_I4(pVarOut) = V_I4(pVarIn); break; case VT_NULL: V_VT(pVarOut) = V_VT(pVarIn); /* value unchanged */ break; /* cases that change type */ case VT_EMPTY: V_VT(pVarOut) = VT_I2; V_I2(pVarOut) = 0; break; case VT_BOOL: V_VT(pVarOut) = VT_I2; V_I2(pVarOut) = V_BOOL(pVarIn); break; case VT_BSTR: hRet = VarR8FromStr(V_BSTR(pVarIn), LOCALE_USER_DEFAULT, 0, &V_R8(&varIn)); if (FAILED(hRet)) break; V_VT(&varIn)=VT_R8; pVarIn = &varIn; /* Fall through ... */ /* cases we need to do math */ case VT_R8: if (V_R8(pVarIn)>0) { V_R8(pVarOut)=floor(V_R8(pVarIn)*pow(10, deci)+0.5)/pow(10, deci); } else { V_R8(pVarOut)=ceil(V_R8(pVarIn)*pow(10, deci)-0.5)/pow(10, deci); } V_VT(pVarOut) = V_VT(pVarIn); break; case VT_R4: if (V_R4(pVarIn)>0) { V_R4(pVarOut)=floor(V_R4(pVarIn)*pow(10, deci)+0.5)/pow(10, deci); } else { V_R4(pVarOut)=ceil(V_R4(pVarIn)*pow(10, deci)-0.5)/pow(10, deci); } V_VT(pVarOut) = V_VT(pVarIn); break; case VT_DATE: if (V_DATE(pVarIn)>0) { V_DATE(pVarOut)=floor(V_DATE(pVarIn)*pow(10, deci)+0.5)/pow(10, deci); } else { V_DATE(pVarOut)=ceil(V_DATE(pVarIn)*pow(10, deci)-0.5)/pow(10, deci); } V_VT(pVarOut) = V_VT(pVarIn); break; case VT_CY: if (deci>3) factor=1; else factor=pow(10, 4-deci); if (V_CY(pVarIn).int64>0) { V_CY(pVarOut).int64=floor(V_CY(pVarIn).int64/factor)*factor; } else { V_CY(pVarOut).int64=ceil(V_CY(pVarIn).int64/factor)*factor; } V_VT(pVarOut) = V_VT(pVarIn); break; /* cases we don't know yet */ default: FIXME("unimplemented part, V_VT(pVarIn) == 0x%X, deci == %d\n", V_VT(pVarIn) & VT_TYPEMASK, deci); hRet = DISP_E_BADVARTYPE; } if (FAILED(hRet)) V_VT(pVarOut) = VT_EMPTY; TRACE("returning 0x%08lx (%s%s),%f\n", hRet, debugstr_VT(pVarOut), debugstr_VF(pVarOut), (V_VT(pVarOut) == VT_R4) ? V_R4(pVarOut) : (V_VT(pVarOut) == VT_R8) ? V_R8(pVarOut) : 0); return hRet; } /********************************************************************** * VarIdiv [OLEAUT32.153] * * Converts input variants to integers and divides them. * * PARAMS * left [I] Left hand variant * right [I] Right hand variant * result [O] Destination for quotient * * RETURNS * Success: S_OK. result contains the quotient. * Failure: An HRESULT error code indicating the error. * * NOTES * If either expression is null, null is returned, as per MSDN */ HRESULT WINAPI VarIdiv(LPVARIANT left, LPVARIANT right, LPVARIANT result) { VARIANT lv, rv; HRESULT hr; VariantInit(&lv); VariantInit(&rv); if ((V_VT(left) == VT_NULL) || (V_VT(right) == VT_NULL)) { hr = VariantChangeType(result, result, 0, VT_NULL); if (FAILED(hr)) { /* This should never happen */ FIXME("Failed to convert return value to VT_NULL.\n"); return hr; } return S_OK; } hr = VariantChangeType(&lv, left, 0, VT_I4); if (FAILED(hr)) { return hr; } hr = VariantChangeType(&rv, right, 0, VT_I4); if (FAILED(hr)) { return hr; } hr = VarDiv(&lv, &rv, result); return hr; } /********************************************************************** * VarMod [OLEAUT32.155] * * Perform the modulus operation of the right hand variant on the left * * PARAMS * left [I] Left hand variant * right [I] Right hand variant * result [O] Destination for converted value * * RETURNS * Success: S_OK. result contains the remainder. * Failure: An HRESULT error code indicating the error. * * NOTE: * If an error occurs the type of result will be modified but the value will not be. * Doesn't support arrays or any special flags yet. */ HRESULT WINAPI VarMod(LPVARIANT left, LPVARIANT right, LPVARIANT result) { BOOL lOk = TRUE; BOOL rOk = TRUE; HRESULT rc = E_FAIL; int resT = 0; VARIANT lv,rv; VariantInit(&lv); VariantInit(&rv); TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result); /* check for invalid inputs */ lOk = TRUE; switch (V_VT(left) & VT_TYPEMASK) { case VT_BOOL : case VT_I1 : case VT_I2 : case VT_I4 : case VT_I8 : case VT_INT : case VT_UI1 : case VT_UI2 : case VT_UI4 : case VT_UI8 : case VT_UINT : case VT_R4 : case VT_R8 : case VT_CY : case VT_EMPTY: case VT_DATE : case VT_BSTR : break; case VT_VARIANT: case VT_UNKNOWN: V_VT(result) = VT_EMPTY; return DISP_E_TYPEMISMATCH; case VT_DECIMAL: V_VT(result) = VT_EMPTY; return DISP_E_OVERFLOW; case VT_ERROR: return DISP_E_TYPEMISMATCH; case VT_RECORD: V_VT(result) = VT_EMPTY; return DISP_E_TYPEMISMATCH; case VT_NULL: break; default: V_VT(result) = VT_EMPTY; return DISP_E_BADVARTYPE; } rOk = TRUE; switch (V_VT(right) & VT_TYPEMASK) { case VT_BOOL : case VT_I1 : case VT_I2 : case VT_I4 : case VT_I8 : if((V_VT(left) == VT_INT) && (V_VT(right) == VT_I8)) { V_VT(result) = VT_EMPTY; return DISP_E_TYPEMISMATCH; } case VT_INT : if((V_VT(right) == VT_INT) && (V_VT(left) == VT_I8)) { V_VT(result) = VT_EMPTY; return DISP_E_TYPEMISMATCH; } case VT_UI1 : case VT_UI2 : case VT_UI4 : case VT_UI8 : case VT_UINT : case VT_R4 : case VT_R8 : case VT_CY : if(V_VT(left) == VT_EMPTY) { V_VT(result) = VT_I4; return S_OK; } case VT_EMPTY: case VT_DATE : case VT_BSTR: if(V_VT(left) == VT_NULL) { V_VT(result) = VT_NULL; return S_OK; } break; case VT_VOID: V_VT(result) = VT_EMPTY; return DISP_E_BADVARTYPE; case VT_NULL: if(V_VT(left) == VT_VOID) { V_VT(result) = VT_EMPTY; return DISP_E_BADVARTYPE; } else if((V_VT(left) == VT_NULL) || (V_VT(left) == VT_EMPTY) || (V_VT(left) == VT_ERROR) || lOk) { V_VT(result) = VT_NULL; return S_OK; } else { V_VT(result) = VT_NULL; return DISP_E_BADVARTYPE; } case VT_VARIANT: case VT_UNKNOWN: V_VT(result) = VT_EMPTY; return DISP_E_TYPEMISMATCH; case VT_DECIMAL: if(V_VT(left) == VT_ERROR) { V_VT(result) = VT_EMPTY; return DISP_E_TYPEMISMATCH; } else { V_VT(result) = VT_EMPTY; return DISP_E_OVERFLOW; } case VT_ERROR: return DISP_E_TYPEMISMATCH; case VT_RECORD: if((V_VT(left) == 15) || ((V_VT(left) >= 24) && (V_VT(left) <= 35)) || !lOk) { V_VT(result) = VT_EMPTY; return DISP_E_BADVARTYPE; } else { V_VT(result) = VT_EMPTY; return DISP_E_TYPEMISMATCH; } default: V_VT(result) = VT_EMPTY; return DISP_E_BADVARTYPE; } /* determine the result type */ if((V_VT(left) == VT_I8) || (V_VT(right) == VT_I8)) resT = VT_I8; else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_BOOL)) resT = VT_I2; else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_UI1)) resT = VT_UI1; else if((V_VT(left) == VT_UI1) && (V_VT(right) == VT_I2)) resT = VT_I2; else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_BOOL)) resT = VT_I2; else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_UI1)) resT = VT_I2; else if((V_VT(left) == VT_I2) && (V_VT(right) == VT_I2)) resT = VT_I2; else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_BOOL)) resT = VT_I2; else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_UI1)) resT = VT_I2; else if((V_VT(left) == VT_BOOL) && (V_VT(right) == VT_I2)) resT = VT_I2; else resT = VT_I4; /* most outputs are I4 */ /* convert to I8 for the modulo */ rc = VariantChangeType(&lv, left, 0, VT_I8); if(FAILED(rc)) { FIXME("Could not convert left type %d to %d? rc == 0x%lX\n", V_VT(left), VT_I8, rc); return rc; } rc = VariantChangeType(&rv, right, 0, VT_I8); if(FAILED(rc)) { FIXME("Could not convert right type %d to %d? rc == 0x%lX\n", V_VT(right), VT_I8, rc); return rc; } /* if right is zero set VT_EMPTY and return divide by zero */ if(V_I8(&rv) == 0) { V_VT(result) = VT_EMPTY; return DISP_E_DIVBYZERO; } /* perform the modulo operation */ V_VT(result) = VT_I8; V_I8(result) = V_I8(&lv) % V_I8(&rv); TRACE("V_I8(left) == %ld, V_I8(right) == %ld, V_I8(result) == %ld\n", (long)V_I8(&lv), (long)V_I8(&rv), (long)V_I8(result)); /* convert left and right to the destination type */ rc = VariantChangeType(result, result, 0, resT); if(FAILED(rc)) { FIXME("Could not convert 0x%x to %d?\n", V_VT(result), resT); return rc; } return S_OK; } /********************************************************************** * VarPow [OLEAUT32.158] * */ HRESULT WINAPI VarPow(LPVARIANT left, LPVARIANT right, LPVARIANT result) { HRESULT hr; VARIANT dl,dr; TRACE("(%p->(%s%s),%p->(%s%s),%p)\n", left, debugstr_VT(left), debugstr_VF(left), right, debugstr_VT(right), debugstr_VF(right), result); hr = VariantChangeType(&dl,left,0,VT_R8); if (!SUCCEEDED(hr)) { ERR("Could not change passed left argument to VT_R8, handle it differently.\n"); return E_FAIL; } hr = VariantChangeType(&dr,right,0,VT_R8); if (!SUCCEEDED(hr)) { ERR("Could not change passed right argument to VT_R8, handle it differently.\n"); return E_FAIL; } V_VT(result) = VT_R8; V_R8(result) = pow(V_R8(&dl),V_R8(&dr)); return S_OK; }