mirror of
https://github.com/reactos/wine.git
synced 2024-11-25 12:49:45 +00:00
186 lines
5.1 KiB
C
186 lines
5.1 KiB
C
/*
|
|
* Copyright 2007 David Adam
|
|
* Copyright 2007 Vijay Kiran Kamuju
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "windef.h"
|
|
#include "winbase.h"
|
|
#include "wingdi.h"
|
|
#include "d3drmdef.h"
|
|
|
|
#include "wine/debug.h"
|
|
|
|
WINE_DEFAULT_DEBUG_CHANNEL(d3drm);
|
|
|
|
/* Product of 2 quaternions */
|
|
LPD3DRMQUATERNION WINAPI D3DRMQuaternionMultiply(LPD3DRMQUATERNION q, LPD3DRMQUATERNION a, LPD3DRMQUATERNION b)
|
|
{
|
|
D3DVECTOR cross_product;
|
|
D3DRMVectorCrossProduct(&cross_product, &a->v, &b->v);
|
|
q->s = a->s * b->s - D3DRMVectorDotProduct(&a->v, &b->v);
|
|
q->v.x = a->s * b->v.x + b->s * a->v.x + cross_product.x;
|
|
q->v.y = a->s * b->v.y + b->s * a->v.y + cross_product.y;
|
|
q->v.z = a->s * b->v.z + b->s * a->v.z + cross_product.z;
|
|
return q;
|
|
}
|
|
|
|
/* Matrix for the Rotation that a unit quaternion represents */
|
|
void WINAPI D3DRMMatrixFromQuaternion(D3DRMMATRIX4D m, LPD3DRMQUATERNION q)
|
|
{
|
|
D3DVALUE w,x,y,z;
|
|
w = q->s;
|
|
x = q->v.x;
|
|
y = q->v.y;
|
|
z = q->v.z;
|
|
m[0][0] = 1.0-2.0*(y*y+z*z);
|
|
m[1][1] = 1.0-2.0*(x*x+z*z);
|
|
m[2][2] = 1.0-2.0*(x*x+y*y);
|
|
m[1][0] = 2.0*(x*y+z*w);
|
|
m[0][1] = 2.0*(x*y-z*w);
|
|
m[2][0] = 2.0*(x*z-y*w);
|
|
m[0][2] = 2.0*(x*z+y*w);
|
|
m[2][1] = 2.0*(y*z+x*w);
|
|
m[1][2] = 2.0*(y*z-x*w);
|
|
m[3][0] = 0.0;
|
|
m[3][1] = 0.0;
|
|
m[3][2] = 0.0;
|
|
m[0][3] = 0.0;
|
|
m[1][3] = 0.0;
|
|
m[2][3] = 0.0;
|
|
m[3][3] = 1.0;
|
|
}
|
|
|
|
/* Return a unit quaternion that represents a rotation of an angle around an axis */
|
|
LPD3DRMQUATERNION WINAPI D3DRMQuaternionFromRotation(LPD3DRMQUATERNION q, LPD3DVECTOR v, D3DVALUE theta)
|
|
{
|
|
q->s = cos(theta/2.0);
|
|
D3DRMVectorScale(&q->v, D3DRMVectorNormalize(v), sin(theta/2.0));
|
|
return q;
|
|
}
|
|
|
|
/* Add Two Vectors */
|
|
LPD3DVECTOR WINAPI D3DRMVectorAdd(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
|
|
{
|
|
d->x=s1->x + s2->x;
|
|
d->y=s1->y + s2->y;
|
|
d->z=s1->z + s2->z;
|
|
return d;
|
|
}
|
|
|
|
/* Subtract Two Vectors */
|
|
LPD3DVECTOR WINAPI D3DRMVectorSubtract(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
|
|
{
|
|
d->x=s1->x - s2->x;
|
|
d->y=s1->y - s2->y;
|
|
d->z=s1->z - s2->z;
|
|
return d;
|
|
}
|
|
|
|
/* Cross Product of Two Vectors */
|
|
LPD3DVECTOR WINAPI D3DRMVectorCrossProduct(LPD3DVECTOR d, LPD3DVECTOR s1, LPD3DVECTOR s2)
|
|
{
|
|
d->x=s1->y * s2->z - s1->z * s2->y;
|
|
d->y=s1->z * s2->x - s1->x * s2->z;
|
|
d->z=s1->x * s2->y - s1->y * s2->x;
|
|
return d;
|
|
}
|
|
|
|
/* Dot Product of Two vectors */
|
|
D3DVALUE WINAPI D3DRMVectorDotProduct(LPD3DVECTOR s1, LPD3DVECTOR s2)
|
|
{
|
|
D3DVALUE dot_product;
|
|
dot_product=s1->x * s2->x + s1->y * s2->y + s1->z * s2->z;
|
|
return dot_product;
|
|
}
|
|
|
|
/* Norm of a vector */
|
|
D3DVALUE WINAPI D3DRMVectorModulus(LPD3DVECTOR v)
|
|
{
|
|
D3DVALUE result;
|
|
result=sqrt(v->x * v->x + v->y * v->y + v->z * v->z);
|
|
return result;
|
|
}
|
|
|
|
/* Normalize a vector. Returns (1,0,0) if INPUT is the NULL vector. */
|
|
LPD3DVECTOR WINAPI D3DRMVectorNormalize(LPD3DVECTOR u)
|
|
{
|
|
D3DVALUE modulus = D3DRMVectorModulus(u);
|
|
if(modulus)
|
|
{
|
|
D3DRMVectorScale(u,u,1.0/modulus);
|
|
}
|
|
else
|
|
{
|
|
u->x=1.0;
|
|
u->y=0.0;
|
|
u->z=0.0;
|
|
}
|
|
return u;
|
|
}
|
|
|
|
/* Returns a random unit vector */
|
|
LPD3DVECTOR WINAPI D3DRMVectorRandom(LPD3DVECTOR d)
|
|
{
|
|
d->x = rand();
|
|
d->y = rand();
|
|
d->z = rand();
|
|
D3DRMVectorNormalize(d);
|
|
return d;
|
|
}
|
|
|
|
/* Reflection of a vector on a surface */
|
|
LPD3DVECTOR WINAPI D3DRMVectorReflect(LPD3DVECTOR r, LPD3DVECTOR ray, LPD3DVECTOR norm)
|
|
{
|
|
D3DVECTOR sca;
|
|
D3DRMVectorSubtract(r, D3DRMVectorScale(&sca, norm, 2.0*D3DRMVectorDotProduct(ray,norm)), ray);
|
|
return r;
|
|
}
|
|
|
|
/* Rotation of a vector */
|
|
LPD3DVECTOR WINAPI D3DRMVectorRotate(LPD3DVECTOR r, LPD3DVECTOR v, LPD3DVECTOR axis, D3DVALUE theta)
|
|
{
|
|
D3DRMQUATERNION quaternion,quaternion1, quaternion2, quaternion3, resultq;
|
|
D3DVECTOR NORM;
|
|
|
|
quaternion1.s = cos(theta*.5);
|
|
quaternion2.s = cos(theta*.5);
|
|
NORM = *D3DRMVectorNormalize(axis);
|
|
D3DRMVectorScale(&quaternion1.v, &NORM, sin(theta * .5));
|
|
D3DRMVectorScale(&quaternion2.v, &NORM, -sin(theta * .5));
|
|
quaternion3.s = 0.0;
|
|
quaternion3.v = *v;
|
|
D3DRMQuaternionMultiply(&quaternion, &quaternion1, &quaternion3);
|
|
D3DRMQuaternionMultiply(&resultq, &quaternion, &quaternion2);
|
|
*r = *D3DRMVectorNormalize(&resultq.v);
|
|
return r;
|
|
}
|
|
|
|
/* Scale a vector */
|
|
LPD3DVECTOR WINAPI D3DRMVectorScale(LPD3DVECTOR d, LPD3DVECTOR s, D3DVALUE factor)
|
|
{
|
|
d->x=factor * s->x;
|
|
d->y=factor * s->y;
|
|
d->z=factor * s->z;
|
|
return d;
|
|
}
|