wine/dlls/cabinet/cabinet.h
2007-03-15 12:15:38 +01:00

647 lines
28 KiB
C

/*
* cabinet.h
*
* Copyright 2002 Greg Turner
* Copyright 2005 Gerold Jens Wucherpfennig
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#ifndef __WINE_CABINET_H
#define __WINE_CABINET_H
#include <stdarg.h>
#include "windef.h"
#include "winbase.h"
#include "winnt.h"
#include "fdi.h"
#include "fci.h"
/* from msvcrt/sys/stat.h */
#define _S_IWRITE 0x0080
#define _S_IREAD 0x0100
#define CAB_SPLITMAX (10)
#define CAB_SEARCH_SIZE (32*1024)
typedef unsigned char cab_UBYTE; /* 8 bits */
typedef UINT16 cab_UWORD; /* 16 bits */
typedef UINT32 cab_ULONG; /* 32 bits */
typedef INT32 cab_LONG; /* 32 bits */
typedef UINT32 cab_off_t;
/* number of bits in a ULONG */
#ifndef CHAR_BIT
# define CHAR_BIT (8)
#endif
#define CAB_ULONG_BITS (sizeof(cab_ULONG) * CHAR_BIT)
/* structure offsets */
#define cfhead_Signature (0x00)
#define cfhead_CabinetSize (0x08)
#define cfhead_FileOffset (0x10)
#define cfhead_MinorVersion (0x18)
#define cfhead_MajorVersion (0x19)
#define cfhead_NumFolders (0x1A)
#define cfhead_NumFiles (0x1C)
#define cfhead_Flags (0x1E)
#define cfhead_SetID (0x20)
#define cfhead_CabinetIndex (0x22)
#define cfhead_SIZEOF (0x24)
#define cfheadext_HeaderReserved (0x00)
#define cfheadext_FolderReserved (0x02)
#define cfheadext_DataReserved (0x03)
#define cfheadext_SIZEOF (0x04)
#define cffold_DataOffset (0x00)
#define cffold_NumBlocks (0x04)
#define cffold_CompType (0x06)
#define cffold_SIZEOF (0x08)
#define cffile_UncompressedSize (0x00)
#define cffile_FolderOffset (0x04)
#define cffile_FolderIndex (0x08)
#define cffile_Date (0x0A)
#define cffile_Time (0x0C)
#define cffile_Attribs (0x0E)
#define cffile_SIZEOF (0x10)
#define cfdata_CheckSum (0x00)
#define cfdata_CompressedSize (0x04)
#define cfdata_UncompressedSize (0x06)
#define cfdata_SIZEOF (0x08)
/* flags */
#define cffoldCOMPTYPE_MASK (0x000f)
#define cffoldCOMPTYPE_NONE (0x0000)
#define cffoldCOMPTYPE_MSZIP (0x0001)
#define cffoldCOMPTYPE_QUANTUM (0x0002)
#define cffoldCOMPTYPE_LZX (0x0003)
#define cfheadPREV_CABINET (0x0001)
#define cfheadNEXT_CABINET (0x0002)
#define cfheadRESERVE_PRESENT (0x0004)
#define cffileCONTINUED_FROM_PREV (0xFFFD)
#define cffileCONTINUED_TO_NEXT (0xFFFE)
#define cffileCONTINUED_PREV_AND_NEXT (0xFFFF)
#define cffile_A_RDONLY (0x01)
#define cffile_A_HIDDEN (0x02)
#define cffile_A_SYSTEM (0x04)
#define cffile_A_ARCH (0x20)
#define cffile_A_EXEC (0x40)
#define cffile_A_NAME_IS_UTF (0x80)
/****************************************************************************/
/* our archiver information / state */
/* MSZIP stuff */
#define ZIPWSIZE 0x8000 /* window size */
#define ZIPLBITS 9 /* bits in base literal/length lookup table */
#define ZIPDBITS 6 /* bits in base distance lookup table */
#define ZIPBMAX 16 /* maximum bit length of any code */
#define ZIPN_MAX 288 /* maximum number of codes in any set */
struct Ziphuft {
cab_UBYTE e; /* number of extra bits or operation */
cab_UBYTE b; /* number of bits in this code or subcode */
union {
cab_UWORD n; /* literal, length base, or distance base */
struct Ziphuft *t; /* pointer to next level of table */
} v;
};
struct ZIPstate {
cab_ULONG window_posn; /* current offset within the window */
cab_ULONG bb; /* bit buffer */
cab_ULONG bk; /* bits in bit buffer */
cab_ULONG ll[288+32]; /* literal/length and distance code lengths */
cab_ULONG c[ZIPBMAX+1]; /* bit length count table */
cab_LONG lx[ZIPBMAX+1]; /* memory for l[-1..ZIPBMAX-1] */
struct Ziphuft *u[ZIPBMAX]; /* table stack */
cab_ULONG v[ZIPN_MAX]; /* values in order of bit length */
cab_ULONG x[ZIPBMAX+1]; /* bit offsets, then code stack */
cab_UBYTE *inpos;
};
/* Quantum stuff */
struct QTMmodelsym {
cab_UWORD sym, cumfreq;
};
struct QTMmodel {
int shiftsleft, entries;
struct QTMmodelsym *syms;
cab_UWORD tabloc[256];
};
struct QTMstate {
cab_UBYTE *window; /* the actual decoding window */
cab_ULONG window_size; /* window size (1Kb through 2Mb) */
cab_ULONG actual_size; /* window size when it was first allocated */
cab_ULONG window_posn; /* current offset within the window */
struct QTMmodel model7;
struct QTMmodelsym m7sym[7+1];
struct QTMmodel model4, model5, model6pos, model6len;
struct QTMmodelsym m4sym[0x18 + 1];
struct QTMmodelsym m5sym[0x24 + 1];
struct QTMmodelsym m6psym[0x2a + 1], m6lsym[0x1b + 1];
struct QTMmodel model00, model40, model80, modelC0;
struct QTMmodelsym m00sym[0x40 + 1], m40sym[0x40 + 1];
struct QTMmodelsym m80sym[0x40 + 1], mC0sym[0x40 + 1];
};
/* LZX stuff */
/* some constants defined by the LZX specification */
#define LZX_MIN_MATCH (2)
#define LZX_MAX_MATCH (257)
#define LZX_NUM_CHARS (256)
#define LZX_BLOCKTYPE_INVALID (0) /* also blocktypes 4-7 invalid */
#define LZX_BLOCKTYPE_VERBATIM (1)
#define LZX_BLOCKTYPE_ALIGNED (2)
#define LZX_BLOCKTYPE_UNCOMPRESSED (3)
#define LZX_PRETREE_NUM_ELEMENTS (20)
#define LZX_ALIGNED_NUM_ELEMENTS (8) /* aligned offset tree #elements */
#define LZX_NUM_PRIMARY_LENGTHS (7) /* this one missing from spec! */
#define LZX_NUM_SECONDARY_LENGTHS (249) /* length tree #elements */
/* LZX huffman defines: tweak tablebits as desired */
#define LZX_PRETREE_MAXSYMBOLS (LZX_PRETREE_NUM_ELEMENTS)
#define LZX_PRETREE_TABLEBITS (6)
#define LZX_MAINTREE_MAXSYMBOLS (LZX_NUM_CHARS + 50*8)
#define LZX_MAINTREE_TABLEBITS (12)
#define LZX_LENGTH_MAXSYMBOLS (LZX_NUM_SECONDARY_LENGTHS+1)
#define LZX_LENGTH_TABLEBITS (12)
#define LZX_ALIGNED_MAXSYMBOLS (LZX_ALIGNED_NUM_ELEMENTS)
#define LZX_ALIGNED_TABLEBITS (7)
#define LZX_LENTABLE_SAFETY (64) /* we allow length table decoding overruns */
#define LZX_DECLARE_TABLE(tbl) \
cab_UWORD tbl##_table[(1<<LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS<<1)];\
cab_UBYTE tbl##_len [LZX_##tbl##_MAXSYMBOLS + LZX_LENTABLE_SAFETY]
struct LZXstate {
cab_UBYTE *window; /* the actual decoding window */
cab_ULONG window_size; /* window size (32Kb through 2Mb) */
cab_ULONG actual_size; /* window size when it was first allocated */
cab_ULONG window_posn; /* current offset within the window */
cab_ULONG R0, R1, R2; /* for the LRU offset system */
cab_UWORD main_elements; /* number of main tree elements */
int header_read; /* have we started decoding at all yet? */
cab_UWORD block_type; /* type of this block */
cab_ULONG block_length; /* uncompressed length of this block */
cab_ULONG block_remaining; /* uncompressed bytes still left to decode */
cab_ULONG frames_read; /* the number of CFDATA blocks processed */
cab_LONG intel_filesize; /* magic header value used for transform */
cab_LONG intel_curpos; /* current offset in transform space */
int intel_started; /* have we seen any translatable data yet? */
LZX_DECLARE_TABLE(PRETREE);
LZX_DECLARE_TABLE(MAINTREE);
LZX_DECLARE_TABLE(LENGTH);
LZX_DECLARE_TABLE(ALIGNED);
};
struct lzx_bits {
cab_ULONG bb;
int bl;
cab_UBYTE *ip;
};
/* CAB data blocks are <= 32768 bytes in uncompressed form. Uncompressed
* blocks have zero growth. MSZIP guarantees that it won't grow above
* uncompressed size by more than 12 bytes. LZX guarantees it won't grow
* more than 6144 bytes.
*/
#define CAB_BLOCKMAX (32768)
#define CAB_INPUTMAX (CAB_BLOCKMAX+6144)
struct cab_file {
struct cab_file *next; /* next file in sequence */
struct cab_folder *folder; /* folder that contains this file */
LPCSTR filename; /* output name of file */
HANDLE fh; /* open file handle or NULL */
cab_ULONG length; /* uncompressed length of file */
cab_ULONG offset; /* uncompressed offset in folder */
cab_UWORD index; /* magic index number of folder */
cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */
};
struct cab_folder {
struct cab_folder *next;
struct cabinet *cab[CAB_SPLITMAX]; /* cabinet(s) this folder spans */
cab_off_t offset[CAB_SPLITMAX]; /* offset to data blocks */
cab_UWORD comp_type; /* compression format/window size */
cab_ULONG comp_size; /* compressed size of folder */
cab_UBYTE num_splits; /* number of split blocks + 1 */
cab_UWORD num_blocks; /* total number of blocks */
struct cab_file *contfile; /* the first split file */
};
struct cabinet {
struct cabinet *next; /* for making a list of cabinets */
LPCSTR filename; /* input name of cabinet */
HANDLE *fh; /* open file handle or NULL */
cab_off_t filelen; /* length of cabinet file */
cab_off_t blocks_off; /* offset to data blocks in file */
struct cabinet *prevcab, *nextcab; /* multipart cabinet chains */
char *prevname, *nextname; /* and their filenames */
char *previnfo, *nextinfo; /* and their visible names */
struct cab_folder *folders; /* first folder in this cabinet */
struct cab_file *files; /* first file in this cabinet */
cab_UBYTE block_resv; /* reserved space in datablocks */
cab_UBYTE flags; /* header flags */
};
typedef struct cds_forward {
struct cab_folder *current; /* current folder we're extracting from */
cab_ULONG offset; /* uncompressed offset within folder */
cab_UBYTE *outpos; /* (high level) start of data to use up */
cab_UWORD outlen; /* (high level) amount of data to use up */
cab_UWORD split; /* at which split in current folder? */
int (*decompress)(int, int, struct cds_forward *); /* chosen compress fn */
cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */
cab_UBYTE outbuf[CAB_BLOCKMAX];
cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
cab_ULONG q_position_base[42];
cab_ULONG lzx_position_base[51];
cab_UBYTE extra_bits[51];
union {
struct ZIPstate zip;
struct QTMstate qtm;
struct LZXstate lzx;
} methods;
} cab_decomp_state;
/* _Int as in "Internal" fyi */
typedef struct {
unsigned int FCI_Intmagic;
PERF perf;
PFNFCIFILEPLACED pfnfiledest;
PFNFCIALLOC pfnalloc;
PFNFCIFREE pfnfree;
PFNFCIOPEN pfnopen;
PFNFCIREAD pfnread;
PFNFCIWRITE pfnwrite;
PFNFCICLOSE pfnclose;
PFNFCISEEK pfnseek;
PFNFCIDELETE pfndelete;
PFNFCIGETTEMPFILE pfnfcigtf;
PCCAB pccab;
BOOL fPrevCab;
BOOL fNextCab;
BOOL fSplitFolder;
cab_ULONG statusFolderCopied;
cab_ULONG statusFolderTotal;
BOOL fGetNextCabInVain;
void *pv;
char szPrevCab[CB_MAX_CABINET_NAME]; /* previous cabinet name */
char szPrevDisk[CB_MAX_DISK_NAME]; /* disk name of previous cabinet */
CCAB oldCCAB;
char* data_in; /* uncompressed data blocks */
cab_UWORD cdata_in;
char* data_out; /* compressed data blocks */
ULONG cCompressedBytesInFolder;
cab_UWORD cFolders;
cab_UWORD cFiles;
cab_ULONG cDataBlocks;
cab_ULONG cbFileRemainer; /* uncompressed, yet to be written data */
/* of spanned file of a spanning folder of a spanning cabinet */
char szFileNameCFDATA1[CB_MAX_FILENAME];
int handleCFDATA1;
char szFileNameCFFILE1[CB_MAX_FILENAME];
int handleCFFILE1;
char szFileNameCFDATA2[CB_MAX_FILENAME];
int handleCFDATA2;
char szFileNameCFFILE2[CB_MAX_FILENAME];
int handleCFFILE2;
char szFileNameCFFOLDER[CB_MAX_FILENAME];
int handleCFFOLDER;
cab_ULONG sizeFileCFDATA1;
cab_ULONG sizeFileCFFILE1;
cab_ULONG sizeFileCFDATA2;
cab_ULONG sizeFileCFFILE2;
cab_ULONG sizeFileCFFOLDER;
BOOL fNewPrevious;
cab_ULONG estimatedCabinetSize;
} FCI_Int, *PFCI_Int;
typedef struct {
unsigned int FDI_Intmagic;
PFNALLOC pfnalloc;
PFNFREE pfnfree;
PFNOPEN pfnopen;
PFNREAD pfnread;
PFNWRITE pfnwrite;
PFNCLOSE pfnclose;
PFNSEEK pfnseek;
PERF perf;
} FDI_Int, *PFDI_Int;
/* cast an HFCI into a PFCI_Int */
#define PFCI_INT(hfci) ((PFCI_Int)(hfci))
/* cast an HFDI into a PFDI_Int */
#define PFDI_INT(hfdi) ((PFDI_Int)(hfdi))
/* quick pfci method invokers */
#define PFCI_ALLOC(hfdi, size) ((*PFCI_INT(hfdi)->pfnalloc) (size))
#define PFCI_FREE(hfdi, ptr) ((*PFCI_INT(hfdi)->pfnfree) (ptr))
#define PFCI_GETTEMPFILE(hfci,name,length) ((*PFCI_INT(hfci)->pfnfcigtf)(name,length,PFCI_INT(hfci)->pv))
#define PFCI_DELETE(hfci,name,err,pv) ((*PFCI_INT(hfci)->pfndelete)(name,err,pv))
#define PFCI_OPEN(hfci,name,oflag,pmode,err,pv) ((*PFCI_INT(hfci)->pfnopen)(name,oflag,pmode,err,pv))
#define PFCI_READ(hfci,hf,memory,cb,err,pv)((*PFCI_INT(hfci)->pfnread)(hf,memory,cb,err,pv))
#define PFCI_WRITE(hfci,hf,memory,cb,err,pv) ((*PFCI_INT(hfci)->pfnwrite)(hf,memory,cb,err,pv))
#define PFCI_CLOSE(hfci,hf,err,pv) ((*PFCI_INT(hfci)->pfnclose)(hf,err,pv))
#define PFCI_SEEK(hfci,hf,dist,seektype,err,pv)((*PFCI_INT(hfci)->pfnseek)(hf,dist,seektype,err,pv))
#define PFCI_FILEPLACED(hfci,pccab,name,cb,cont,pv)((*PFCI_INT(hfci)->pfnfiledest)(pccab,name,cb,cont,pv))
/* quickie pfdi method invokers */
#define PFDI_ALLOC(hfdi, size) ((*PFDI_INT(hfdi)->pfnalloc) (size))
#define PFDI_FREE(hfdi, ptr) ((*PFDI_INT(hfdi)->pfnfree) (ptr))
#define PFDI_OPEN(hfdi, file, flag, mode) ((*PFDI_INT(hfdi)->pfnopen) (file, flag, mode))
#define PFDI_READ(hfdi, hf, pv, cb) ((*PFDI_INT(hfdi)->pfnread) (hf, pv, cb))
#define PFDI_WRITE(hfdi, hf, pv, cb) ((*PFDI_INT(hfdi)->pfnwrite) (hf, pv, cb))
#define PFDI_CLOSE(hfdi, hf) ((*PFDI_INT(hfdi)->pfnclose) (hf))
#define PFDI_SEEK(hfdi, hf, dist, type) ((*PFDI_INT(hfdi)->pfnseek) (hf, dist, type))
#define FCI_INT_MAGIC 0xfcfcfc05
#define FDI_INT_MAGIC 0xfdfdfd05
#define REALLY_IS_FCI(hfci) ( \
(((void *) hfci) != NULL) && \
(PFCI_INT(hfci)->FCI_Intmagic == FCI_INT_MAGIC) )
#define REALLY_IS_FDI(hfdi) ( \
(((void *) hfdi) != NULL) && \
(PFDI_INT(hfdi)->FDI_Intmagic == FDI_INT_MAGIC) )
/*
* the rest of these are somewhat kludgy macros which are shared between fdi.c
* and cabextract.c.
*/
#define ZIPNEEDBITS(n) {while(k<(n)){cab_LONG c=*(ZIP(inpos)++);\
b|=((cab_ULONG)c)<<k;k+=8;}}
#define ZIPDUMPBITS(n) {b>>=(n);k-=(n);}
/* endian-neutral reading of little-endian data */
#define EndGetI32(a) ((((a)[3])<<24)|(((a)[2])<<16)|(((a)[1])<<8)|((a)[0]))
#define EndGetI16(a) ((((a)[1])<<8)|((a)[0]))
#define CAB(x) (decomp_state->x)
#define ZIP(x) (decomp_state->methods.zip.x)
#define QTM(x) (decomp_state->methods.qtm.x)
#define LZX(x) (decomp_state->methods.lzx.x)
#define DECR_OK (0)
#define DECR_DATAFORMAT (1)
#define DECR_ILLEGALDATA (2)
#define DECR_NOMEMORY (3)
#define DECR_CHECKSUM (4)
#define DECR_INPUT (5)
#define DECR_OUTPUT (6)
#define DECR_USERABORT (7)
/* Bitstream reading macros (Quantum / normal byte order)
*
* Q_INIT_BITSTREAM should be used first to set up the system
* Q_READ_BITS(var,n) takes N bits from the buffer and puts them in var.
* unlike LZX, this can loop several times to get the
* requisite number of bits.
* Q_FILL_BUFFER adds more data to the bit buffer, if there is room
* for another 16 bits.
* Q_PEEK_BITS(n) extracts (without removing) N bits from the bit
* buffer
* Q_REMOVE_BITS(n) removes N bits from the bit buffer
*
* These bit access routines work by using the area beyond the MSB and the
* LSB as a free source of zeroes. This avoids having to mask any bits.
* So we have to know the bit width of the bitbuffer variable. This is
* defined as ULONG_BITS.
*
* ULONG_BITS should be at least 16 bits. Unlike LZX's Huffman decoding,
* Quantum's arithmetic decoding only needs 1 bit at a time, it doesn't
* need an assured number. Retrieving larger bitstrings can be done with
* multiple reads and fills of the bitbuffer. The code should work fine
* for machines where ULONG >= 32 bits.
*
* Also note that Quantum reads bytes in normal order; LZX is in
* little-endian order.
*/
#define Q_INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
#define Q_FILL_BUFFER do { \
if (bitsleft <= (CAB_ULONG_BITS - 16)) { \
bitbuf |= ((inpos[0]<<8)|inpos[1]) << (CAB_ULONG_BITS-16 - bitsleft); \
bitsleft += 16; inpos += 2; \
} \
} while (0)
#define Q_PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
#define Q_REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
#define Q_READ_BITS(v,n) do { \
(v) = 0; \
for (bitsneed = (n); bitsneed; bitsneed -= bitrun) { \
Q_FILL_BUFFER; \
bitrun = (bitsneed > bitsleft) ? bitsleft : bitsneed; \
(v) = ((v) << bitrun) | Q_PEEK_BITS(bitrun); \
Q_REMOVE_BITS(bitrun); \
} \
} while (0)
#define Q_MENTRIES(model) (QTM(model).entries)
#define Q_MSYM(model,symidx) (QTM(model).syms[(symidx)].sym)
#define Q_MSYMFREQ(model,symidx) (QTM(model).syms[(symidx)].cumfreq)
/* GET_SYMBOL(model, var) fetches the next symbol from the stated model
* and puts it in var. it may need to read the bitstream to do this.
*/
#define GET_SYMBOL(m, var) do { \
range = ((H - L) & 0xFFFF) + 1; \
symf = ((((C - L + 1) * Q_MSYMFREQ(m,0)) - 1) / range) & 0xFFFF; \
\
for (i=1; i < Q_MENTRIES(m); i++) { \
if (Q_MSYMFREQ(m,i) <= symf) break; \
} \
(var) = Q_MSYM(m,i-1); \
\
range = (H - L) + 1; \
H = L + ((Q_MSYMFREQ(m,i-1) * range) / Q_MSYMFREQ(m,0)) - 1; \
L = L + ((Q_MSYMFREQ(m,i) * range) / Q_MSYMFREQ(m,0)); \
while (1) { \
if ((L & 0x8000) != (H & 0x8000)) { \
if ((L & 0x4000) && !(H & 0x4000)) { \
/* underflow case */ \
C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
} \
else break; \
} \
L <<= 1; H = (H << 1) | 1; \
Q_FILL_BUFFER; \
C = (C << 1) | Q_PEEK_BITS(1); \
Q_REMOVE_BITS(1); \
} \
\
QTMupdatemodel(&(QTM(m)), i); \
} while (0)
/* Bitstream reading macros (LZX / intel little-endian byte order)
*
* INIT_BITSTREAM should be used first to set up the system
* READ_BITS(var,n) takes N bits from the buffer and puts them in var
*
* ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
* it can guarantee up to 17 bits (i.e. it can read in
* 16 new bits when there is down to 1 bit in the buffer,
* and it can read 32 bits when there are 0 bits in the
* buffer).
* PEEK_BITS(n) extracts (without removing) N bits from the bit buffer
* REMOVE_BITS(n) removes N bits from the bit buffer
*
* These bit access routines work by using the area beyond the MSB and the
* LSB as a free source of zeroes. This avoids having to mask any bits.
* So we have to know the bit width of the bitbuffer variable.
*/
#define INIT_BITSTREAM do { bitsleft = 0; bitbuf = 0; } while (0)
/* Quantum reads bytes in normal order; LZX is little-endian order */
#define ENSURE_BITS(n) \
while (bitsleft < (n)) { \
bitbuf |= ((inpos[1]<<8)|inpos[0]) << (CAB_ULONG_BITS-16 - bitsleft); \
bitsleft += 16; inpos+=2; \
}
#define PEEK_BITS(n) (bitbuf >> (CAB_ULONG_BITS - (n)))
#define REMOVE_BITS(n) ((bitbuf <<= (n)), (bitsleft -= (n)))
#define READ_BITS(v,n) do { \
if (n) { \
ENSURE_BITS(n); \
(v) = PEEK_BITS(n); \
REMOVE_BITS(n); \
} \
else { \
(v) = 0; \
} \
} while (0)
/* Huffman macros */
#define TABLEBITS(tbl) (LZX_##tbl##_TABLEBITS)
#define MAXSYMBOLS(tbl) (LZX_##tbl##_MAXSYMBOLS)
#define SYMTABLE(tbl) (LZX(tbl##_table))
#define LENTABLE(tbl) (LZX(tbl##_len))
/* BUILD_TABLE(tablename) builds a huffman lookup table from code lengths.
* In reality, it just calls make_decode_table() with the appropriate
* values - they're all fixed by some #defines anyway, so there's no point
* writing each call out in full by hand.
*/
#define BUILD_TABLE(tbl) \
if (make_decode_table( \
MAXSYMBOLS(tbl), TABLEBITS(tbl), LENTABLE(tbl), SYMTABLE(tbl) \
)) { return DECR_ILLEGALDATA; }
/* READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
* bitstream using the stated table and puts it in var.
*/
#define READ_HUFFSYM(tbl,var) do { \
ENSURE_BITS(16); \
hufftbl = SYMTABLE(tbl); \
if ((i = hufftbl[PEEK_BITS(TABLEBITS(tbl))]) >= MAXSYMBOLS(tbl)) { \
j = 1 << (CAB_ULONG_BITS - TABLEBITS(tbl)); \
do { \
j >>= 1; i <<= 1; i |= (bitbuf & j) ? 1 : 0; \
if (!j) { return DECR_ILLEGALDATA; } \
} while ((i = hufftbl[i]) >= MAXSYMBOLS(tbl)); \
} \
j = LENTABLE(tbl)[(var) = i]; \
REMOVE_BITS(j); \
} while (0)
/* READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
* first to last in the given table. The code lengths are stored in their
* own special LZX way.
*/
#define READ_LENGTHS(tbl,first,last,fn) do { \
lb.bb = bitbuf; lb.bl = bitsleft; lb.ip = inpos; \
if (fn(LENTABLE(tbl),(first),(last),&lb,decomp_state)) { \
return DECR_ILLEGALDATA; \
} \
bitbuf = lb.bb; bitsleft = lb.bl; inpos = lb.ip; \
} while (0)
/* Tables for deflate from PKZIP's appnote.txt. */
#define THOSE_ZIP_CONSTS \
static const cab_UBYTE Zipborder[] = /* Order of the bit length code lengths */ \
{ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; \
static const cab_UWORD Zipcplens[] = /* Copy lengths for literal codes 257..285 */ \
{ 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, \
59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; \
static const cab_UWORD Zipcplext[] = /* Extra bits for literal codes 257..285 */ \
{ 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, \
4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ \
static const cab_UWORD Zipcpdist[] = /* Copy offsets for distance codes 0..29 */ \
{ 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, \
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577}; \
static const cab_UWORD Zipcpdext[] = /* Extra bits for distance codes */ \
{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, \
10, 11, 11, 12, 12, 13, 13}; \
/* And'ing with Zipmask[n] masks the lower n bits */ \
static const cab_UWORD Zipmask[17] = { \
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, \
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff \
}
/* EXTRACTdest flags */
#define EXTRACT_FILLFILELIST 0x00000001
#define EXTRACT_EXTRACTFILES 0x00000002
struct ExtractFileList {
LPSTR filename;
struct ExtractFileList *next;
BOOL flag;
} ;
/* the first parameter of the function extract */
typedef struct {
long result1; /* 0x000 */
long unknown1[3]; /* 0x004 */
struct ExtractFileList *filelist; /* 0x010 */
long filecount; /* 0x014 */
DWORD flags; /* 0x018 */
char directory[MAX_PATH]; /* 0x01c */
char lastfile[MAX_PATH]; /* 0x120 */
char unknown2[MAX_PATH]; /* 0x224 */
struct ExtractFileList *filterlist; /* 0x328 */
} EXTRACTdest;
/* from fdi.c */
void QTMupdatemodel(struct QTMmodel *model, int sym);
int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, const cab_UBYTE *length, cab_UWORD *table);
cab_ULONG checksum(const cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum);
#endif /* __WINE_CABINET_H */