wine/dlls/cabinet/fdi.c
2010-03-29 12:12:07 +02:00

2980 lines
102 KiB
C

/*
* File Decompression Interface
*
* Copyright 2000-2002 Stuart Caie
* Copyright 2002 Patrik Stridvall
* Copyright 2003 Greg Turner
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*
*
* This is a largely redundant reimplementation of the stuff in cabextract.c. It
* would be theoretically preferable to have only one, shared implementation, however
* there are semantic differences which may discourage efforts to unify the two. It
* should be possible, if awkward, to go back and reimplement cabextract.c using FDI.
* But this approach would be quite a bit less performant. Probably a better way
* would be to create a "library" of routines in cabextract.c which do the actual
* decompression, and have both fdi.c and cabextract share those routines. The rest
* of the code is not sufficiently similar to merit a shared implementation.
*
* The worst thing about this API is the bug. "The bug" is this: when you extract a
* cabinet, it /always/ informs you (via the hasnext field of PFDICABINETINFO), that
* there is no subsequent cabinet, even if there is one. wine faithfully reproduces
* this behavior.
*
* TODO:
*
* Wine does not implement the AFAIK undocumented "enumerate" callback during
* FDICopy. It is implemented in Windows and therefore worth investigating...
*
* Lots of pointers flying around here... am I leaking RAM?
*
* WTF is FDITruncate?
*
* Probably, I need to weed out some dead code-paths.
*
* Test unit(s).
*
* The fdintNEXT_CABINET callbacks are probably not working quite as they should.
* There are several FIXME's in the source describing some of the deficiencies in
* some detail. Additionally, we do not do a very good job of returning the right
* error codes to this callback.
*
* FDICopy and fdi_decomp are incomprehensibly large; separating these into smaller
* functions would be nice.
*
* -gmt
*/
#include "config.h"
#include <stdarg.h>
#include <stdio.h>
#include "windef.h"
#include "winbase.h"
#include "winerror.h"
#include "fdi.h"
#include "cabinet.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(cabinet);
THOSE_ZIP_CONSTS;
struct fdi_file {
struct fdi_file *next; /* next file in sequence */
LPSTR filename; /* output name of file */
int fh; /* open file handle or NULL */
cab_ULONG length; /* uncompressed length of file */
cab_ULONG offset; /* uncompressed offset in folder */
cab_UWORD index; /* magic index number of folder */
cab_UWORD time, date, attribs; /* MS-DOS time/date/attributes */
BOOL oppressed; /* never to be processed */
};
struct fdi_folder {
struct fdi_folder *next;
cab_off_t offset; /* offset to data blocks (32 bit) */
cab_UWORD comp_type; /* compression format/window size */
cab_ULONG comp_size; /* compressed size of folder */
cab_UBYTE num_splits; /* number of split blocks + 1 */
cab_UWORD num_blocks; /* total number of blocks */
};
/*
* this structure fills the gaps between what is available in a PFDICABINETINFO
* vs what is needed by FDICopy. Memory allocated for these becomes the responsibility
* of the caller to free. Yes, I am aware that this is totally, utterly inelegant.
* To make things even more unnecessarily confusing, we now attach these to the
* fdi_decomp_state.
*/
typedef struct {
char *prevname, *previnfo;
char *nextname, *nextinfo;
BOOL hasnext; /* bug free indicator */
int folder_resv, header_resv;
cab_UBYTE block_resv;
} MORE_ISCAB_INFO, *PMORE_ISCAB_INFO;
/*
* ugh, well, this ended up being pretty damn silly...
* now that I've conceded to build equivalent structures to struct cab.*,
* I should have just used those, or, better yet, unified the two... sue me.
* (Note to Microsoft: That's a joke. Please /don't/ actually sue me! -gmt).
* Nevertheless, I've come this far, it works, so I'm not gonna change it
* for now. This implementation has significant semantic differences anyhow.
*/
typedef struct fdi_cds_fwd {
void *hfdi; /* the hfdi we are using */
INT_PTR filehf, cabhf; /* file handle we are using */
struct fdi_folder *current; /* current folder we're extracting from */
cab_ULONG offset; /* uncompressed offset within folder */
cab_UBYTE *outpos; /* (high level) start of data to use up */
cab_UWORD outlen; /* (high level) amount of data to use up */
int (*decompress)(int, int, struct fdi_cds_fwd *); /* chosen compress fn */
cab_UBYTE inbuf[CAB_INPUTMAX+2]; /* +2 for lzx bitbuffer overflows! */
cab_UBYTE outbuf[CAB_BLOCKMAX];
union {
struct ZIPstate zip;
struct QTMstate qtm;
struct LZXstate lzx;
} methods;
/* some temp variables for use during decompression */
cab_UBYTE q_length_base[27], q_length_extra[27], q_extra_bits[42];
cab_ULONG q_position_base[42];
cab_ULONG lzx_position_base[51];
cab_UBYTE extra_bits[51];
USHORT setID; /* Cabinet set ID */
USHORT iCabinet; /* Cabinet number in set (0 based) */
struct fdi_cds_fwd *decomp_cab;
MORE_ISCAB_INFO mii;
struct fdi_folder *firstfol;
struct fdi_file *firstfile;
struct fdi_cds_fwd *next;
} fdi_decomp_state;
/****************************************************************
* QTMupdatemodel (internal)
*/
static void QTMupdatemodel(struct QTMmodel *model, int sym) {
struct QTMmodelsym temp;
int i, j;
for (i = 0; i < sym; i++) model->syms[i].cumfreq += 8;
if (model->syms[0].cumfreq > 3800) {
if (--model->shiftsleft) {
for (i = model->entries - 1; i >= 0; i--) {
/* -1, not -2; the 0 entry saves this */
model->syms[i].cumfreq >>= 1;
if (model->syms[i].cumfreq <= model->syms[i+1].cumfreq) {
model->syms[i].cumfreq = model->syms[i+1].cumfreq + 1;
}
}
}
else {
model->shiftsleft = 50;
for (i = 0; i < model->entries ; i++) {
/* no -1, want to include the 0 entry */
/* this converts cumfreqs into frequencies, then shifts right */
model->syms[i].cumfreq -= model->syms[i+1].cumfreq;
model->syms[i].cumfreq++; /* avoid losing things entirely */
model->syms[i].cumfreq >>= 1;
}
/* now sort by frequencies, decreasing order -- this must be an
* inplace selection sort, or a sort with the same (in)stability
* characteristics
*/
for (i = 0; i < model->entries - 1; i++) {
for (j = i + 1; j < model->entries; j++) {
if (model->syms[i].cumfreq < model->syms[j].cumfreq) {
temp = model->syms[i];
model->syms[i] = model->syms[j];
model->syms[j] = temp;
}
}
}
/* then convert frequencies back to cumfreq */
for (i = model->entries - 1; i >= 0; i--) {
model->syms[i].cumfreq += model->syms[i+1].cumfreq;
}
/* then update the other part of the table */
for (i = 0; i < model->entries; i++) {
model->tabloc[model->syms[i].sym] = i;
}
}
}
}
/*************************************************************************
* make_decode_table (internal)
*
* This function was coded by David Tritscher. It builds a fast huffman
* decoding table out of just a canonical huffman code lengths table.
*
* PARAMS
* nsyms: total number of symbols in this huffman tree.
* nbits: any symbols with a code length of nbits or less can be decoded
* in one lookup of the table.
* length: A table to get code lengths from [0 to syms-1]
* table: The table to fill up with decoded symbols and pointers.
*
* RETURNS
* OK: 0
* error: 1
*/
static int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits,
const cab_UBYTE *length, cab_UWORD *table) {
register cab_UWORD sym;
register cab_ULONG leaf;
register cab_UBYTE bit_num = 1;
cab_ULONG fill;
cab_ULONG pos = 0; /* the current position in the decode table */
cab_ULONG table_mask = 1 << nbits;
cab_ULONG bit_mask = table_mask >> 1; /* don't do 0 length codes */
cab_ULONG next_symbol = bit_mask; /* base of allocation for long codes */
/* fill entries for codes short enough for a direct mapping */
while (bit_num <= nbits) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] == bit_num) {
leaf = pos;
if((pos += bit_mask) > table_mask) return 1; /* table overrun */
/* fill all possible lookups of this symbol with the symbol itself */
fill = bit_mask;
while (fill-- > 0) table[leaf++] = sym;
}
}
bit_mask >>= 1;
bit_num++;
}
/* if there are any codes longer than nbits */
if (pos != table_mask) {
/* clear the remainder of the table */
for (sym = pos; sym < table_mask; sym++) table[sym] = 0;
/* give ourselves room for codes to grow by up to 16 more bits */
pos <<= 16;
table_mask <<= 16;
bit_mask = 1 << 15;
while (bit_num <= 16) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] == bit_num) {
leaf = pos >> 16;
for (fill = 0; fill < bit_num - nbits; fill++) {
/* if this path hasn't been taken yet, 'allocate' two entries */
if (table[leaf] == 0) {
table[(next_symbol << 1)] = 0;
table[(next_symbol << 1) + 1] = 0;
table[leaf] = next_symbol++;
}
/* follow the path and select either left or right for next bit */
leaf = table[leaf] << 1;
if ((pos >> (15-fill)) & 1) leaf++;
}
table[leaf] = sym;
if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
}
}
bit_mask >>= 1;
bit_num++;
}
}
/* full table? */
if (pos == table_mask) return 0;
/* either erroneous table, or all elements are 0 - let's find out. */
for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1;
return 0;
}
/*************************************************************************
* checksum (internal)
*/
static cab_ULONG checksum(const cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum) {
int len;
cab_ULONG ul = 0;
for (len = bytes >> 2; len--; data += 4) {
csum ^= ((data[0]) | (data[1]<<8) | (data[2]<<16) | (data[3]<<24));
}
switch (bytes & 3) {
case 3: ul |= *data++ << 16;
case 2: ul |= *data++ << 8;
case 1: ul |= *data;
}
csum ^= ul;
return csum;
}
/***********************************************************************
* FDICreate (CABINET.20)
*
* Provided with several callbacks (all of them are mandatory),
* returns a handle which can be used to perform operations
* on cabinet files.
*
* PARAMS
* pfnalloc [I] A pointer to a function which allocates ram. Uses
* the same interface as malloc.
* pfnfree [I] A pointer to a function which frees ram. Uses the
* same interface as free.
* pfnopen [I] A pointer to a function which opens a file. Uses
* the same interface as _open.
* pfnread [I] A pointer to a function which reads from a file into
* a caller-provided buffer. Uses the same interface
* as _read
* pfnwrite [I] A pointer to a function which writes to a file from
* a caller-provided buffer. Uses the same interface
* as _write.
* pfnclose [I] A pointer to a function which closes a file handle.
* Uses the same interface as _close.
* pfnseek [I] A pointer to a function which seeks in a file.
* Uses the same interface as _lseek.
* cpuType [I] The type of CPU; ignored in wine (recommended value:
* cpuUNKNOWN, aka -1).
* perf [IO] A pointer to an ERF structure. When FDICreate
* returns an error condition, error information may
* be found here as well as from GetLastError.
*
* RETURNS
* On success, returns an FDI handle of type HFDI.
* On failure, the NULL file handle is returned. Error
* info can be retrieved from perf.
*
* INCLUDES
* fdi.h
*
*/
HFDI __cdecl FDICreate(
PFNALLOC pfnalloc,
PFNFREE pfnfree,
PFNOPEN pfnopen,
PFNREAD pfnread,
PFNWRITE pfnwrite,
PFNCLOSE pfnclose,
PFNSEEK pfnseek,
int cpuType,
PERF perf)
{
HFDI rv;
TRACE("(pfnalloc == ^%p, pfnfree == ^%p, pfnopen == ^%p, pfnread == ^%p, pfnwrite == ^%p, "
"pfnclose == ^%p, pfnseek == ^%p, cpuType == %d, perf == ^%p)\n",
pfnalloc, pfnfree, pfnopen, pfnread, pfnwrite, pfnclose, pfnseek,
cpuType, perf);
if ((!pfnalloc) || (!pfnfree)) {
perf->erfOper = FDIERROR_NONE;
perf->erfType = ERROR_BAD_ARGUMENTS;
perf->fError = TRUE;
SetLastError(ERROR_BAD_ARGUMENTS);
return NULL;
}
if (!((rv = (*pfnalloc)(sizeof(FDI_Int))))) {
perf->erfOper = FDIERROR_ALLOC_FAIL;
perf->erfType = ERROR_NOT_ENOUGH_MEMORY;
perf->fError = TRUE;
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return NULL;
}
PFDI_INT(rv)->FDI_Intmagic = FDI_INT_MAGIC;
PFDI_INT(rv)->pfnalloc = pfnalloc;
PFDI_INT(rv)->pfnfree = pfnfree;
PFDI_INT(rv)->pfnopen = pfnopen;
PFDI_INT(rv)->pfnread = pfnread;
PFDI_INT(rv)->pfnwrite = pfnwrite;
PFDI_INT(rv)->pfnclose = pfnclose;
PFDI_INT(rv)->pfnseek = pfnseek;
/* no-brainer: we ignore the cpu type; this is only used
for the 16-bit versions in Windows anyhow... */
PFDI_INT(rv)->perf = perf;
return rv;
}
/*******************************************************************
* FDI_getoffset (internal)
*
* returns the file pointer position of a file handle.
*/
static long FDI_getoffset(HFDI hfdi, INT_PTR hf)
{
return PFDI_SEEK(hfdi, hf, 0L, SEEK_CUR);
}
/**********************************************************************
* FDI_read_string (internal)
*
* allocate and read an arbitrarily long string from the cabinet
*/
static char *FDI_read_string(HFDI hfdi, INT_PTR hf, long cabsize)
{
size_t len=256,
base = FDI_getoffset(hfdi, hf),
maxlen = cabsize - base;
BOOL ok = FALSE;
unsigned int i;
cab_UBYTE *buf = NULL;
TRACE("(hfdi == ^%p, hf == %ld, cabsize == %ld)\n", hfdi, hf, cabsize);
do {
if (len > maxlen) len = maxlen;
if (!(buf = PFDI_ALLOC(hfdi, len))) break;
if (!PFDI_READ(hfdi, hf, buf, len)) break;
/* search for a null terminator in what we've just read */
for (i=0; i < len; i++) {
if (!buf[i]) {ok=TRUE; break;}
}
if (!ok) {
if (len == maxlen) {
ERR("cabinet is truncated\n");
break;
}
/* The buffer is too small for the string. Reset the file to the point
* were we started, free the buffer and increase the size for the next try
*/
PFDI_SEEK(hfdi, hf, base, SEEK_SET);
PFDI_FREE(hfdi, buf);
buf = NULL;
len *= 2;
}
} while (!ok);
if (!ok) {
if (buf)
PFDI_FREE(hfdi, buf);
else
ERR("out of memory!\n");
return NULL;
}
/* otherwise, set the stream to just after the string and return */
PFDI_SEEK(hfdi, hf, base + strlen((char *)buf) + 1, SEEK_SET);
return (char *) buf;
}
/******************************************************************
* FDI_read_entries (internal)
*
* process the cabinet header in the style of FDIIsCabinet, but
* without the sanity checks (and bug)
*/
static BOOL FDI_read_entries(
HFDI hfdi,
INT_PTR hf,
PFDICABINETINFO pfdici,
PMORE_ISCAB_INFO pmii)
{
int num_folders, num_files, header_resv, folder_resv = 0;
LONG base_offset, cabsize;
USHORT setid, cabidx, flags;
cab_UBYTE buf[64], block_resv;
char *prevname = NULL, *previnfo = NULL, *nextname = NULL, *nextinfo = NULL;
TRACE("(hfdi == ^%p, hf == %ld, pfdici == ^%p)\n", hfdi, hf, pfdici);
/*
* FIXME: I just noticed that I am memorizing the initial file pointer
* offset and restoring it before reading in the rest of the header
* information in the cabinet. Perhaps that's correct -- that is, perhaps
* this API is supposed to support "streaming" cabinets which are embedded
* in other files, or cabinets which begin at file offsets other than zero.
* Otherwise, I should instead go to the absolute beginning of the file.
* (Either way, the semantics of wine's FDICopy require me to leave the
* file pointer where it is afterwards -- If Windows does not do so, we
* ought to duplicate the native behavior in the FDIIsCabinet API, not here.
*
* So, the answer lies in Windows; will native cabinet.dll recognize a
* cabinet "file" embedded in another file? Note that cabextract.c does
* support this, which implies that Microsoft's might. I haven't tried it
* yet so I don't know. ATM, most of wine's FDI cabinet routines (except
* this one) would not work in this way. To fix it, we could just make the
* various references to absolute file positions in the code relative to an
* initial "beginning" offset. Because the FDICopy API doesn't take a
* file-handle like this one, we would therein need to search through the
* file for the beginning of the cabinet (as we also do in cabextract.c).
* Note that this limits us to a maximum of one cabinet per. file: the first.
*
* So, in summary: either the code below is wrong, or the rest of fdi.c is
* wrong... I cannot imagine that both are correct ;) One of these flaws
* should be fixed after determining the behavior on Windows. We ought
* to check both FDIIsCabinet and FDICopy for the right behavior.
*
* -gmt
*/
/* get basic offset & size info */
base_offset = FDI_getoffset(hfdi, hf);
if (PFDI_SEEK(hfdi, hf, 0, SEEK_END) == -1) {
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
}
cabsize = FDI_getoffset(hfdi, hf);
if ((cabsize == -1) || (base_offset == -1) ||
( PFDI_SEEK(hfdi, hf, base_offset, SEEK_SET) == -1 )) {
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
}
/* read in the CFHEADER */
if (PFDI_READ(hfdi, hf, buf, cfhead_SIZEOF) != cfhead_SIZEOF) {
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
}
/* check basic MSCF signature */
if (EndGetI32(buf+cfhead_Signature) != 0x4643534d) {
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
}
/* get the number of folders */
num_folders = EndGetI16(buf+cfhead_NumFolders);
if (num_folders == 0) {
/* PONDERME: is this really invalid? */
WARN("weird cabinet detect failure: no folders in cabinet\n");
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
}
/* get the number of files */
num_files = EndGetI16(buf+cfhead_NumFiles);
if (num_files == 0) {
/* PONDERME: is this really invalid? */
WARN("weird cabinet detect failure: no files in cabinet\n");
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NOT_A_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
}
/* setid */
setid = EndGetI16(buf+cfhead_SetID);
/* cabinet (set) index */
cabidx = EndGetI16(buf+cfhead_CabinetIndex);
/* check the header revision */
if ((buf[cfhead_MajorVersion] > 1) ||
(buf[cfhead_MajorVersion] == 1 && buf[cfhead_MinorVersion] > 3))
{
WARN("cabinet format version > 1.3\n");
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_UNKNOWN_CABINET_VERSION;
PFDI_INT(hfdi)->perf->erfType = 0; /* ? */
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
}
/* pull the flags out */
flags = EndGetI16(buf+cfhead_Flags);
/* read the reserved-sizes part of header, if present */
if (flags & cfheadRESERVE_PRESENT) {
if (PFDI_READ(hfdi, hf, buf, cfheadext_SIZEOF) != cfheadext_SIZEOF) {
ERR("bunk reserve-sizes?\n");
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0; /* ? */
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
}
header_resv = EndGetI16(buf+cfheadext_HeaderReserved);
if (pmii) pmii->header_resv = header_resv;
folder_resv = buf[cfheadext_FolderReserved];
if (pmii) pmii->folder_resv = folder_resv;
block_resv = buf[cfheadext_DataReserved];
if (pmii) pmii->block_resv = block_resv;
if (header_resv > 60000) {
WARN("WARNING; header reserved space > 60000\n");
}
/* skip the reserved header */
if ((header_resv) && (PFDI_SEEK(hfdi, hf, header_resv, SEEK_CUR) == -1)) {
ERR("seek failure: header_resv\n");
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0; /* ? */
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
}
}
if (flags & cfheadPREV_CABINET) {
prevname = FDI_read_string(hfdi, hf, cabsize);
if (!prevname) {
if (pmii) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0; /* ? */
PFDI_INT(hfdi)->perf->fError = TRUE;
}
return FALSE;
} else
if (pmii)
pmii->prevname = prevname;
else
PFDI_FREE(hfdi, prevname);
previnfo = FDI_read_string(hfdi, hf, cabsize);
if (previnfo) {
if (pmii)
pmii->previnfo = previnfo;
else
PFDI_FREE(hfdi, previnfo);
}
}
if (flags & cfheadNEXT_CABINET) {
if (pmii)
pmii->hasnext = TRUE;
nextname = FDI_read_string(hfdi, hf, cabsize);
if (!nextname) {
if ((flags & cfheadPREV_CABINET) && pmii) {
if (pmii->prevname) PFDI_FREE(hfdi, prevname);
if (pmii->previnfo) PFDI_FREE(hfdi, previnfo);
}
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0; /* ? */
PFDI_INT(hfdi)->perf->fError = TRUE;
return FALSE;
} else
if (pmii)
pmii->nextname = nextname;
else
PFDI_FREE(hfdi, nextname);
nextinfo = FDI_read_string(hfdi, hf, cabsize);
if (nextinfo) {
if (pmii)
pmii->nextinfo = nextinfo;
else
PFDI_FREE(hfdi, nextinfo);
}
}
/* we could process the whole cabinet searching for problems;
instead lets stop here. Now let's fill out the paperwork */
pfdici->cbCabinet = cabsize;
pfdici->cFolders = num_folders;
pfdici->cFiles = num_files;
pfdici->setID = setid;
pfdici->iCabinet = cabidx;
pfdici->fReserve = (flags & cfheadRESERVE_PRESENT) ? TRUE : FALSE;
pfdici->hasprev = (flags & cfheadPREV_CABINET) ? TRUE : FALSE;
pfdici->hasnext = (flags & cfheadNEXT_CABINET) ? TRUE : FALSE;
return TRUE;
}
/***********************************************************************
* FDIIsCabinet (CABINET.21)
*
* Informs the caller as to whether or not the provided file handle is
* really a cabinet or not, filling out the provided PFDICABINETINFO
* structure with information about the cabinet. Brief explanations of
* the elements of this structure are available as comments accompanying
* its definition in wine's include/fdi.h.
*
* PARAMS
* hfdi [I] An HFDI from FDICreate
* hf [I] The file handle about which the caller inquires
* pfdici [IO] Pointer to a PFDICABINETINFO structure which will
* be filled out with information about the cabinet
* file indicated by hf if, indeed, it is determined
* to be a cabinet.
*
* RETURNS
* TRUE if the file is a cabinet. The info pointed to by pfdici will
* be provided.
* FALSE if the file is not a cabinet, or if an error was encountered
* while processing the cabinet. The PERF structure provided to
* FDICreate can be queried for more error information.
*
* INCLUDES
* fdi.c
*/
BOOL __cdecl FDIIsCabinet(
HFDI hfdi,
INT_PTR hf,
PFDICABINETINFO pfdici)
{
BOOL rv;
TRACE("(hfdi == ^%p, hf == ^%ld, pfdici == ^%p)\n", hfdi, hf, pfdici);
if (!REALLY_IS_FDI(hfdi)) {
ERR("REALLY_IS_FDI failed on ^%p\n", hfdi);
SetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
if (!hf) {
ERR("(!hf)!\n");
/* PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CABINET_NOT_FOUND;
PFDI_INT(hfdi)->perf->erfType = ERROR_INVALID_HANDLE;
PFDI_INT(hfdi)->perf->fError = TRUE; */
SetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
if (!pfdici) {
ERR("(!pfdici)!\n");
/* PFDI_INT(hfdi)->perf->erfOper = FDIERROR_NONE;
PFDI_INT(hfdi)->perf->erfType = ERROR_BAD_ARGUMENTS;
PFDI_INT(hfdi)->perf->fError = TRUE; */
SetLastError(ERROR_BAD_ARGUMENTS);
return FALSE;
}
rv = FDI_read_entries(hfdi, hf, pfdici, NULL);
if (rv)
pfdici->hasnext = FALSE; /* yuck. duplicate apparent cabinet.dll bug */
return rv;
}
/******************************************************************
* QTMfdi_initmodel (internal)
*
* Initialize a model which decodes symbols from [s] to [s]+[n]-1
*/
static void QTMfdi_initmodel(struct QTMmodel *m, struct QTMmodelsym *sym, int n, int s) {
int i;
m->shiftsleft = 4;
m->entries = n;
m->syms = sym;
memset(m->tabloc, 0xFF, sizeof(m->tabloc)); /* clear out look-up table */
for (i = 0; i < n; i++) {
m->tabloc[i+s] = i; /* set up a look-up entry for symbol */
m->syms[i].sym = i+s; /* actual symbol */
m->syms[i].cumfreq = n-i; /* current frequency of that symbol */
}
m->syms[n].cumfreq = 0;
}
/******************************************************************
* QTMfdi_init (internal)
*/
static int QTMfdi_init(int window, int level, fdi_decomp_state *decomp_state) {
unsigned int wndsize = 1 << window;
int msz = window * 2, i;
cab_ULONG j;
/* QTM supports window sizes of 2^10 (1Kb) through 2^21 (2Mb) */
/* if a previously allocated window is big enough, keep it */
if (window < 10 || window > 21) return DECR_DATAFORMAT;
if (QTM(actual_size) < wndsize) {
if (QTM(window)) PFDI_FREE(CAB(hfdi), QTM(window));
QTM(window) = NULL;
}
if (!QTM(window)) {
if (!(QTM(window) = PFDI_ALLOC(CAB(hfdi), wndsize))) return DECR_NOMEMORY;
QTM(actual_size) = wndsize;
}
QTM(window_size) = wndsize;
QTM(window_posn) = 0;
/* initialize static slot/extrabits tables */
for (i = 0, j = 0; i < 27; i++) {
CAB(q_length_extra)[i] = (i == 26) ? 0 : (i < 2 ? 0 : i - 2) >> 2;
CAB(q_length_base)[i] = j; j += 1 << ((i == 26) ? 5 : CAB(q_length_extra)[i]);
}
for (i = 0, j = 0; i < 42; i++) {
CAB(q_extra_bits)[i] = (i < 2 ? 0 : i-2) >> 1;
CAB(q_position_base)[i] = j; j += 1 << CAB(q_extra_bits)[i];
}
/* initialize arithmetic coding models */
QTMfdi_initmodel(&QTM(model7), &QTM(m7sym)[0], 7, 0);
QTMfdi_initmodel(&QTM(model00), &QTM(m00sym)[0], 0x40, 0x00);
QTMfdi_initmodel(&QTM(model40), &QTM(m40sym)[0], 0x40, 0x40);
QTMfdi_initmodel(&QTM(model80), &QTM(m80sym)[0], 0x40, 0x80);
QTMfdi_initmodel(&QTM(modelC0), &QTM(mC0sym)[0], 0x40, 0xC0);
/* model 4 depends on table size, ranges from 20 to 24 */
QTMfdi_initmodel(&QTM(model4), &QTM(m4sym)[0], (msz < 24) ? msz : 24, 0);
/* model 5 depends on table size, ranges from 20 to 36 */
QTMfdi_initmodel(&QTM(model5), &QTM(m5sym)[0], (msz < 36) ? msz : 36, 0);
/* model 6pos depends on table size, ranges from 20 to 42 */
QTMfdi_initmodel(&QTM(model6pos), &QTM(m6psym)[0], msz, 0);
QTMfdi_initmodel(&QTM(model6len), &QTM(m6lsym)[0], 27, 0);
return DECR_OK;
}
/************************************************************
* LZXfdi_init (internal)
*/
static int LZXfdi_init(int window, fdi_decomp_state *decomp_state) {
static const cab_UBYTE bits[] =
{ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14,
15, 15, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17};
static const cab_ULONG base[] =
{ 0, 1, 2, 3, 4, 6, 8, 12,
16, 24, 32, 48, 64, 96, 128, 192,
256, 384, 512, 768, 1024, 1536, 2048, 3072,
4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152,
65536, 98304, 131072, 196608, 262144, 393216, 524288, 655360,
786432, 917504, 1048576, 1179648, 1310720, 1441792, 1572864, 1703936,
1835008, 1966080, 2097152};
cab_ULONG wndsize = 1 << window;
int posn_slots;
/* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */
/* if a previously allocated window is big enough, keep it */
if (window < 15 || window > 21) return DECR_DATAFORMAT;
if (LZX(actual_size) < wndsize) {
if (LZX(window)) PFDI_FREE(CAB(hfdi), LZX(window));
LZX(window) = NULL;
}
if (!LZX(window)) {
if (!(LZX(window) = PFDI_ALLOC(CAB(hfdi), wndsize))) return DECR_NOMEMORY;
LZX(actual_size) = wndsize;
}
LZX(window_size) = wndsize;
/* initialize static tables */
memcpy(CAB(extra_bits), bits, sizeof(bits));
memcpy(CAB(lzx_position_base), base, sizeof(base));
/* calculate required position slots */
if (window == 20) posn_slots = 42;
else if (window == 21) posn_slots = 50;
else posn_slots = window << 1;
/*posn_slots=i=0; while (i < wndsize) i += 1 << CAB(extra_bits)[posn_slots++]; */
LZX(R0) = LZX(R1) = LZX(R2) = 1;
LZX(main_elements) = LZX_NUM_CHARS + (posn_slots << 3);
LZX(header_read) = 0;
LZX(frames_read) = 0;
LZX(block_remaining) = 0;
LZX(block_type) = LZX_BLOCKTYPE_INVALID;
LZX(intel_curpos) = 0;
LZX(intel_started) = 0;
LZX(window_posn) = 0;
/* initialize tables to 0 (because deltas will be applied to them) */
memset(LZX(MAINTREE_len), 0, sizeof(LZX(MAINTREE_len)));
memset(LZX(LENGTH_len), 0, sizeof(LZX(LENGTH_len)));
return DECR_OK;
}
/****************************************************
* NONEfdi_decomp(internal)
*/
static int NONEfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state)
{
if (inlen != outlen) return DECR_ILLEGALDATA;
if (outlen > CAB_BLOCKMAX) return DECR_DATAFORMAT;
memcpy(CAB(outbuf), CAB(inbuf), (size_t) inlen);
return DECR_OK;
}
/********************************************************
* Ziphuft_free (internal)
*/
static void fdi_Ziphuft_free(HFDI hfdi, struct Ziphuft *t)
{
register struct Ziphuft *p, *q;
/* Go through linked list, freeing from the allocated (t[-1]) address. */
p = t;
while (p != NULL)
{
q = (--p)->v.t;
PFDI_FREE(hfdi, p);
p = q;
}
}
/*********************************************************
* fdi_Ziphuft_build (internal)
*/
static cab_LONG fdi_Ziphuft_build(cab_ULONG *b, cab_ULONG n, cab_ULONG s, const cab_UWORD *d, const cab_UWORD *e,
struct Ziphuft **t, cab_LONG *m, fdi_decomp_state *decomp_state)
{
cab_ULONG a; /* counter for codes of length k */
cab_ULONG el; /* length of EOB code (value 256) */
cab_ULONG f; /* i repeats in table every f entries */
cab_LONG g; /* maximum code length */
cab_LONG h; /* table level */
register cab_ULONG i; /* counter, current code */
register cab_ULONG j; /* counter */
register cab_LONG k; /* number of bits in current code */
cab_LONG *l; /* stack of bits per table */
register cab_ULONG *p; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */
register struct Ziphuft *q; /* points to current table */
struct Ziphuft r; /* table entry for structure assignment */
register cab_LONG w; /* bits before this table == (l * h) */
cab_ULONG *xp; /* pointer into x */
cab_LONG y; /* number of dummy codes added */
cab_ULONG z; /* number of entries in current table */
l = ZIP(lx)+1;
/* Generate counts for each bit length */
el = n > 256 ? b[256] : ZIPBMAX; /* set length of EOB code, if any */
for(i = 0; i < ZIPBMAX+1; ++i)
ZIP(c)[i] = 0;
p = b; i = n;
do
{
ZIP(c)[*p]++; p++; /* assume all entries <= ZIPBMAX */
} while (--i);
if (ZIP(c)[0] == n) /* null input--all zero length codes */
{
*t = NULL;
*m = 0;
return 0;
}
/* Find minimum and maximum length, bound *m by those */
for (j = 1; j <= ZIPBMAX; j++)
if (ZIP(c)[j])
break;
k = j; /* minimum code length */
if ((cab_ULONG)*m < j)
*m = j;
for (i = ZIPBMAX; i; i--)
if (ZIP(c)[i])
break;
g = i; /* maximum code length */
if ((cab_ULONG)*m > i)
*m = i;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= ZIP(c)[j]) < 0)
return 2; /* bad input: more codes than bits */
if ((y -= ZIP(c)[i]) < 0)
return 2;
ZIP(c)[i] += y;
/* Generate starting offsets LONGo the value table for each length */
ZIP(x)[1] = j = 0;
p = ZIP(c) + 1; xp = ZIP(x) + 2;
while (--i)
{ /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
p = b; i = 0;
do{
if ((j = *p++) != 0)
ZIP(v)[ZIP(x)[j]++] = i;
} while (++i < n);
/* Generate the Huffman codes and for each, make the table entries */
ZIP(x)[0] = i = 0; /* first Huffman code is zero */
p = ZIP(v); /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = l[-1] = 0; /* no bits decoded yet */
ZIP(u)[0] = NULL; /* just to keep compilers happy */
q = NULL; /* ditto */
z = 0; /* ditto */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++)
{
a = ZIP(c)[k];
while (a--)
{
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > w + l[h])
{
w += l[h++]; /* add bits already decoded */
/* compute minimum size table less than or equal to *m bits */
if ((z = g - w) > (cab_ULONG)*m) /* upper limit */
z = *m;
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
{ /* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = ZIP(c) + k;
while (++j < z) /* try smaller tables up to z bits */
{
if ((f <<= 1) <= *++xp)
break; /* enough codes to use up j bits */
f -= *xp; /* else deduct codes from patterns */
}
}
if ((cab_ULONG)w + j > el && (cab_ULONG)w < el)
j = el - w; /* make EOB code end at table */
z = 1 << j; /* table entries for j-bit table */
l[h] = j; /* set table size in stack */
/* allocate and link in new table */
if (!(q = PFDI_ALLOC(CAB(hfdi), (z + 1)*sizeof(struct Ziphuft))))
{
if(h)
fdi_Ziphuft_free(CAB(hfdi), ZIP(u)[0]);
return 3; /* not enough memory */
}
*t = q + 1; /* link to list for Ziphuft_free() */
*(t = &(q->v.t)) = NULL;
ZIP(u)[h] = ++q; /* table starts after link */
/* connect to last table, if there is one */
if (h)
{
ZIP(x)[h] = i; /* save pattern for backing up */
r.b = (cab_UBYTE)l[h-1]; /* bits to dump before this table */
r.e = (cab_UBYTE)(16 + j); /* bits in this table */
r.v.t = q; /* pointer to this table */
j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
ZIP(u)[h-1][j] = r; /* connect to last table */
}
}
/* set up table entry in r */
r.b = (cab_UBYTE)(k - w);
if (p >= ZIP(v) + n)
r.e = 99; /* out of values--invalid code */
else if (*p < s)
{
r.e = (cab_UBYTE)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
r.v.n = *p++; /* simple code is just the value */
}
else
{
r.e = (cab_UBYTE)e[*p - s]; /* non-simple--look up in lists */
r.v.n = d[*p++ - s];
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != ZIP(x)[h])
w -= l[--h]; /* don't need to update q */
}
}
/* return actual size of base table */
*m = l[0];
/* Return true (1) if we were given an incomplete table */
return y != 0 && g != 1;
}
/*********************************************************
* fdi_Zipinflate_codes (internal)
*/
static cab_LONG fdi_Zipinflate_codes(const struct Ziphuft *tl, const struct Ziphuft *td,
cab_LONG bl, cab_LONG bd, fdi_decomp_state *decomp_state)
{
register cab_ULONG e; /* table entry flag/number of extra bits */
cab_ULONG n, d; /* length and index for copy */
cab_ULONG w; /* current window position */
const struct Ziphuft *t; /* pointer to table entry */
cab_ULONG ml, md; /* masks for bl and bd bits */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local copies of globals */
b = ZIP(bb); /* initialize bit buffer */
k = ZIP(bk);
w = ZIP(window_posn); /* initialize window position */
/* inflate the coded data */
ml = Zipmask[bl]; /* precompute masks for speed */
md = Zipmask[bd];
for(;;)
{
ZIPNEEDBITS((cab_ULONG)bl)
if((e = (t = tl + (b & ml))->e) > 16)
do
{
if (e == 99)
return 1;
ZIPDUMPBITS(t->b)
e -= 16;
ZIPNEEDBITS(e)
} while ((e = (t = t->v.t + (b & Zipmask[e]))->e) > 16);
ZIPDUMPBITS(t->b)
if (e == 16) /* then it's a literal */
CAB(outbuf)[w++] = (cab_UBYTE)t->v.n;
else /* it's an EOB or a length */
{
/* exit if end of block */
if(e == 15)
break;
/* get length of block to copy */
ZIPNEEDBITS(e)
n = t->v.n + (b & Zipmask[e]);
ZIPDUMPBITS(e);
/* decode distance of block to copy */
ZIPNEEDBITS((cab_ULONG)bd)
if ((e = (t = td + (b & md))->e) > 16)
do {
if (e == 99)
return 1;
ZIPDUMPBITS(t->b)
e -= 16;
ZIPNEEDBITS(e)
} while ((e = (t = t->v.t + (b & Zipmask[e]))->e) > 16);
ZIPDUMPBITS(t->b)
ZIPNEEDBITS(e)
d = w - t->v.n - (b & Zipmask[e]);
ZIPDUMPBITS(e)
do
{
d &= ZIPWSIZE - 1;
e = ZIPWSIZE - max(d, w);
e = min(e, n);
n -= e;
do
{
CAB(outbuf)[w++] = CAB(outbuf)[d++];
} while (--e);
} while (n);
}
}
/* restore the globals from the locals */
ZIP(window_posn) = w; /* restore global window pointer */
ZIP(bb) = b; /* restore global bit buffer */
ZIP(bk) = k;
/* done */
return 0;
}
/***********************************************************
* Zipinflate_stored (internal)
*/
static cab_LONG fdi_Zipinflate_stored(fdi_decomp_state *decomp_state)
/* "decompress" an inflated type 0 (stored) block. */
{
cab_ULONG n; /* number of bytes in block */
cab_ULONG w; /* current window position */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local copies of globals */
b = ZIP(bb); /* initialize bit buffer */
k = ZIP(bk);
w = ZIP(window_posn); /* initialize window position */
/* go to byte boundary */
n = k & 7;
ZIPDUMPBITS(n);
/* get the length and its complement */
ZIPNEEDBITS(16)
n = (b & 0xffff);
ZIPDUMPBITS(16)
ZIPNEEDBITS(16)
if (n != ((~b) & 0xffff))
return 1; /* error in compressed data */
ZIPDUMPBITS(16)
/* read and output the compressed data */
while(n--)
{
ZIPNEEDBITS(8)
CAB(outbuf)[w++] = (cab_UBYTE)b;
ZIPDUMPBITS(8)
}
/* restore the globals from the locals */
ZIP(window_posn) = w; /* restore global window pointer */
ZIP(bb) = b; /* restore global bit buffer */
ZIP(bk) = k;
return 0;
}
/******************************************************
* fdi_Zipinflate_fixed (internal)
*/
static cab_LONG fdi_Zipinflate_fixed(fdi_decomp_state *decomp_state)
{
struct Ziphuft *fixed_tl;
struct Ziphuft *fixed_td;
cab_LONG fixed_bl, fixed_bd;
cab_LONG i; /* temporary variable */
cab_ULONG *l;
l = ZIP(ll);
/* literal table */
for(i = 0; i < 144; i++)
l[i] = 8;
for(; i < 256; i++)
l[i] = 9;
for(; i < 280; i++)
l[i] = 7;
for(; i < 288; i++) /* make a complete, but wrong code set */
l[i] = 8;
fixed_bl = 7;
if((i = fdi_Ziphuft_build(l, 288, 257, Zipcplens, Zipcplext, &fixed_tl, &fixed_bl, decomp_state)))
return i;
/* distance table */
for(i = 0; i < 30; i++) /* make an incomplete code set */
l[i] = 5;
fixed_bd = 5;
if((i = fdi_Ziphuft_build(l, 30, 0, Zipcpdist, Zipcpdext, &fixed_td, &fixed_bd, decomp_state)) > 1)
{
fdi_Ziphuft_free(CAB(hfdi), fixed_tl);
return i;
}
/* decompress until an end-of-block code */
i = fdi_Zipinflate_codes(fixed_tl, fixed_td, fixed_bl, fixed_bd, decomp_state);
fdi_Ziphuft_free(CAB(hfdi), fixed_td);
fdi_Ziphuft_free(CAB(hfdi), fixed_tl);
return i;
}
/**************************************************************
* fdi_Zipinflate_dynamic (internal)
*/
static cab_LONG fdi_Zipinflate_dynamic(fdi_decomp_state *decomp_state)
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
{
cab_LONG i; /* temporary variables */
cab_ULONG j;
cab_ULONG *ll;
cab_ULONG l; /* last length */
cab_ULONG m; /* mask for bit lengths table */
cab_ULONG n; /* number of lengths to get */
struct Ziphuft *tl; /* literal/length code table */
struct Ziphuft *td; /* distance code table */
cab_LONG bl; /* lookup bits for tl */
cab_LONG bd; /* lookup bits for td */
cab_ULONG nb; /* number of bit length codes */
cab_ULONG nl; /* number of literal/length codes */
cab_ULONG nd; /* number of distance codes */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local bit buffer */
b = ZIP(bb);
k = ZIP(bk);
ll = ZIP(ll);
/* read in table lengths */
ZIPNEEDBITS(5)
nl = 257 + (b & 0x1f); /* number of literal/length codes */
ZIPDUMPBITS(5)
ZIPNEEDBITS(5)
nd = 1 + (b & 0x1f); /* number of distance codes */
ZIPDUMPBITS(5)
ZIPNEEDBITS(4)
nb = 4 + (b & 0xf); /* number of bit length codes */
ZIPDUMPBITS(4)
if(nl > 288 || nd > 32)
return 1; /* bad lengths */
/* read in bit-length-code lengths */
for(j = 0; j < nb; j++)
{
ZIPNEEDBITS(3)
ll[Zipborder[j]] = b & 7;
ZIPDUMPBITS(3)
}
for(; j < 19; j++)
ll[Zipborder[j]] = 0;
/* build decoding table for trees--single level, 7 bit lookup */
bl = 7;
if((i = fdi_Ziphuft_build(ll, 19, 19, NULL, NULL, &tl, &bl, decomp_state)) != 0)
{
if(i == 1)
fdi_Ziphuft_free(CAB(hfdi), tl);
return i; /* incomplete code set */
}
/* read in literal and distance code lengths */
n = nl + nd;
m = Zipmask[bl];
i = l = 0;
while((cab_ULONG)i < n)
{
ZIPNEEDBITS((cab_ULONG)bl)
j = (td = tl + (b & m))->b;
ZIPDUMPBITS(j)
j = td->v.n;
if (j < 16) /* length of code in bits (0..15) */
ll[i++] = l = j; /* save last length in l */
else if (j == 16) /* repeat last length 3 to 6 times */
{
ZIPNEEDBITS(2)
j = 3 + (b & 3);
ZIPDUMPBITS(2)
if((cab_ULONG)i + j > n)
return 1;
while (j--)
ll[i++] = l;
}
else if (j == 17) /* 3 to 10 zero length codes */
{
ZIPNEEDBITS(3)
j = 3 + (b & 7);
ZIPDUMPBITS(3)
if ((cab_ULONG)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
else /* j == 18: 11 to 138 zero length codes */
{
ZIPNEEDBITS(7)
j = 11 + (b & 0x7f);
ZIPDUMPBITS(7)
if ((cab_ULONG)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
}
/* free decoding table for trees */
fdi_Ziphuft_free(CAB(hfdi), tl);
/* restore the global bit buffer */
ZIP(bb) = b;
ZIP(bk) = k;
/* build the decoding tables for literal/length and distance codes */
bl = ZIPLBITS;
if((i = fdi_Ziphuft_build(ll, nl, 257, Zipcplens, Zipcplext, &tl, &bl, decomp_state)) != 0)
{
if(i == 1)
fdi_Ziphuft_free(CAB(hfdi), tl);
return i; /* incomplete code set */
}
bd = ZIPDBITS;
fdi_Ziphuft_build(ll + nl, nd, 0, Zipcpdist, Zipcpdext, &td, &bd, decomp_state);
/* decompress until an end-of-block code */
if(fdi_Zipinflate_codes(tl, td, bl, bd, decomp_state))
return 1;
/* free the decoding tables, return */
fdi_Ziphuft_free(CAB(hfdi), tl);
fdi_Ziphuft_free(CAB(hfdi), td);
return 0;
}
/*****************************************************
* fdi_Zipinflate_block (internal)
*/
static cab_LONG fdi_Zipinflate_block(cab_LONG *e, fdi_decomp_state *decomp_state) /* e == last block flag */
{ /* decompress an inflated block */
cab_ULONG t; /* block type */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local bit buffer */
b = ZIP(bb);
k = ZIP(bk);
/* read in last block bit */
ZIPNEEDBITS(1)
*e = (cab_LONG)b & 1;
ZIPDUMPBITS(1)
/* read in block type */
ZIPNEEDBITS(2)
t = b & 3;
ZIPDUMPBITS(2)
/* restore the global bit buffer */
ZIP(bb) = b;
ZIP(bk) = k;
/* inflate that block type */
if(t == 2)
return fdi_Zipinflate_dynamic(decomp_state);
if(t == 0)
return fdi_Zipinflate_stored(decomp_state);
if(t == 1)
return fdi_Zipinflate_fixed(decomp_state);
/* bad block type */
return 2;
}
/****************************************************
* ZIPfdi_decomp(internal)
*/
static int ZIPfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state)
{
cab_LONG e; /* last block flag */
TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
ZIP(inpos) = CAB(inbuf);
ZIP(bb) = ZIP(bk) = ZIP(window_posn) = 0;
if(outlen > ZIPWSIZE)
return DECR_DATAFORMAT;
/* CK = Chris Kirmse, official Microsoft purloiner */
if(ZIP(inpos)[0] != 0x43 || ZIP(inpos)[1] != 0x4B)
return DECR_ILLEGALDATA;
ZIP(inpos) += 2;
do {
if(fdi_Zipinflate_block(&e, decomp_state))
return DECR_ILLEGALDATA;
} while(!e);
/* return success */
return DECR_OK;
}
/*******************************************************************
* QTMfdi_decomp(internal)
*/
static int QTMfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state)
{
cab_UBYTE *inpos = CAB(inbuf);
cab_UBYTE *window = QTM(window);
cab_UBYTE *runsrc, *rundest;
cab_ULONG window_posn = QTM(window_posn);
cab_ULONG window_size = QTM(window_size);
/* used by bitstream macros */
register int bitsleft, bitrun, bitsneed;
register cab_ULONG bitbuf;
/* used by GET_SYMBOL */
cab_ULONG range;
cab_UWORD symf;
int i;
int extra, togo = outlen, match_length = 0, copy_length;
cab_UBYTE selector, sym;
cab_ULONG match_offset = 0;
cab_UWORD H = 0xFFFF, L = 0, C;
TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
/* read initial value of C */
Q_INIT_BITSTREAM;
Q_READ_BITS(C, 16);
/* apply 2^x-1 mask */
window_posn &= window_size - 1;
/* runs can't straddle the window wraparound */
if ((window_posn + togo) > window_size) {
TRACE("straddled run\n");
return DECR_DATAFORMAT;
}
while (togo > 0) {
GET_SYMBOL(model7, selector);
switch (selector) {
case 0:
GET_SYMBOL(model00, sym); window[window_posn++] = sym; togo--;
break;
case 1:
GET_SYMBOL(model40, sym); window[window_posn++] = sym; togo--;
break;
case 2:
GET_SYMBOL(model80, sym); window[window_posn++] = sym; togo--;
break;
case 3:
GET_SYMBOL(modelC0, sym); window[window_posn++] = sym; togo--;
break;
case 4:
/* selector 4 = fixed length of 3 */
GET_SYMBOL(model4, sym);
Q_READ_BITS(extra, CAB(q_extra_bits)[sym]);
match_offset = CAB(q_position_base)[sym] + extra + 1;
match_length = 3;
break;
case 5:
/* selector 5 = fixed length of 4 */
GET_SYMBOL(model5, sym);
Q_READ_BITS(extra, CAB(q_extra_bits)[sym]);
match_offset = CAB(q_position_base)[sym] + extra + 1;
match_length = 4;
break;
case 6:
/* selector 6 = variable length */
GET_SYMBOL(model6len, sym);
Q_READ_BITS(extra, CAB(q_length_extra)[sym]);
match_length = CAB(q_length_base)[sym] + extra + 5;
GET_SYMBOL(model6pos, sym);
Q_READ_BITS(extra, CAB(q_extra_bits)[sym]);
match_offset = CAB(q_position_base)[sym] + extra + 1;
break;
default:
TRACE("Selector is bogus\n");
return DECR_ILLEGALDATA;
}
/* if this is a match */
if (selector >= 4) {
rundest = window + window_posn;
togo -= match_length;
/* copy any wrapped around source data */
if (window_posn >= match_offset) {
/* no wrap */
runsrc = rundest - match_offset;
} else {
runsrc = rundest + (window_size - match_offset);
copy_length = match_offset - window_posn;
if (copy_length < match_length) {
match_length -= copy_length;
window_posn += copy_length;
while (copy_length-- > 0) *rundest++ = *runsrc++;
runsrc = window;
}
}
window_posn += match_length;
/* copy match data - no worries about destination wraps */
while (match_length-- > 0) *rundest++ = *runsrc++;
}
} /* while (togo > 0) */
if (togo != 0) {
TRACE("Frame overflow, this_run = %d\n", togo);
return DECR_ILLEGALDATA;
}
memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) -
outlen, outlen);
QTM(window_posn) = window_posn;
return DECR_OK;
}
/************************************************************
* fdi_lzx_read_lens (internal)
*/
static int fdi_lzx_read_lens(cab_UBYTE *lens, cab_ULONG first, cab_ULONG last, struct lzx_bits *lb,
fdi_decomp_state *decomp_state) {
cab_ULONG i,j, x,y;
int z;
register cab_ULONG bitbuf = lb->bb;
register int bitsleft = lb->bl;
cab_UBYTE *inpos = lb->ip;
cab_UWORD *hufftbl;
for (x = 0; x < 20; x++) {
READ_BITS(y, 4);
LENTABLE(PRETREE)[x] = y;
}
BUILD_TABLE(PRETREE);
for (x = first; x < last; ) {
READ_HUFFSYM(PRETREE, z);
if (z == 17) {
READ_BITS(y, 4); y += 4;
while (y--) lens[x++] = 0;
}
else if (z == 18) {
READ_BITS(y, 5); y += 20;
while (y--) lens[x++] = 0;
}
else if (z == 19) {
READ_BITS(y, 1); y += 4;
READ_HUFFSYM(PRETREE, z);
z = lens[x] - z; if (z < 0) z += 17;
while (y--) lens[x++] = z;
}
else {
z = lens[x] - z; if (z < 0) z += 17;
lens[x++] = z;
}
}
lb->bb = bitbuf;
lb->bl = bitsleft;
lb->ip = inpos;
return 0;
}
/*******************************************************
* LZXfdi_decomp(internal)
*/
static int LZXfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state) {
cab_UBYTE *inpos = CAB(inbuf);
const cab_UBYTE *endinp = inpos + inlen;
cab_UBYTE *window = LZX(window);
cab_UBYTE *runsrc, *rundest;
cab_UWORD *hufftbl; /* used in READ_HUFFSYM macro as chosen decoding table */
cab_ULONG window_posn = LZX(window_posn);
cab_ULONG window_size = LZX(window_size);
cab_ULONG R0 = LZX(R0);
cab_ULONG R1 = LZX(R1);
cab_ULONG R2 = LZX(R2);
register cab_ULONG bitbuf;
register int bitsleft;
cab_ULONG match_offset, i,j,k; /* ijk used in READ_HUFFSYM macro */
struct lzx_bits lb; /* used in READ_LENGTHS macro */
int togo = outlen, this_run, main_element, aligned_bits;
int match_length, copy_length, length_footer, extra, verbatim_bits;
TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
INIT_BITSTREAM;
/* read header if necessary */
if (!LZX(header_read)) {
i = j = 0;
READ_BITS(k, 1); if (k) { READ_BITS(i,16); READ_BITS(j,16); }
LZX(intel_filesize) = (i << 16) | j; /* or 0 if not encoded */
LZX(header_read) = 1;
}
/* main decoding loop */
while (togo > 0) {
/* last block finished, new block expected */
if (LZX(block_remaining) == 0) {
if (LZX(block_type) == LZX_BLOCKTYPE_UNCOMPRESSED) {
if (LZX(block_length) & 1) inpos++; /* realign bitstream to word */
INIT_BITSTREAM;
}
READ_BITS(LZX(block_type), 3);
READ_BITS(i, 16);
READ_BITS(j, 8);
LZX(block_remaining) = LZX(block_length) = (i << 8) | j;
switch (LZX(block_type)) {
case LZX_BLOCKTYPE_ALIGNED:
for (i = 0; i < 8; i++) { READ_BITS(j, 3); LENTABLE(ALIGNED)[i] = j; }
BUILD_TABLE(ALIGNED);
/* rest of aligned header is same as verbatim */
case LZX_BLOCKTYPE_VERBATIM:
READ_LENGTHS(MAINTREE, 0, 256, fdi_lzx_read_lens);
READ_LENGTHS(MAINTREE, 256, LZX(main_elements), fdi_lzx_read_lens);
BUILD_TABLE(MAINTREE);
if (LENTABLE(MAINTREE)[0xE8] != 0) LZX(intel_started) = 1;
READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS, fdi_lzx_read_lens);
BUILD_TABLE(LENGTH);
break;
case LZX_BLOCKTYPE_UNCOMPRESSED:
LZX(intel_started) = 1; /* because we can't assume otherwise */
ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */
if (bitsleft > 16) inpos -= 2; /* and align the bitstream! */
R0 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
R1 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
R2 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
break;
default:
return DECR_ILLEGALDATA;
}
}
/* buffer exhaustion check */
if (inpos > endinp) {
/* it's possible to have a file where the next run is less than
* 16 bits in size. In this case, the READ_HUFFSYM() macro used
* in building the tables will exhaust the buffer, so we should
* allow for this, but not allow those accidentally read bits to
* be used (so we check that there are at least 16 bits
* remaining - in this boundary case they aren't really part of
* the compressed data)
*/
if (inpos > (endinp+2) || bitsleft < 16) return DECR_ILLEGALDATA;
}
while ((this_run = LZX(block_remaining)) > 0 && togo > 0) {
if (this_run > togo) this_run = togo;
togo -= this_run;
LZX(block_remaining) -= this_run;
/* apply 2^x-1 mask */
window_posn &= window_size - 1;
/* runs can't straddle the window wraparound */
if ((window_posn + this_run) > window_size)
return DECR_DATAFORMAT;
switch (LZX(block_type)) {
case LZX_BLOCKTYPE_VERBATIM:
while (this_run > 0) {
READ_HUFFSYM(MAINTREE, main_element);
if (main_element < LZX_NUM_CHARS) {
/* literal: 0 to LZX_NUM_CHARS-1 */
window[window_posn++] = main_element;
this_run--;
}
else {
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
main_element -= LZX_NUM_CHARS;
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
READ_HUFFSYM(LENGTH, length_footer);
match_length += length_footer;
}
match_length += LZX_MIN_MATCH;
match_offset = main_element >> 3;
if (match_offset > 2) {
/* not repeated offset */
if (match_offset != 3) {
extra = CAB(extra_bits)[match_offset];
READ_BITS(verbatim_bits, extra);
match_offset = CAB(lzx_position_base)[match_offset]
- 2 + verbatim_bits;
}
else {
match_offset = 1;
}
/* update repeated offset LRU queue */
R2 = R1; R1 = R0; R0 = match_offset;
}
else if (match_offset == 0) {
match_offset = R0;
}
else if (match_offset == 1) {
match_offset = R1;
R1 = R0; R0 = match_offset;
}
else /* match_offset == 2 */ {
match_offset = R2;
R2 = R0; R0 = match_offset;
}
rundest = window + window_posn;
this_run -= match_length;
/* copy any wrapped around source data */
if (window_posn >= match_offset) {
/* no wrap */
runsrc = rundest - match_offset;
} else {
runsrc = rundest + (window_size - match_offset);
copy_length = match_offset - window_posn;
if (copy_length < match_length) {
match_length -= copy_length;
window_posn += copy_length;
while (copy_length-- > 0) *rundest++ = *runsrc++;
runsrc = window;
}
}
window_posn += match_length;
/* copy match data - no worries about destination wraps */
while (match_length-- > 0) *rundest++ = *runsrc++;
}
}
break;
case LZX_BLOCKTYPE_ALIGNED:
while (this_run > 0) {
READ_HUFFSYM(MAINTREE, main_element);
if (main_element < LZX_NUM_CHARS) {
/* literal: 0 to LZX_NUM_CHARS-1 */
window[window_posn++] = main_element;
this_run--;
}
else {
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
main_element -= LZX_NUM_CHARS;
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
READ_HUFFSYM(LENGTH, length_footer);
match_length += length_footer;
}
match_length += LZX_MIN_MATCH;
match_offset = main_element >> 3;
if (match_offset > 2) {
/* not repeated offset */
extra = CAB(extra_bits)[match_offset];
match_offset = CAB(lzx_position_base)[match_offset] - 2;
if (extra > 3) {
/* verbatim and aligned bits */
extra -= 3;
READ_BITS(verbatim_bits, extra);
match_offset += (verbatim_bits << 3);
READ_HUFFSYM(ALIGNED, aligned_bits);
match_offset += aligned_bits;
}
else if (extra == 3) {
/* aligned bits only */
READ_HUFFSYM(ALIGNED, aligned_bits);
match_offset += aligned_bits;
}
else if (extra > 0) { /* extra==1, extra==2 */
/* verbatim bits only */
READ_BITS(verbatim_bits, extra);
match_offset += verbatim_bits;
}
else /* extra == 0 */ {
/* ??? */
match_offset = 1;
}
/* update repeated offset LRU queue */
R2 = R1; R1 = R0; R0 = match_offset;
}
else if (match_offset == 0) {
match_offset = R0;
}
else if (match_offset == 1) {
match_offset = R1;
R1 = R0; R0 = match_offset;
}
else /* match_offset == 2 */ {
match_offset = R2;
R2 = R0; R0 = match_offset;
}
rundest = window + window_posn;
this_run -= match_length;
/* copy any wrapped around source data */
if (window_posn >= match_offset) {
/* no wrap */
runsrc = rundest - match_offset;
} else {
runsrc = rundest + (window_size - match_offset);
copy_length = match_offset - window_posn;
if (copy_length < match_length) {
match_length -= copy_length;
window_posn += copy_length;
while (copy_length-- > 0) *rundest++ = *runsrc++;
runsrc = window;
}
}
window_posn += match_length;
/* copy match data - no worries about destination wraps */
while (match_length-- > 0) *rundest++ = *runsrc++;
}
}
break;
case LZX_BLOCKTYPE_UNCOMPRESSED:
if ((inpos + this_run) > endinp) return DECR_ILLEGALDATA;
memcpy(window + window_posn, inpos, (size_t) this_run);
inpos += this_run; window_posn += this_run;
break;
default:
return DECR_ILLEGALDATA; /* might as well */
}
}
}
if (togo != 0) return DECR_ILLEGALDATA;
memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) -
outlen, (size_t) outlen);
LZX(window_posn) = window_posn;
LZX(R0) = R0;
LZX(R1) = R1;
LZX(R2) = R2;
/* intel E8 decoding */
if ((LZX(frames_read)++ < 32768) && LZX(intel_filesize) != 0) {
if (outlen <= 6 || !LZX(intel_started)) {
LZX(intel_curpos) += outlen;
}
else {
cab_UBYTE *data = CAB(outbuf);
cab_UBYTE *dataend = data + outlen - 10;
cab_LONG curpos = LZX(intel_curpos);
cab_LONG filesize = LZX(intel_filesize);
cab_LONG abs_off, rel_off;
LZX(intel_curpos) = curpos + outlen;
while (data < dataend) {
if (*data++ != 0xE8) { curpos++; continue; }
abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24);
if ((abs_off >= -curpos) && (abs_off < filesize)) {
rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize;
data[0] = (cab_UBYTE) rel_off;
data[1] = (cab_UBYTE) (rel_off >> 8);
data[2] = (cab_UBYTE) (rel_off >> 16);
data[3] = (cab_UBYTE) (rel_off >> 24);
}
data += 4;
curpos += 5;
}
}
}
return DECR_OK;
}
/**********************************************************
* fdi_decomp (internal)
*
* Decompress the requested number of bytes. If savemode is zero,
* do not save the output anywhere, just plow through blocks until we
* reach the specified (uncompressed) distance from the starting point,
* and remember the position of the cabfile pointer (and which cabfile)
* after we are done; otherwise, save the data out to CAB(filehf),
* decompressing the requested number of bytes and writing them out. This
* is also where we jump to additional cabinets in the case of split
* cab's, and provide (some of) the NEXT_CABINET notification semantics.
*/
static int fdi_decomp(const struct fdi_file *fi, int savemode, fdi_decomp_state *decomp_state,
char *pszCabPath, PFNFDINOTIFY pfnfdin, void *pvUser)
{
cab_ULONG bytes = savemode ? fi->length : fi->offset - CAB(offset);
cab_UBYTE buf[cfdata_SIZEOF], *data;
cab_UWORD inlen, len, outlen, cando;
cab_ULONG cksum;
cab_LONG err;
fdi_decomp_state *cab = (savemode && CAB(decomp_cab)) ? CAB(decomp_cab) : decomp_state;
TRACE("(fi == ^%p, savemode == %d, bytes == %d)\n", fi, savemode, bytes);
while (bytes > 0) {
/* cando = the max number of bytes we can do */
cando = CAB(outlen);
if (cando > bytes) cando = bytes;
/* if cando != 0 */
if (cando && savemode)
PFDI_WRITE(CAB(hfdi), CAB(filehf), CAB(outpos), cando);
CAB(outpos) += cando;
CAB(outlen) -= cando;
bytes -= cando; if (!bytes) break;
/* we only get here if we emptied the output buffer */
/* read data header + data */
inlen = outlen = 0;
while (outlen == 0) {
/* read the block header, skip the reserved part */
if (PFDI_READ(CAB(hfdi), cab->cabhf, buf, cfdata_SIZEOF) != cfdata_SIZEOF)
return DECR_INPUT;
if (PFDI_SEEK(CAB(hfdi), cab->cabhf, cab->mii.block_resv, SEEK_CUR) == -1)
return DECR_INPUT;
/* we shouldn't get blocks over CAB_INPUTMAX in size */
data = CAB(inbuf) + inlen;
len = EndGetI16(buf+cfdata_CompressedSize);
inlen += len;
if (inlen > CAB_INPUTMAX) return DECR_INPUT;
if (PFDI_READ(CAB(hfdi), cab->cabhf, data, len) != len)
return DECR_INPUT;
/* clear two bytes after read-in data */
data[len+1] = data[len+2] = 0;
/* perform checksum test on the block (if one is stored) */
cksum = EndGetI32(buf+cfdata_CheckSum);
if (cksum && cksum != checksum(buf+4, 4, checksum(data, len, 0)))
return DECR_CHECKSUM; /* checksum is wrong */
outlen = EndGetI16(buf+cfdata_UncompressedSize);
/* outlen=0 means this block was the last contiguous part
of a split block, continued in the next cabinet */
if (outlen == 0) {
int pathlen, filenamelen, idx, i;
INT_PTR cabhf;
char fullpath[MAX_PATH], userpath[256];
FDINOTIFICATION fdin;
FDICABINETINFO fdici;
char emptystring = '\0';
cab_UBYTE buf2[64];
int success = FALSE;
struct fdi_folder *fol = NULL, *linkfol = NULL;
struct fdi_file *file = NULL, *linkfile = NULL;
tryanothercab:
/* set up the next decomp_state... */
if (!(cab->next)) {
if (!cab->mii.hasnext) return DECR_INPUT;
if (!((cab->next = PFDI_ALLOC(CAB(hfdi), sizeof(fdi_decomp_state)))))
return DECR_NOMEMORY;
ZeroMemory(cab->next, sizeof(fdi_decomp_state));
/* copy pszCabPath to userpath */
ZeroMemory(userpath, 256);
pathlen = (pszCabPath) ? strlen(pszCabPath) : 0;
if (pathlen) {
if (pathlen < 256) {
for (i = 0; i <= pathlen; i++)
userpath[i] = pszCabPath[i];
} /* else we are in a weird place... let's leave it blank and see if the user fixes it */
}
/* initial fdintNEXT_CABINET notification */
ZeroMemory(&fdin, sizeof(FDINOTIFICATION));
fdin.psz1 = (cab->mii.nextname) ? cab->mii.nextname : &emptystring;
fdin.psz2 = (cab->mii.nextinfo) ? cab->mii.nextinfo : &emptystring;
fdin.psz3 = &userpath[0];
fdin.fdie = FDIERROR_NONE;
fdin.pv = pvUser;
if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT;
do {
pathlen = strlen(userpath);
filenamelen = (cab->mii.nextname) ? strlen(cab->mii.nextname) : 0;
/* slight overestimation here to save CPU cycles in the developer's brain */
if ((pathlen + filenamelen + 3) > MAX_PATH) {
ERR("MAX_PATH exceeded.\n");
return DECR_ILLEGALDATA;
}
/* paste the path and filename together */
idx = 0;
if (pathlen) {
for (i = 0; i < pathlen; i++) fullpath[idx++] = userpath[i];
if (fullpath[idx - 1] != '\\') fullpath[idx++] = '\\';
}
if (filenamelen) for (i = 0; i < filenamelen; i++) fullpath[idx++] = cab->mii.nextname[i];
fullpath[idx] = '\0';
TRACE("full cab path/file name: %s\n", debugstr_a(fullpath));
/* try to get a handle to the cabfile */
cabhf = PFDI_OPEN(CAB(hfdi), fullpath, _O_RDONLY|_O_BINARY, _S_IREAD | _S_IWRITE);
if (cabhf == -1) {
/* no file. allow the user to try again */
fdin.fdie = FDIERROR_CABINET_NOT_FOUND;
if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT;
continue;
}
if (cabhf == 0) {
ERR("PFDI_OPEN returned zero for %s.\n", fullpath);
fdin.fdie = FDIERROR_CABINET_NOT_FOUND;
if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT;
continue;
}
/* check if it's really a cabfile. Note that this doesn't implement the bug */
if (!FDI_read_entries(CAB(hfdi), cabhf, &fdici, &(cab->next->mii))) {
WARN("FDIIsCabinet failed.\n");
PFDI_CLOSE(CAB(hfdi), cabhf);
fdin.fdie = FDIERROR_NOT_A_CABINET;
if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT;
continue;
}
if ((fdici.setID != cab->setID) || (fdici.iCabinet != (cab->iCabinet + 1))) {
WARN("Wrong Cabinet.\n");
PFDI_CLOSE(CAB(hfdi), cabhf);
fdin.fdie = FDIERROR_WRONG_CABINET;
if (((*pfnfdin)(fdintNEXT_CABINET, &fdin))) return DECR_USERABORT;
continue;
}
break;
} while (1);
/* cabinet notification */
ZeroMemory(&fdin, sizeof(FDINOTIFICATION));
fdin.setID = fdici.setID;
fdin.iCabinet = fdici.iCabinet;
fdin.pv = pvUser;
fdin.psz1 = (cab->next->mii.nextname) ? cab->next->mii.nextname : &emptystring;
fdin.psz2 = (cab->next->mii.nextinfo) ? cab->next->mii.nextinfo : &emptystring;
fdin.psz3 = pszCabPath;
if (((*pfnfdin)(fdintCABINET_INFO, &fdin))) return DECR_USERABORT;
cab->next->setID = fdici.setID;
cab->next->iCabinet = fdici.iCabinet;
cab->next->hfdi = CAB(hfdi);
cab->next->filehf = CAB(filehf);
cab->next->cabhf = cabhf;
cab->next->decompress = CAB(decompress); /* crude, but unused anyhow */
cab = cab->next; /* advance to the next cabinet */
/* read folders */
for (i = 0; i < fdici.cFolders; i++) {
if (PFDI_READ(CAB(hfdi), cab->cabhf, buf2, cffold_SIZEOF) != cffold_SIZEOF)
return DECR_INPUT;
if (cab->mii.folder_resv > 0)
PFDI_SEEK(CAB(hfdi), cab->cabhf, cab->mii.folder_resv, SEEK_CUR);
fol = PFDI_ALLOC(CAB(hfdi), sizeof(struct fdi_folder));
if (!fol) {
ERR("out of memory!\n");
return DECR_NOMEMORY;
}
ZeroMemory(fol, sizeof(struct fdi_folder));
if (!(cab->firstfol)) cab->firstfol = fol;
fol->offset = (cab_off_t) EndGetI32(buf2+cffold_DataOffset);
fol->num_blocks = EndGetI16(buf2+cffold_NumBlocks);
fol->comp_type = EndGetI16(buf2+cffold_CompType);
if (linkfol)
linkfol->next = fol;
linkfol = fol;
}
/* read files */
for (i = 0; i < fdici.cFiles; i++) {
if (PFDI_READ(CAB(hfdi), cab->cabhf, buf2, cffile_SIZEOF) != cffile_SIZEOF)
return DECR_INPUT;
file = PFDI_ALLOC(CAB(hfdi), sizeof(struct fdi_file));
if (!file) {
ERR("out of memory!\n");
return DECR_NOMEMORY;
}
ZeroMemory(file, sizeof(struct fdi_file));
if (!(cab->firstfile)) cab->firstfile = file;
file->length = EndGetI32(buf2+cffile_UncompressedSize);
file->offset = EndGetI32(buf2+cffile_FolderOffset);
file->index = EndGetI16(buf2+cffile_FolderIndex);
file->time = EndGetI16(buf2+cffile_Time);
file->date = EndGetI16(buf2+cffile_Date);
file->attribs = EndGetI16(buf2+cffile_Attribs);
file->filename = FDI_read_string(CAB(hfdi), cab->cabhf, fdici.cbCabinet);
if (!file->filename) return DECR_INPUT;
if (linkfile)
linkfile->next = file;
linkfile = file;
}
} else
cab = cab->next; /* advance to the next cabinet */
/* iterate files -- if we encounter the continued file, process it --
otherwise, jump to the label above and keep looking */
for (file = cab->firstfile; (file); file = file->next) {
if ((file->index & cffileCONTINUED_FROM_PREV) == cffileCONTINUED_FROM_PREV) {
/* check to ensure a real match */
if (lstrcmpiA(fi->filename, file->filename) == 0) {
success = TRUE;
if (PFDI_SEEK(CAB(hfdi), cab->cabhf, cab->firstfol->offset, SEEK_SET) == -1)
return DECR_INPUT;
break;
}
}
}
if (!success) goto tryanothercab; /* FIXME: shouldn't this trigger
"Wrong Cabinet" notification? */
}
}
/* decompress block */
if ((err = CAB(decompress)(inlen, outlen, decomp_state)))
return err;
CAB(outlen) = outlen;
CAB(outpos) = CAB(outbuf);
}
CAB(decomp_cab) = cab;
return DECR_OK;
}
static void free_decompression_temps(HFDI hfdi, const struct fdi_folder *fol,
fdi_decomp_state *decomp_state)
{
switch (fol->comp_type & cffoldCOMPTYPE_MASK) {
case cffoldCOMPTYPE_LZX:
if (LZX(window)) {
PFDI_FREE(hfdi, LZX(window));
LZX(window) = NULL;
}
break;
case cffoldCOMPTYPE_QUANTUM:
if (QTM(window)) {
PFDI_FREE(hfdi, QTM(window));
QTM(window) = NULL;
}
break;
}
}
static void free_decompression_mem(HFDI hfdi,
fdi_decomp_state *decomp_state, struct fdi_file *file)
{
struct fdi_folder *fol;
while (decomp_state) {
fdi_decomp_state *prev_fds;
PFDI_CLOSE(hfdi, CAB(cabhf));
/* free the storage remembered by mii */
if (CAB(mii).nextname) PFDI_FREE(hfdi, CAB(mii).nextname);
if (CAB(mii).nextinfo) PFDI_FREE(hfdi, CAB(mii).nextinfo);
if (CAB(mii).prevname) PFDI_FREE(hfdi, CAB(mii).prevname);
if (CAB(mii).previnfo) PFDI_FREE(hfdi, CAB(mii).previnfo);
while (CAB(firstfol)) {
fol = CAB(firstfol);
CAB(firstfol) = CAB(firstfol)->next;
PFDI_FREE(hfdi, fol);
}
while (CAB(firstfile)) {
file = CAB(firstfile);
if (file->filename) PFDI_FREE(hfdi, file->filename);
CAB(firstfile) = CAB(firstfile)->next;
PFDI_FREE(hfdi, file);
}
prev_fds = decomp_state;
decomp_state = CAB(next);
PFDI_FREE(hfdi, prev_fds);
}
}
/***********************************************************************
* FDICopy (CABINET.22)
*
* Iterates through the files in the Cabinet file indicated by name and
* file-location. May chain forward to additional cabinets (typically
* only one) if files which begin in this Cabinet are continued in another
* cabinet. For each file which is partially contained in this cabinet,
* and partially contained in a prior cabinet, provides fdintPARTIAL_FILE
* notification to the pfnfdin callback. For each file which begins in
* this cabinet, fdintCOPY_FILE notification is provided to the pfnfdin
* callback, and the file is optionally decompressed and saved to disk.
* Notification is not provided for files which are not at least partially
* contained in the specified cabinet file.
*
* See below for a thorough explanation of the various notification
* callbacks.
*
* PARAMS
* hfdi [I] An HFDI from FDICreate
* pszCabinet [I] C-style string containing the filename of the cabinet
* pszCabPath [I] C-style string containing the file path of the cabinet
* flags [I] "Decoder parameters". Ignored. Suggested value: 0.
* pfnfdin [I] Pointer to a notification function. See CALLBACKS below.
* pfnfdid [I] Pointer to a decryption function. Ignored. Suggested
* value: NULL.
* pvUser [I] arbitrary void * value which is passed to callbacks.
*
* RETURNS
* TRUE if successful.
* FALSE if unsuccessful (error information is provided in the ERF structure
* associated with the provided decompression handle by FDICreate).
*
* CALLBACKS
*
* Two pointers to callback functions are provided as parameters to FDICopy:
* pfnfdin(of type PFNFDINOTIFY), and pfnfdid (of type PFNFDIDECRYPT). These
* types are as follows:
*
* typedef INT_PTR (__cdecl *PFNFDINOTIFY) ( FDINOTIFICATIONTYPE fdint,
* PFDINOTIFICATION pfdin );
*
* typedef int (__cdecl *PFNFDIDECRYPT) ( PFDIDECRYPT pfdid );
*
* You can create functions of this type using the FNFDINOTIFY() and
* FNFDIDECRYPT() macros, respectively. For example:
*
* FNFDINOTIFY(mycallback) {
* / * use variables fdint and pfdin to process notification * /
* }
*
* The second callback, which could be used for decrypting encrypted data,
* is not used at all.
*
* Each notification informs the user of some event which has occurred during
* decompression of the cabinet file; each notification is also an opportunity
* for the callee to abort decompression. The information provided to the
* callback and the meaning of the callback's return value vary drastically
* across the various types of notification. The type of notification is the
* fdint parameter; all other information is provided to the callback in
* notification-specific parts of the FDINOTIFICATION structure pointed to by
* pfdin. The only part of that structure which is assigned for every callback
* is the pv element, which contains the arbitrary value which was passed to
* FDICopy in the pvUser argument (psz1 is also used each time, but its meaning
* is highly dependent on fdint).
*
* If you encounter unknown notifications, you should return zero if you want
* decompression to continue (or -1 to abort). All strings used in the
* callbacks are regular C-style strings. Detailed descriptions of each
* notification type follow:
*
* fdintCABINET_INFO:
*
* This is the first notification provided after calling FDICopy, and provides
* the user with various information about the cabinet. Note that this is
* called for each cabinet FDICopy opens, not just the first one. In the
* structure pointed to by pfdin, psz1 contains a pointer to the name of the
* next cabinet file in the set after the one just loaded (if any), psz2
* contains a pointer to the name or "info" of the next disk, psz3
* contains a pointer to the file-path of the current cabinet, setID
* contains an arbitrary constant associated with this set of cabinet files,
* and iCabinet contains the numerical index of the current cabinet within
* that set. Return zero, or -1 to abort.
*
* fdintPARTIAL_FILE:
*
* This notification is provided when FDICopy encounters a part of a file
* contained in this cabinet which is missing its beginning. Files can be
* split across cabinets, so this is not necessarily an abnormality; it just
* means that the file in question begins in another cabinet. No file
* corresponding to this notification is extracted from the cabinet. In the
* structure pointed to by pfdin, psz1 contains a pointer to the name of the
* partial file, psz2 contains a pointer to the file name of the cabinet in
* which this file begins, and psz3 contains a pointer to the disk name or
* "info" of the cabinet where the file begins. Return zero, or -1 to abort.
*
* fdintCOPY_FILE:
*
* This notification is provided when FDICopy encounters a file which starts
* in the cabinet file, provided to FDICopy in pszCabinet. (FDICopy will not
* look for files in cabinets after the first one). One notification will be
* sent for each such file, before the file is decompressed. By returning
* zero, the callback can instruct FDICopy to skip the file. In the structure
* pointed to by pfdin, psz1 contains a pointer to the file's name, cb contains
* the size of the file (uncompressed), attribs contains the file attributes,
* and date and time contain the date and time of the file. attributes, date,
* and time are of the 16-bit ms-dos variety. Return -1 to abort decompression
* for the entire cabinet, 0 to skip just this file but continue scanning the
* cabinet for more files, or an FDIClose()-compatible file-handle.
*
* fdintCLOSE_FILE_INFO:
*
* This notification is important, don't forget to implement it. This
* notification indicates that a file has been successfully uncompressed and
* written to disk. Upon receipt of this notification, the callee is expected
* to close the file handle, to set the attributes and date/time of the
* closed file, and possibly to execute the file. In the structure pointed to
* by pfdin, psz1 contains a pointer to the name of the file, hf will be the
* open file handle (close it), cb contains 1 or zero, indicating respectively
* that the callee should or should not execute the file, and date, time
* and attributes will be set as in fdintCOPY_FILE. Bizarrely, the Cabinet SDK
* specifies that _A_EXEC will be xor'ed out of attributes! wine does not do
* do so. Return TRUE, or FALSE to abort decompression.
*
* fdintNEXT_CABINET:
*
* This notification is called when FDICopy must load in another cabinet. This
* can occur when a file's data is "split" across multiple cabinets. The
* callee has the opportunity to request that FDICopy look in a different file
* path for the specified cabinet file, by writing that data into a provided
* buffer (see below for more information). This notification will be received
* more than once per-cabinet in the instance that FDICopy failed to find a
* valid cabinet at the location specified by the first per-cabinet
* fdintNEXT_CABINET notification. In such instances, the fdie element of the
* structure pointed to by pfdin indicates the error which prevented FDICopy
* from proceeding successfully. Return zero to indicate success, or -1 to
* indicate failure and abort FDICopy.
*
* Upon receipt of this notification, the structure pointed to by pfdin will
* contain the following values: psz1 pointing to the name of the cabinet
* which FDICopy is attempting to open, psz2 pointing to the name ("info") of
* the next disk, psz3 pointing to the presumed file-location of the cabinet,
* and fdie containing either FDIERROR_NONE, or one of the following:
*
* FDIERROR_CABINET_NOT_FOUND, FDIERROR_NOT_A_CABINET,
* FDIERROR_UNKNOWN_CABINET_VERSION, FDIERROR_CORRUPT_CABINET,
* FDIERROR_BAD_COMPR_TYPE, FDIERROR_RESERVE_MISMATCH, and
* FDIERROR_WRONG_CABINET.
*
* The callee may choose to change the path where FDICopy will look for the
* cabinet after this notification. To do so, the caller may write the new
* pathname to the buffer pointed to by psz3, which is 256 characters in
* length, including the terminating null character, before returning zero.
*
* fdintENUMERATE:
*
* Undocumented and unimplemented in wine, this seems to be sent each time
* a cabinet is opened, along with the fdintCABINET_INFO notification. It
* probably has an interface similar to that of fdintCABINET_INFO; maybe this
* provides information about the current cabinet instead of the next one....
* this is just a guess, it has not been looked at closely.
*
* INCLUDES
* fdi.c
*/
BOOL __cdecl FDICopy(
HFDI hfdi,
char *pszCabinet,
char *pszCabPath,
int flags,
PFNFDINOTIFY pfnfdin,
PFNFDIDECRYPT pfnfdid,
void *pvUser)
{
FDICABINETINFO fdici;
FDINOTIFICATION fdin;
INT_PTR cabhf, filehf = 0;
int idx;
unsigned int i;
char fullpath[MAX_PATH];
size_t pathlen, filenamelen;
char emptystring = '\0';
cab_UBYTE buf[64];
struct fdi_folder *fol = NULL, *linkfol = NULL;
struct fdi_file *file = NULL, *linkfile = NULL;
fdi_decomp_state *decomp_state;
TRACE("(hfdi == ^%p, pszCabinet == ^%p, pszCabPath == ^%p, flags == %0d, "
"pfnfdin == ^%p, pfnfdid == ^%p, pvUser == ^%p)\n",
hfdi, pszCabinet, pszCabPath, flags, pfnfdin, pfnfdid, pvUser);
if (!REALLY_IS_FDI(hfdi)) {
SetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
if (!(decomp_state = PFDI_ALLOC(hfdi, sizeof(fdi_decomp_state))))
{
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
ZeroMemory(decomp_state, sizeof(fdi_decomp_state));
pathlen = (pszCabPath) ? strlen(pszCabPath) : 0;
filenamelen = (pszCabinet) ? strlen(pszCabinet) : 0;
/* slight overestimation here to save CPU cycles in the developer's brain */
if ((pathlen + filenamelen + 3) > MAX_PATH) {
ERR("MAX_PATH exceeded.\n");
PFDI_FREE(hfdi, decomp_state);
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CABINET_NOT_FOUND;
PFDI_INT(hfdi)->perf->erfType = ERROR_FILE_NOT_FOUND;
PFDI_INT(hfdi)->perf->fError = TRUE;
SetLastError(ERROR_FILE_NOT_FOUND);
return FALSE;
}
/* paste the path and filename together */
idx = 0;
if (pathlen) {
for (i = 0; i < pathlen; i++) fullpath[idx++] = pszCabPath[i];
if (fullpath[idx - 1] != '\\') fullpath[idx++] = '\\';
}
if (filenamelen) for (i = 0; i < filenamelen; i++) fullpath[idx++] = pszCabinet[i];
fullpath[idx] = '\0';
TRACE("full cab path/file name: %s\n", debugstr_a(fullpath));
/* get a handle to the cabfile */
cabhf = PFDI_OPEN(hfdi, fullpath, _O_RDONLY|_O_BINARY, _S_IREAD | _S_IWRITE);
if (cabhf == -1) {
PFDI_FREE(hfdi, decomp_state);
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CABINET_NOT_FOUND;
PFDI_INT(hfdi)->perf->fError = TRUE;
SetLastError(ERROR_FILE_NOT_FOUND);
return FALSE;
}
if (cabhf == 0) {
ERR("PFDI_OPEN returned zero for %s.\n", fullpath);
PFDI_FREE(hfdi, decomp_state);
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CABINET_NOT_FOUND;
PFDI_INT(hfdi)->perf->erfType = ERROR_FILE_NOT_FOUND;
PFDI_INT(hfdi)->perf->fError = TRUE;
SetLastError(ERROR_FILE_NOT_FOUND);
return FALSE;
}
/* check if it's really a cabfile. Note that this doesn't implement the bug */
if (!FDI_read_entries(hfdi, cabhf, &fdici, &(CAB(mii)))) {
ERR("FDIIsCabinet failed.\n");
PFDI_FREE(hfdi, decomp_state);
PFDI_CLOSE(hfdi, cabhf);
return FALSE;
}
/* cabinet notification */
ZeroMemory(&fdin, sizeof(FDINOTIFICATION));
fdin.setID = fdici.setID;
fdin.iCabinet = fdici.iCabinet;
fdin.pv = pvUser;
fdin.psz1 = (CAB(mii).nextname) ? CAB(mii).nextname : &emptystring;
fdin.psz2 = (CAB(mii).nextinfo) ? CAB(mii).nextinfo : &emptystring;
fdin.psz3 = pszCabPath;
if (((*pfnfdin)(fdintCABINET_INFO, &fdin))) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
}
CAB(setID) = fdici.setID;
CAB(iCabinet) = fdici.iCabinet;
CAB(cabhf) = cabhf;
/* read folders */
for (i = 0; i < fdici.cFolders; i++) {
if (PFDI_READ(hfdi, cabhf, buf, cffold_SIZEOF) != cffold_SIZEOF) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
}
if (CAB(mii).folder_resv > 0)
PFDI_SEEK(hfdi, cabhf, CAB(mii).folder_resv, SEEK_CUR);
fol = PFDI_ALLOC(hfdi, sizeof(struct fdi_folder));
if (!fol) {
ERR("out of memory!\n");
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL;
PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY;
PFDI_INT(hfdi)->perf->fError = TRUE;
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
goto bail_and_fail;
}
ZeroMemory(fol, sizeof(struct fdi_folder));
if (!CAB(firstfol)) CAB(firstfol) = fol;
fol->offset = (cab_off_t) EndGetI32(buf+cffold_DataOffset);
fol->num_blocks = EndGetI16(buf+cffold_NumBlocks);
fol->comp_type = EndGetI16(buf+cffold_CompType);
if (linkfol)
linkfol->next = fol;
linkfol = fol;
}
/* read files */
for (i = 0; i < fdici.cFiles; i++) {
if (PFDI_READ(hfdi, cabhf, buf, cffile_SIZEOF) != cffile_SIZEOF) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
}
file = PFDI_ALLOC(hfdi, sizeof(struct fdi_file));
if (!file) {
ERR("out of memory!\n");
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL;
PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY;
PFDI_INT(hfdi)->perf->fError = TRUE;
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
goto bail_and_fail;
}
ZeroMemory(file, sizeof(struct fdi_file));
if (!CAB(firstfile)) CAB(firstfile) = file;
file->length = EndGetI32(buf+cffile_UncompressedSize);
file->offset = EndGetI32(buf+cffile_FolderOffset);
file->index = EndGetI16(buf+cffile_FolderIndex);
file->time = EndGetI16(buf+cffile_Time);
file->date = EndGetI16(buf+cffile_Date);
file->attribs = EndGetI16(buf+cffile_Attribs);
file->filename = FDI_read_string(hfdi, cabhf, fdici.cbCabinet);
if (!file->filename) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
}
if (linkfile)
linkfile->next = file;
linkfile = file;
}
for (file = CAB(firstfile); (file); file = file->next) {
/*
* FIXME: This implementation keeps multiple cabinet files open at once
* when encountering a split cabinet. It is a quirk of this implementation
* that sometimes we decrypt the same block of data more than once, to find
* the right starting point for a file, moving the file-pointer backwards.
* If we kept a cache of certain file-pointer information, we could eliminate
* that behavior... in fact I am not sure that the caching we already have
* is not sufficient.
*
* The current implementation seems to work fine in straightforward situations
* where all the cabinet files needed for decryption are simultaneously
* available. But presumably, the API is supposed to support cabinets which
* are split across multiple CDROMS; we may need to change our implementation
* to strictly serialize it's file usage so that it opens only one cabinet
* at a time. Some experimentation with Windows is needed to figure out the
* precise semantics required. The relevant code is here and in fdi_decomp().
*/
/* partial-file notification */
if ((file->index & cffileCONTINUED_FROM_PREV) == cffileCONTINUED_FROM_PREV) {
/*
* FIXME: Need to create a Cabinet with a single file spanning multiple files
* and perform some tests to figure out the right behavior. The SDK says
* FDICopy will notify the user of the filename and "disk name" (info) of
* the cabinet where the spanning file /started/.
*
* That would certainly be convenient for the API-user, who could abort,
* everything (or parallelize, if that's allowed (it is in wine)), and call
* FDICopy again with the provided filename, so as to avoid partial file
* notification and successfully unpack. This task could be quite unpleasant
* from wine's perspective: the information specifying the "start cabinet" for
* a file is associated nowhere with the file header and is not to be found in
* the cabinet header. We have only the index of the cabinet wherein the folder
* begins, which contains the file. To find that cabinet, we must consider the
* index of the current cabinet, and chain backwards, cabinet-by-cabinet (for
* each cabinet refers to its "next" and "previous" cabinet only, like a linked
* list).
*
* Bear in mind that, in the spirit of CABINET.DLL, we must assume that any
* cabinet other than the active one might be at another filepath than the
* current one, or on another CDROM. This could get rather dicey, especially
* if we imagine parallelized access to the FDICopy API.
*
* The current implementation punts -- it just returns the previous cabinet and
* it's info from the header of this cabinet. This provides the right answer in
* 95% of the cases; its worth checking if Microsoft cuts the same corner before
* we "fix" it.
*/
ZeroMemory(&fdin, sizeof(FDINOTIFICATION));
fdin.pv = pvUser;
fdin.psz1 = (char *)file->filename;
fdin.psz2 = (CAB(mii).prevname) ? CAB(mii).prevname : &emptystring;
fdin.psz3 = (CAB(mii).previnfo) ? CAB(mii).previnfo : &emptystring;
if (((*pfnfdin)(fdintPARTIAL_FILE, &fdin))) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
}
/* I don't think we are supposed to decompress partial files. This prevents it. */
file->oppressed = TRUE;
}
if (file->oppressed) {
filehf = 0;
} else {
ZeroMemory(&fdin, sizeof(FDINOTIFICATION));
fdin.pv = pvUser;
fdin.psz1 = (char *)file->filename;
fdin.cb = file->length;
fdin.date = file->date;
fdin.time = file->time;
fdin.attribs = file->attribs;
if ((filehf = ((*pfnfdin)(fdintCOPY_FILE, &fdin))) == -1) {
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
filehf = 0;
goto bail_and_fail;
}
}
/* find the folder for this file if necc. */
if (filehf) {
int i2;
fol = CAB(firstfol);
if ((file->index & cffileCONTINUED_TO_NEXT) == cffileCONTINUED_TO_NEXT) {
/* pick the last folder */
while (fol->next) fol = fol->next;
} else {
for (i2 = 0; (i2 < file->index); i2++)
if (fol->next) /* bug resistance, should always be true */
fol = fol->next;
}
}
if (filehf) {
cab_UWORD comptype = fol->comp_type;
int ct1 = comptype & cffoldCOMPTYPE_MASK;
int ct2 = CAB(current) ? (CAB(current)->comp_type & cffoldCOMPTYPE_MASK) : 0;
int err = 0;
TRACE("Extracting file %s as requested by callee.\n", debugstr_a(file->filename));
/* set up decomp_state */
CAB(hfdi) = hfdi;
CAB(filehf) = filehf;
/* Was there a change of folder? Compression type? Did we somehow go backwards? */
if ((ct1 != ct2) || (CAB(current) != fol) || (file->offset < CAB(offset))) {
TRACE("Resetting folder for file %s.\n", debugstr_a(file->filename));
/* free stuff for the old decompresser */
switch (ct2) {
case cffoldCOMPTYPE_LZX:
if (LZX(window)) {
PFDI_FREE(hfdi, LZX(window));
LZX(window) = NULL;
}
break;
case cffoldCOMPTYPE_QUANTUM:
if (QTM(window)) {
PFDI_FREE(hfdi, QTM(window));
QTM(window) = NULL;
}
break;
}
CAB(decomp_cab) = NULL;
PFDI_SEEK(CAB(hfdi), CAB(cabhf), fol->offset, SEEK_SET);
CAB(offset) = 0;
CAB(outlen) = 0;
/* initialize the new decompresser */
switch (ct1) {
case cffoldCOMPTYPE_NONE:
CAB(decompress) = NONEfdi_decomp;
break;
case cffoldCOMPTYPE_MSZIP:
CAB(decompress) = ZIPfdi_decomp;
break;
case cffoldCOMPTYPE_QUANTUM:
CAB(decompress) = QTMfdi_decomp;
err = QTMfdi_init((comptype >> 8) & 0x1f, (comptype >> 4) & 0xF, decomp_state);
break;
case cffoldCOMPTYPE_LZX:
CAB(decompress) = LZXfdi_decomp;
err = LZXfdi_init((comptype >> 8) & 0x1f, decomp_state);
break;
default:
err = DECR_DATAFORMAT;
}
}
CAB(current) = fol;
switch (err) {
case DECR_OK:
break;
case DECR_NOMEMORY:
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL;
PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY;
PFDI_INT(hfdi)->perf->fError = TRUE;
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
goto bail_and_fail;
default:
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfOper = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
}
if (file->offset > CAB(offset)) {
/* decode bytes and send them to /dev/null */
switch (fdi_decomp(file, 0, decomp_state, pszCabPath, pfnfdin, pvUser)) {
case DECR_OK:
break;
case DECR_USERABORT:
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
case DECR_NOMEMORY:
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL;
PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY;
PFDI_INT(hfdi)->perf->fError = TRUE;
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
goto bail_and_fail;
default:
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfOper = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
}
CAB(offset) = file->offset;
}
/* now do the actual decompression */
err = fdi_decomp(file, 1, decomp_state, pszCabPath, pfnfdin, pvUser);
if (err) CAB(current) = NULL; else CAB(offset) += file->length;
/* fdintCLOSE_FILE_INFO notification */
ZeroMemory(&fdin, sizeof(FDINOTIFICATION));
fdin.pv = pvUser;
fdin.psz1 = (char *)file->filename;
fdin.hf = filehf;
fdin.cb = (file->attribs & cffile_A_EXEC) ? TRUE : FALSE; /* FIXME: is that right? */
fdin.date = file->date;
fdin.time = file->time;
fdin.attribs = file->attribs; /* FIXME: filter _A_EXEC? */
((*pfnfdin)(fdintCLOSE_FILE_INFO, &fdin));
filehf = 0;
switch (err) {
case DECR_OK:
break;
case DECR_USERABORT:
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_USER_ABORT;
PFDI_INT(hfdi)->perf->erfType = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
case DECR_NOMEMORY:
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_ALLOC_FAIL;
PFDI_INT(hfdi)->perf->erfType = ERROR_NOT_ENOUGH_MEMORY;
PFDI_INT(hfdi)->perf->fError = TRUE;
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
goto bail_and_fail;
default:
PFDI_INT(hfdi)->perf->erfOper = FDIERROR_CORRUPT_CABINET;
PFDI_INT(hfdi)->perf->erfOper = 0;
PFDI_INT(hfdi)->perf->fError = TRUE;
goto bail_and_fail;
}
}
}
free_decompression_temps(hfdi, fol, decomp_state);
free_decompression_mem(hfdi, decomp_state, file);
return TRUE;
bail_and_fail: /* here we free ram before error returns */
if (fol) free_decompression_temps(hfdi, fol, decomp_state);
if (filehf) PFDI_CLOSE(hfdi, filehf);
free_decompression_mem(hfdi, decomp_state, file);
return FALSE;
}
/***********************************************************************
* FDIDestroy (CABINET.23)
*
* Frees a handle created by FDICreate. Do /not/ call this in the middle
* of FDICopy. Only reason for failure would be an invalid handle.
*
* PARAMS
* hfdi [I] The HFDI to free
*
* RETURNS
* TRUE for success
* FALSE for failure
*/
BOOL __cdecl FDIDestroy(HFDI hfdi)
{
TRACE("(hfdi == ^%p)\n", hfdi);
if (REALLY_IS_FDI(hfdi)) {
PFDI_INT(hfdi)->FDI_Intmagic = 0; /* paranoia */
PFDI_FREE(hfdi, hfdi); /* confusing, but correct */
return TRUE;
} else {
SetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
}
/***********************************************************************
* FDITruncateCabinet (CABINET.24)
*
* Removes all folders of a cabinet file after and including the
* specified folder number.
*
* PARAMS
* hfdi [I] Handle to the FDI context.
* pszCabinetName [I] Filename of the cabinet.
* iFolderToDelete [I] Index of the first folder to delete.
*
* RETURNS
* Success: TRUE.
* Failure: FALSE.
*
* NOTES
* The PFNWRITE function supplied to FDICreate must truncate the
* file at the current position if the number of bytes to write is 0.
*/
BOOL __cdecl FDITruncateCabinet(
HFDI hfdi,
char *pszCabinetName,
USHORT iFolderToDelete)
{
FIXME("(hfdi == ^%p, pszCabinetName == %s, iFolderToDelete == %hu): stub\n",
hfdi, debugstr_a(pszCabinetName), iFolderToDelete);
if (!REALLY_IS_FDI(hfdi)) {
SetLastError(ERROR_INVALID_HANDLE);
return FALSE;
}
SetLastError(ERROR_CALL_NOT_IMPLEMENTED);
return FALSE;
}