wine/dlls/rsaenh/tomcrypt.h
2009-01-20 12:30:34 +01:00

582 lines
18 KiB
C

/*
* dlls/rsaenh/tomcrypt.h
* Function prototypes, type definitions and constant definitions
* for LibTomCrypt code.
*
* Copyright 2004 Michael Jung
* Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
/*
* This file contains code from the LibTomCrypt cryptographic
* library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
* is in the public domain. The code in this file is tailored to
* special requirements. Take a look at http://libtomcrypt.org for the
* original version.
*/
#ifndef __WINE_TOMCRYPT_H_
#define __WINE_TOMCRYPT_H_
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include "basetsd.h"
/* error codes [will be expanded in future releases] */
enum {
CRYPT_OK=0, /* Result OK */
CRYPT_ERROR, /* Generic Error */
CRYPT_NOP, /* Not a failure but no operation was performed */
CRYPT_INVALID_KEYSIZE, /* Invalid key size given */
CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */
CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */
CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */
CRYPT_INVALID_PACKET, /* Invalid input packet given */
CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */
CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */
CRYPT_INVALID_CIPHER, /* Invalid cipher specified */
CRYPT_INVALID_HASH, /* Invalid hash specified */
CRYPT_INVALID_PRNG, /* Invalid PRNG specified */
CRYPT_MEM, /* Out of memory */
CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */
CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */
CRYPT_INVALID_ARG, /* Generic invalid argument */
CRYPT_FILE_NOTFOUND, /* File Not Found */
CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */
CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */
CRYPT_PK_DUP, /* Duplicate key already in key ring */
CRYPT_PK_NOT_FOUND, /* Key not found in keyring */
CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */
CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */
};
#define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b))
typedef ULONG64 ulong64;
/* this is the "32-bit at least" data type
* Re-define it to suit your platform but it must be at least 32-bits
*/
typedef ULONG32 ulong32;
/* ---- HELPER MACROS ---- */
#define STORE32H(x, y) \
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
#define LOAD32H(x, y) \
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
((unsigned long)((y)[1] & 255)<<16) | \
((unsigned long)((y)[2] & 255)<<8) | \
((unsigned long)((y)[3] & 255)); }
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC)
static inline unsigned ROR(unsigned word, int i)
{
__asm__("rorl %%cl,%0"
:"=r" (word)
:"0" (word),"c" (i));
return word;
}
#else
/* rotates the hard way */
#define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
#endif
#undef MIN
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
#define byte(x, n) (((x) >> (8 * (n))) & 255)
typedef struct tag_rc2_key {
unsigned xkey[64];
} rc2_key;
typedef struct tag_des_key {
ulong32 ek[32], dk[32];
} des_key;
typedef struct tag_des3_key {
ulong32 ek[3][32], dk[3][32];
} des3_key;
typedef struct tag_aes_key {
ulong32 eK[64], dK[64];
int Nr;
} aes_key;
int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey);
void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key);
void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key);
int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey);
void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des_key *key);
void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des_key *key);
int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey);
void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, const des3_key *key);
void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, const des3_key *key);
int aes_setup(const unsigned char *key, int keylen, int rounds, aes_key *skey);
void aes_ecb_encrypt(const unsigned char *pt, unsigned char *ct, aes_key *skey);
void aes_ecb_decrypt(const unsigned char *ct, unsigned char *pt, aes_key *skey);
typedef struct tag_md2_state {
unsigned char chksum[16], X[48], buf[16];
unsigned long curlen;
} md2_state;
int md2_init(md2_state * md);
int md2_process(md2_state * md, const unsigned char *buf, unsigned long len);
int md2_done(md2_state * md, unsigned char *hash);
struct rc4_prng {
int x, y;
unsigned char buf[256];
};
typedef union Prng_state {
struct rc4_prng rc4;
} prng_state;
int rc4_start(prng_state *prng);
int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng);
int rc4_ready(prng_state *prng);
unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng);
/* some default configurations.
*
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
* A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
*
* At the very least a mp_digit must be able to hold 7 bits
* [any size beyond that is ok provided it doesn't overflow the data type]
*/
typedef unsigned long mp_digit;
typedef ulong64 mp_word;
#define DIGIT_BIT 28
#define MP_DIGIT_BIT DIGIT_BIT
#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
#define MP_DIGIT_MAX MP_MASK
/* equalities */
#define MP_LT -1 /* less than */
#define MP_EQ 0 /* equal to */
#define MP_GT 1 /* greater than */
#define MP_ZPOS 0 /* positive integer */
#define MP_NEG 1 /* negative */
#define MP_OKAY 0 /* ok result */
#define MP_MEM -2 /* out of mem */
#define MP_VAL -3 /* invalid input */
#define MP_RANGE MP_VAL
#define MP_YES 1 /* yes response */
#define MP_NO 0 /* no response */
/* Primality generation flags */
#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
#define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
typedef int mp_err;
/* define this to use lower memory usage routines (exptmods mostly) */
/* #define MP_LOW_MEM */
#define MP_PREC 64 /* default digits of precision */
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
/* the infamous mp_int structure */
typedef struct {
int used, alloc, sign;
mp_digit *dp;
} mp_int;
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
#define DIGIT(m,k) ((m)->dp[(k)])
/* error code to char* string */
char *mp_error_to_string(int code);
/* ---> init and deinit bignum functions <--- */
/* init a bignum */
int mp_init(mp_int *a);
/* free a bignum */
void mp_clear(mp_int *a);
/* init a null terminated series of arguments */
int mp_init_multi(mp_int *mp, ...);
/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...);
/* exchange two ints */
void mp_exch(mp_int *a, mp_int *b);
/* shrink ram required for a bignum */
int mp_shrink(mp_int *a);
/* grow an int to a given size */
int mp_grow(mp_int *a, int size);
/* init to a given number of digits */
int mp_init_size(mp_int *a, int size);
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
/* set to zero */
void mp_zero(mp_int *a);
/* set to a digit */
void mp_set(mp_int *a, mp_digit b);
/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b);
/* get a 32-bit value */
unsigned long mp_get_int(const mp_int * a);
/* initialize and set a digit */
int mp_init_set (mp_int * a, mp_digit b);
/* initialize and set 32-bit value */
int mp_init_set_int (mp_int * a, unsigned long b);
/* copy, b = a */
int mp_copy(const mp_int *a, mp_int *b);
/* inits and copies, a = b */
int mp_init_copy(mp_int *a, const mp_int *b);
/* trim unused digits */
void mp_clamp(mp_int *a);
/* ---> digit manipulation <--- */
/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);
/* left shift by "b" digits */
int mp_lshd(mp_int *a, int b);
/* c = a * 2**b */
int mp_mul_2d(const mp_int *a, int b, mp_int *c);
/* b = a*2 */
int mp_mul_2(const mp_int *a, mp_int *b);
/* c = a mod 2**d */
int mp_mod_2d(const mp_int *a, int b, mp_int *c);
/* computes a = 2**b */
int mp_2expt(mp_int *a, int b);
/* Counts the number of lsbs which are zero before the first zero bit */
int mp_cnt_lsb(const mp_int *a);
/* I Love Earth! */
/* makes a pseudo-random int of a given size */
int mp_rand(mp_int *a, int digits);
/* ---> binary operations <--- */
/* c = a XOR b */
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
/* c = a OR b */
int mp_or(mp_int *a, mp_int *b, mp_int *c);
/* c = a AND b */
int mp_and(mp_int *a, mp_int *b, mp_int *c);
/* ---> Basic arithmetic <--- */
/* b = -a */
int mp_neg(mp_int *a, mp_int *b);
/* b = |a| */
int mp_abs(const mp_int *a, mp_int *b);
/* compare a to b */
int mp_cmp(const mp_int *a, const mp_int *b);
/* compare |a| to |b| */
int mp_cmp_mag(const mp_int *a, const mp_int *b);
/* c = a + b */
int mp_add(mp_int *a, mp_int *b, mp_int *c);
/* c = a - b */
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
/* c = a * b */
int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
/* b = a*a */
int mp_sqr(const mp_int *a, mp_int *b);
/* c = a mod b, 0 <= c < b */
int mp_mod(const mp_int *a, mp_int *b, mp_int *c);
/* ---> single digit functions <--- */
/* compare against a single digit */
int mp_cmp_d(const mp_int *a, mp_digit b);
/* c = a + b */
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
/* c = a - b */
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
/* c = a * b */
int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
/* a/3 => 3c + d == a */
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
/* c = a**b */
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
/* c = a mod b, 0 <= c < b */
int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
/* ---> number theory <--- */
/* d = a + b (mod c) */
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
/* d = a - b (mod c) */
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
/* d = a * b (mod c) */
int mp_mulmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
/* c = a * a (mod b) */
int mp_sqrmod(const mp_int *a, mp_int *b, mp_int *c);
/* c = 1/a (mod b) */
int mp_invmod(const mp_int *a, mp_int *b, mp_int *c);
/* c = (a, b) */
int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
/* produces value such that U1*a + U2*b = U3 */
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
/* special sqrt algo */
int mp_sqrt(mp_int *arg, mp_int *ret);
/* is number a square? */
int mp_is_square(mp_int *arg, int *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
int mp_jacobi(mp_int *a, mp_int *n, int *c);
/* used to setup the Barrett reduction for a given modulus b */
int mp_reduce_setup(mp_int *a, const mp_int *b);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
*/
int mp_reduce(mp_int *a, const mp_int *b, const mp_int *c);
/* setups the montgomery reduction */
int mp_montgomery_setup(const mp_int *a, mp_digit *mp);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
/* computes x/R == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *a, const mp_int *m, mp_digit mp);
/* returns 1 if a is a valid DR modulus */
int mp_dr_is_modulus(mp_int *a);
/* returns true if a can be reduced with mp_reduce_2k */
int mp_reduce_is_2k(mp_int *a);
/* determines k value for 2k reduction */
int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
/* d = a**b (mod c) */
int mp_exptmod(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
/* ---> Primes <--- */
/* number of primes */
#define PRIME_SIZE 256
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
int mp_prime_is_divisible(const mp_int *a, int *result);
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
int mp_prime_miller_rabin(mp_int *a, const mp_int *b, int *result);
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
*/
int mp_prime_rabin_miller_trials(int size);
/* performs t rounds of Miller-Rabin on "a" using the first
* t prime bases. Also performs an initial sieve of trial
* division. Determines if "a" is prime with probability
* of error no more than (1/4)**t.
*
* Sets result to 1 if probably prime, 0 otherwise
*/
int mp_prime_is_prime(mp_int *a, int t, int *result);
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
/* makes a truly random prime of a given size (bytes),
* call with bbs = 1 if you want it to be congruent to 3 mod 4
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
* The prime generated will be larger than 2^(8*size).
*/
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
/* ---> radix conversion <--- */
int mp_count_bits(const mp_int *a);
int mp_unsigned_bin_size(const mp_int *a);
int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
int mp_signed_bin_size(const mp_int *a);
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);
int mp_read_radix(mp_int *a, char *str, int radix);
int mp_toradix(mp_int *a, char *str, int radix);
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
int mp_radix_size(mp_int *a, int radix, int *size);
int mp_fread(mp_int *a, int radix, FILE *stream);
int mp_fwrite(mp_int *a, int radix, FILE *stream);
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp) mp_signed_bin_size(mp)
#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
extern const char *mp_s_rmap;
#define PK_PRIVATE 0 /* PK private keys */
#define PK_PUBLIC 1 /* PK public keys */
/* Min and Max RSA key sizes (in bits) */
#define MIN_RSA_SIZE 384
#define MAX_RSA_SIZE 16384
typedef struct Rsa_key {
int type;
mp_int e, d, N, p, q, qP, dP, dQ;
} rsa_key;
int rsa_make_key(int size, long e, rsa_key *key);
int rsa_exptmod(const unsigned char *in, unsigned long inlen,
unsigned char *out, unsigned long *outlen, int which,
rsa_key *key);
void rsa_free(rsa_key *key);
#endif /* __WINE_TOMCRYPT_H_ */