wine/dlls/msvcrt/math.c
2011-01-31 12:31:22 +01:00

2088 lines
54 KiB
C

/*
* msvcrt.dll math functions
*
* Copyright 2000 Jon Griffiths
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include "config.h"
#include <stdio.h>
#define __USE_ISOC9X 1
#define __USE_ISOC99 1
#include <math.h>
#ifdef HAVE_IEEEFP_H
#include <ieeefp.h>
#endif
#include "msvcrt.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(msvcrt);
#ifndef HAVE_FINITE
#ifndef finite /* Could be a macro */
#ifdef isfinite
#define finite(x) isfinite(x)
#else
#define finite(x) (!isnan(x)) /* At least catch some cases */
#endif
#endif
#endif
#ifndef signbit
#define signbit(x) 0
#endif
typedef int (CDECL *MSVCRT_matherr_func)(struct MSVCRT__exception *);
static MSVCRT_matherr_func MSVCRT_default_matherr_func = NULL;
static BOOL sse2_supported;
static BOOL sse2_enabled;
void msvcrt_init_math(void)
{
sse2_supported = sse2_enabled = IsProcessorFeaturePresent( PF_XMMI64_INSTRUCTIONS_AVAILABLE );
}
/*********************************************************************
* _set_SSE2_enable (MSVCRT.@)
*/
int CDECL MSVCRT__set_SSE2_enable(int flag)
{
sse2_enabled = flag && sse2_supported;
return sse2_enabled;
}
#ifdef __x86_64__
/*********************************************************************
* MSVCRT_acosf (MSVCRT.@)
*/
float CDECL MSVCRT_acosf( float x )
{
if (x < -1.0 || x > 1.0 || !finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
/* glibc implements acos() as the FPU equivalent of atan2(sqrt(1 - x ^ 2), x).
* asin() uses a similar construction. This is bad because as x gets nearer to
* 1 the error in the expression "1 - x^2" can get relatively large due to
* cancellation. The sqrt() makes things worse. A safer way to calculate
* acos() is to use atan2(sqrt((1 - x) * (1 + x)), x). */
return atan2f(sqrtf((1 - x) * (1 + x)), x);
}
/*********************************************************************
* MSVCRT_asinf (MSVCRT.@)
*/
float CDECL MSVCRT_asinf( float x )
{
if (x < -1.0 || x > 1.0 || !finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return atan2f(x, sqrtf((1 - x) * (1 + x)));
}
/*********************************************************************
* MSVCRT_atanf (MSVCRT.@)
*/
float CDECL MSVCRT_atanf( float x )
{
if (!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return atanf(x);
}
/*********************************************************************
* MSVCRT_atan2f (MSVCRT.@)
*/
float CDECL MSVCRT_atan2f( float x, float y )
{
if (!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return atan2f(x,y);
}
/*********************************************************************
* MSVCRT_cosf (MSVCRT.@)
*/
float CDECL MSVCRT_cosf( float x )
{
if (!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return cosf(x);
}
/*********************************************************************
* MSVCRT_coshf (MSVCRT.@)
*/
float CDECL MSVCRT_coshf( float x )
{
if (!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return coshf(x);
}
/*********************************************************************
* MSVCRT_expf (MSVCRT.@)
*/
float CDECL MSVCRT_expf( float x )
{
if (!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return expf(x);
}
/*********************************************************************
* MSVCRT_fmodf (MSVCRT.@)
*/
float CDECL MSVCRT_fmodf( float x, float y )
{
if (!finitef(x) || !finitef(y)) *MSVCRT__errno() = MSVCRT_EDOM;
return fmodf(x,y);
}
/*********************************************************************
* MSVCRT_logf (MSVCRT.@)
*/
float CDECL MSVCRT_logf( float x)
{
if (x < 0.0 || !finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
if (x == 0.0) *MSVCRT__errno() = MSVCRT_ERANGE;
return logf(x);
}
/*********************************************************************
* MSVCRT_log10f (MSVCRT.@)
*/
float CDECL MSVCRT_log10f( float x )
{
if (x < 0.0 || !finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
if (x == 0.0) *MSVCRT__errno() = MSVCRT_ERANGE;
return log10f(x);
}
/*********************************************************************
* MSVCRT_powf (MSVCRT.@)
*/
float CDECL MSVCRT_powf( float x, float y )
{
/* FIXME: If x < 0 and y is not integral, set EDOM */
float z = powf(x,y);
if (!finitef(z)) *MSVCRT__errno() = MSVCRT_EDOM;
return z;
}
/*********************************************************************
* MSVCRT_sinf (MSVCRT.@)
*/
float CDECL MSVCRT_sinf( float x )
{
if (!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return sinf(x);
}
/*********************************************************************
* MSVCRT_sinhf (MSVCRT.@)
*/
float CDECL MSVCRT_sinhf( float x )
{
if (!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return sinhf(x);
}
/*********************************************************************
* MSVCRT_sqrtf (MSVCRT.@)
*/
float CDECL MSVCRT_sqrtf( float x )
{
if (x < 0.0 || !finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return sqrtf(x);
}
/*********************************************************************
* MSVCRT_tanf (MSVCRT.@)
*/
float CDECL MSVCRT_tanf( float x )
{
if (!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return tanf(x);
}
/*********************************************************************
* MSVCRT_tanhf (MSVCRT.@)
*/
float CDECL MSVCRT_tanhf( float x )
{
if (!finitef(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return tanhf(x);
}
/*********************************************************************
* ceilf (MSVCRT.@)
*/
float CDECL MSVCRT_ceilf( float x )
{
return ceilf(x);
}
/*********************************************************************
* floorf (MSVCRT.@)
*/
float CDECL MSVCRT_floorf( float x )
{
return floorf(x);
}
/*********************************************************************
* frexpf (MSVCRT.@)
*/
float CDECL MSVCRT_frexpf( float x, int *exp )
{
return frexpf( x, exp );
}
/*********************************************************************
* _scalbf (MSVCRT.@)
*/
float CDECL MSVCRT__scalbf(float num, MSVCRT_long power)
{
if (!finitef(num)) *MSVCRT__errno() = MSVCRT_EDOM;
return ldexpf(num, power);
}
/*********************************************************************
* modff (MSVCRT.@)
*/
double CDECL MSVCRT_modff( float x, float *iptr )
{
return modff( x, iptr );
}
#endif
/*********************************************************************
* MSVCRT_acos (MSVCRT.@)
*/
double CDECL MSVCRT_acos( double x )
{
if (x < -1.0 || x > 1.0 || !finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
/* glibc implements acos() as the FPU equivalent of atan2(sqrt(1 - x ^ 2), x).
* asin() uses a similar construction. This is bad because as x gets nearer to
* 1 the error in the expression "1 - x^2" can get relatively large due to
* cancellation. The sqrt() makes things worse. A safer way to calculate
* acos() is to use atan2(sqrt((1 - x) * (1 + x)), x). */
return atan2(sqrt((1 - x) * (1 + x)), x);
}
/*********************************************************************
* MSVCRT_asin (MSVCRT.@)
*/
double CDECL MSVCRT_asin( double x )
{
if (x < -1.0 || x > 1.0 || !finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return atan2(x, sqrt((1 - x) * (1 + x)));
}
/*********************************************************************
* MSVCRT_atan (MSVCRT.@)
*/
double CDECL MSVCRT_atan( double x )
{
if (!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return atan(x);
}
/*********************************************************************
* MSVCRT_atan2 (MSVCRT.@)
*/
double CDECL MSVCRT_atan2( double x, double y )
{
if (!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return atan2(x,y);
}
/*********************************************************************
* MSVCRT_cos (MSVCRT.@)
*/
double CDECL MSVCRT_cos( double x )
{
if (!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return cos(x);
}
/*********************************************************************
* MSVCRT_cosh (MSVCRT.@)
*/
double CDECL MSVCRT_cosh( double x )
{
if (!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return cosh(x);
}
/*********************************************************************
* MSVCRT_exp (MSVCRT.@)
*/
double CDECL MSVCRT_exp( double x )
{
if (!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return exp(x);
}
/*********************************************************************
* MSVCRT_fmod (MSVCRT.@)
*/
double CDECL MSVCRT_fmod( double x, double y )
{
if (!finite(x) || !finite(y)) *MSVCRT__errno() = MSVCRT_EDOM;
return fmod(x,y);
}
/*********************************************************************
* MSVCRT_log (MSVCRT.@)
*/
double CDECL MSVCRT_log( double x)
{
if (x < 0.0 || !finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
if (x == 0.0) *MSVCRT__errno() = MSVCRT_ERANGE;
return log(x);
}
/*********************************************************************
* MSVCRT_log10 (MSVCRT.@)
*/
double CDECL MSVCRT_log10( double x )
{
if (x < 0.0 || !finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
if (x == 0.0) *MSVCRT__errno() = MSVCRT_ERANGE;
return log10(x);
}
/*********************************************************************
* MSVCRT_pow (MSVCRT.@)
*/
double CDECL MSVCRT_pow( double x, double y )
{
/* FIXME: If x < 0 and y is not integral, set EDOM */
double z = pow(x,y);
if (!finite(z)) *MSVCRT__errno() = MSVCRT_EDOM;
return z;
}
/*********************************************************************
* MSVCRT_sin (MSVCRT.@)
*/
double CDECL MSVCRT_sin( double x )
{
if (!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return sin(x);
}
/*********************************************************************
* MSVCRT_sinh (MSVCRT.@)
*/
double CDECL MSVCRT_sinh( double x )
{
if (!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return sinh(x);
}
/*********************************************************************
* MSVCRT_sqrt (MSVCRT.@)
*/
double CDECL MSVCRT_sqrt( double x )
{
if (x < 0.0 || !finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return sqrt(x);
}
/*********************************************************************
* MSVCRT_tan (MSVCRT.@)
*/
double CDECL MSVCRT_tan( double x )
{
if (!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return tan(x);
}
/*********************************************************************
* MSVCRT_tanh (MSVCRT.@)
*/
double CDECL MSVCRT_tanh( double x )
{
if (!finite(x)) *MSVCRT__errno() = MSVCRT_EDOM;
return tanh(x);
}
#if defined(__GNUC__) && defined(__i386__)
#define FPU_DOUBLE(var) double var; \
__asm__ __volatile__( "fstpl %0;fwait" : "=m" (var) : )
#define FPU_DOUBLES(var1,var2) double var1,var2; \
__asm__ __volatile__( "fstpl %0;fwait" : "=m" (var2) : ); \
__asm__ __volatile__( "fstpl %0;fwait" : "=m" (var1) : )
/*********************************************************************
* _CIacos (MSVCRT.@)
*/
double CDECL _CIacos(void)
{
FPU_DOUBLE(x);
return MSVCRT_acos(x);
}
/*********************************************************************
* _CIasin (MSVCRT.@)
*/
double CDECL _CIasin(void)
{
FPU_DOUBLE(x);
return MSVCRT_asin(x);
}
/*********************************************************************
* _CIatan (MSVCRT.@)
*/
double CDECL _CIatan(void)
{
FPU_DOUBLE(x);
return MSVCRT_atan(x);
}
/*********************************************************************
* _CIatan2 (MSVCRT.@)
*/
double CDECL _CIatan2(void)
{
FPU_DOUBLES(x,y);
return MSVCRT_atan2(x,y);
}
/*********************************************************************
* _CIcos (MSVCRT.@)
*/
double CDECL _CIcos(void)
{
FPU_DOUBLE(x);
return MSVCRT_cos(x);
}
/*********************************************************************
* _CIcosh (MSVCRT.@)
*/
double CDECL _CIcosh(void)
{
FPU_DOUBLE(x);
return MSVCRT_cosh(x);
}
/*********************************************************************
* _CIexp (MSVCRT.@)
*/
double CDECL _CIexp(void)
{
FPU_DOUBLE(x);
return MSVCRT_exp(x);
}
/*********************************************************************
* _CIfmod (MSVCRT.@)
*/
double CDECL _CIfmod(void)
{
FPU_DOUBLES(x,y);
return MSVCRT_fmod(x,y);
}
/*********************************************************************
* _CIlog (MSVCRT.@)
*/
double CDECL _CIlog(void)
{
FPU_DOUBLE(x);
return MSVCRT_log(x);
}
/*********************************************************************
* _CIlog10 (MSVCRT.@)
*/
double CDECL _CIlog10(void)
{
FPU_DOUBLE(x);
return MSVCRT_log10(x);
}
/*********************************************************************
* _CIpow (MSVCRT.@)
*/
double CDECL _CIpow(void)
{
FPU_DOUBLES(x,y);
return MSVCRT_pow(x,y);
}
/*********************************************************************
* _CIsin (MSVCRT.@)
*/
double CDECL _CIsin(void)
{
FPU_DOUBLE(x);
return MSVCRT_sin(x);
}
/*********************************************************************
* _CIsinh (MSVCRT.@)
*/
double CDECL _CIsinh(void)
{
FPU_DOUBLE(x);
return MSVCRT_sinh(x);
}
/*********************************************************************
* _CIsqrt (MSVCRT.@)
*/
double CDECL _CIsqrt(void)
{
FPU_DOUBLE(x);
return MSVCRT_sqrt(x);
}
/*********************************************************************
* _CItan (MSVCRT.@)
*/
double CDECL _CItan(void)
{
FPU_DOUBLE(x);
return MSVCRT_tan(x);
}
/*********************************************************************
* _CItanh (MSVCRT.@)
*/
double CDECL _CItanh(void)
{
FPU_DOUBLE(x);
return MSVCRT_tanh(x);
}
#endif /* defined(__GNUC__) && defined(__i386__) */
/*********************************************************************
* _fpclass (MSVCRT.@)
*/
int CDECL _fpclass(double num)
{
#if defined(HAVE_FPCLASS) || defined(fpclass)
switch (fpclass( num ))
{
#ifdef FP_SNAN
case FP_SNAN: return MSVCRT__FPCLASS_SNAN;
#endif
#ifdef FP_QNAN
case FP_QNAN: return MSVCRT__FPCLASS_QNAN;
#endif
#ifdef FP_NINF
case FP_NINF: return MSVCRT__FPCLASS_NINF;
#endif
#ifdef FP_PINF
case FP_PINF: return MSVCRT__FPCLASS_PINF;
#endif
#ifdef FP_NDENORM
case FP_NDENORM: return MSVCRT__FPCLASS_ND;
#endif
#ifdef FP_PDENORM
case FP_PDENORM: return MSVCRT__FPCLASS_PD;
#endif
#ifdef FP_NZERO
case FP_NZERO: return MSVCRT__FPCLASS_NZ;
#endif
#ifdef FP_PZERO
case FP_PZERO: return MSVCRT__FPCLASS_PZ;
#endif
#ifdef FP_NNORM
case FP_NNORM: return MSVCRT__FPCLASS_NN;
#endif
#ifdef FP_PNORM
case FP_PNORM: return MSVCRT__FPCLASS_PN;
#endif
default: return MSVCRT__FPCLASS_PN;
}
#elif defined (fpclassify)
switch (fpclassify( num ))
{
case FP_NAN: return MSVCRT__FPCLASS_QNAN;
case FP_INFINITE: return signbit(num) ? MSVCRT__FPCLASS_NINF : MSVCRT__FPCLASS_PINF;
case FP_SUBNORMAL: return signbit(num) ?MSVCRT__FPCLASS_ND : MSVCRT__FPCLASS_PD;
case FP_ZERO: return signbit(num) ? MSVCRT__FPCLASS_NZ : MSVCRT__FPCLASS_PZ;
}
return signbit(num) ? MSVCRT__FPCLASS_NN : MSVCRT__FPCLASS_PN;
#else
if (!finite(num))
return MSVCRT__FPCLASS_QNAN;
return num == 0.0 ? MSVCRT__FPCLASS_PZ : (num < 0 ? MSVCRT__FPCLASS_NN : MSVCRT__FPCLASS_PN);
#endif
}
/*********************************************************************
* _rotl (MSVCRT.@)
*/
unsigned int CDECL _rotl(unsigned int num, int shift)
{
shift &= 31;
return (num << shift) | (num >> (32-shift));
}
/*********************************************************************
* _logb (MSVCRT.@)
*/
double CDECL _logb(double num)
{
if (!finite(num)) *MSVCRT__errno() = MSVCRT_EDOM;
return logb(num);
}
/*********************************************************************
* _lrotl (MSVCRT.@)
*/
MSVCRT_ulong CDECL MSVCRT__lrotl(MSVCRT_ulong num, int shift)
{
shift &= 0x1f;
return (num << shift) | (num >> (32-shift));
}
/*********************************************************************
* _lrotr (MSVCRT.@)
*/
MSVCRT_ulong CDECL MSVCRT__lrotr(MSVCRT_ulong num, int shift)
{
shift &= 0x1f;
return (num >> shift) | (num << (32-shift));
}
/*********************************************************************
* _rotr (MSVCRT.@)
*/
unsigned int CDECL _rotr(unsigned int num, int shift)
{
shift &= 0x1f;
return (num >> shift) | (num << (32-shift));
}
/*********************************************************************
* _scalb (MSVCRT.@)
*/
double CDECL MSVCRT__scalb(double num, MSVCRT_long power)
{
if (!finite(num)) *MSVCRT__errno() = MSVCRT_EDOM;
return ldexp(num, power);
}
/*********************************************************************
* _hypot (MSVCRT.@)
*/
double CDECL _hypot(double x, double y)
{
/* FIXME: errno handling */
return hypot( x, y );
}
/*********************************************************************
* _hypotf (MSVCRT.@)
*/
float CDECL _hypotf(float x, float y)
{
/* FIXME: errno handling */
return hypotf( x, y );
}
/*********************************************************************
* ceil (MSVCRT.@)
*/
double CDECL MSVCRT_ceil( double x )
{
return ceil(x);
}
/*********************************************************************
* floor (MSVCRT.@)
*/
double CDECL MSVCRT_floor( double x )
{
return floor(x);
}
/*********************************************************************
* fabs (MSVCRT.@)
*/
double CDECL MSVCRT_fabs( double x )
{
return fabs(x);
}
/*********************************************************************
* frexp (MSVCRT.@)
*/
double CDECL MSVCRT_frexp( double x, int *exp )
{
return frexp( x, exp );
}
/*********************************************************************
* modf (MSVCRT.@)
*/
double CDECL MSVCRT_modf( double x, double *iptr )
{
return modf( x, iptr );
}
/*********************************************************************
* _matherr (MSVCRT.@)
*/
int CDECL MSVCRT__matherr(struct MSVCRT__exception *e)
{
if (e)
TRACE("(%p = %d, %s, %g %g %g)\n",e, e->type, e->name, e->arg1, e->arg2,
e->retval);
else
TRACE("(null)\n");
if (MSVCRT_default_matherr_func)
return MSVCRT_default_matherr_func(e);
ERR(":Unhandled math error!\n");
return 0;
}
/*********************************************************************
* __setusermatherr (MSVCRT.@)
*/
void CDECL MSVCRT___setusermatherr(MSVCRT_matherr_func func)
{
MSVCRT_default_matherr_func = func;
TRACE(":new matherr handler %p\n", func);
}
/**********************************************************************
* _statusfp2 (MSVCRT.@)
*
* Not exported by native msvcrt, added in msvcr80.
*/
#if defined(__i386__) || defined(__x86_64__)
void CDECL _statusfp2( unsigned int *x86_sw, unsigned int *sse2_sw )
{
#ifdef __GNUC__
unsigned int flags;
unsigned long fpword;
if (x86_sw)
{
__asm__ __volatile__( "fstsw %0" : "=m" (fpword) );
flags = 0;
if (fpword & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT;
*x86_sw = flags;
}
if (!sse2_sw) return;
if (sse2_supported)
{
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
flags = 0;
if (fpword & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT;
*sse2_sw = flags;
}
else *sse2_sw = 0;
#else
FIXME( "not implemented\n" );
#endif
}
#endif
/**********************************************************************
* _statusfp (MSVCRT.@)
*/
unsigned int CDECL _statusfp(void)
{
#if defined(__i386__) || defined(__x86_64__)
unsigned int x86_sw, sse2_sw;
_statusfp2( &x86_sw, &sse2_sw );
/* FIXME: there's no definition for ambiguous status, just return all status bits for now */
return x86_sw | sse2_sw;
#else
FIXME( "not implemented\n" );
return 0;
#endif
}
/*********************************************************************
* _clearfp (MSVCRT.@)
*/
unsigned int CDECL _clearfp(void)
{
unsigned int flags = 0;
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
unsigned long fpword;
__asm__ __volatile__( "fnstsw %0; fnclex" : "=m" (fpword) );
if (fpword & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT;
if (sse2_supported)
{
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
if (fpword & 0x1) flags |= MSVCRT__SW_INVALID;
if (fpword & 0x2) flags |= MSVCRT__SW_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__SW_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__SW_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__SW_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__SW_INEXACT;
fpword &= ~0x3f;
__asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
}
#else
FIXME( "not implemented\n" );
#endif
return flags;
}
/*********************************************************************
* __fpecode (MSVCRT.@)
*/
int * CDECL __fpecode(void)
{
return &msvcrt_get_thread_data()->fpecode;
}
/*********************************************************************
* ldexp (MSVCRT.@)
*/
double CDECL MSVCRT_ldexp(double num, MSVCRT_long exp)
{
double z = ldexp(num,exp);
if (!finite(z))
*MSVCRT__errno() = MSVCRT_ERANGE;
else if (z == 0 && signbit(z))
z = 0.0; /* Convert -0 -> +0 */
return z;
}
/*********************************************************************
* _cabs (MSVCRT.@)
*/
double CDECL MSVCRT__cabs(struct MSVCRT__complex num)
{
return sqrt(num.x * num.x + num.y * num.y);
}
/*********************************************************************
* _chgsign (MSVCRT.@)
*/
double CDECL _chgsign(double num)
{
/* FIXME: +-infinity,Nan not tested */
return -num;
}
/*********************************************************************
* __control87_2 (MSVCRT.@)
*
* Not exported by native msvcrt, added in msvcr80.
*/
#if defined(__i386__) || defined(__x86_64__)
int CDECL __control87_2( unsigned int newval, unsigned int mask,
unsigned int *x86_cw, unsigned int *sse2_cw )
{
#ifdef __GNUC__
unsigned long fpword;
unsigned int flags;
if (x86_cw)
{
__asm__ __volatile__( "fstcw %0" : "=m" (fpword) );
/* Convert into mask constants */
flags = 0;
if (fpword & 0x1) flags |= MSVCRT__EM_INVALID;
if (fpword & 0x2) flags |= MSVCRT__EM_DENORMAL;
if (fpword & 0x4) flags |= MSVCRT__EM_ZERODIVIDE;
if (fpword & 0x8) flags |= MSVCRT__EM_OVERFLOW;
if (fpword & 0x10) flags |= MSVCRT__EM_UNDERFLOW;
if (fpword & 0x20) flags |= MSVCRT__EM_INEXACT;
switch (fpword & 0xc00)
{
case 0xc00: flags |= MSVCRT__RC_UP|MSVCRT__RC_DOWN; break;
case 0x800: flags |= MSVCRT__RC_UP; break;
case 0x400: flags |= MSVCRT__RC_DOWN; break;
}
switch (fpword & 0x300)
{
case 0x0: flags |= MSVCRT__PC_24; break;
case 0x200: flags |= MSVCRT__PC_53; break;
case 0x300: flags |= MSVCRT__PC_64; break;
}
if (fpword & 0x1000) flags |= MSVCRT__IC_AFFINE;
TRACE( "x86 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask );
if (mask)
{
flags = (flags & ~mask) | (newval & mask);
/* Convert (masked) value back to fp word */
fpword = 0;
if (flags & MSVCRT__EM_INVALID) fpword |= 0x1;
if (flags & MSVCRT__EM_DENORMAL) fpword |= 0x2;
if (flags & MSVCRT__EM_ZERODIVIDE) fpword |= 0x4;
if (flags & MSVCRT__EM_OVERFLOW) fpword |= 0x8;
if (flags & MSVCRT__EM_UNDERFLOW) fpword |= 0x10;
if (flags & MSVCRT__EM_INEXACT) fpword |= 0x20;
switch (flags & MSVCRT__MCW_RC)
{
case MSVCRT__RC_UP|MSVCRT__RC_DOWN: fpword |= 0xc00; break;
case MSVCRT__RC_UP: fpword |= 0x800; break;
case MSVCRT__RC_DOWN: fpword |= 0x400; break;
}
switch (flags & MSVCRT__MCW_PC)
{
case MSVCRT__PC_64: fpword |= 0x300; break;
case MSVCRT__PC_53: fpword |= 0x200; break;
case MSVCRT__PC_24: fpword |= 0x0; break;
}
if (flags & MSVCRT__IC_AFFINE) fpword |= 0x1000;
__asm__ __volatile__( "fldcw %0" : : "m" (fpword) );
}
*x86_cw = flags;
}
if (!sse2_cw) return 1;
if (sse2_supported)
{
__asm__ __volatile__( "stmxcsr %0" : "=m" (fpword) );
/* Convert into mask constants */
flags = 0;
if (fpword & 0x80) flags |= MSVCRT__EM_INVALID;
if (fpword & 0x100) flags |= MSVCRT__EM_DENORMAL;
if (fpword & 0x200) flags |= MSVCRT__EM_ZERODIVIDE;
if (fpword & 0x400) flags |= MSVCRT__EM_OVERFLOW;
if (fpword & 0x800) flags |= MSVCRT__EM_UNDERFLOW;
if (fpword & 0x1000) flags |= MSVCRT__EM_INEXACT;
switch (fpword & 0x6000)
{
case 0x6000: flags |= MSVCRT__RC_UP|MSVCRT__RC_DOWN; break;
case 0x4000: flags |= MSVCRT__RC_UP; break;
case 0x2000: flags |= MSVCRT__RC_DOWN; break;
}
switch (fpword & 0x8040)
{
case 0x0040: flags |= MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS; break;
case 0x8000: flags |= MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS; break;
case 0x8040: flags |= MSVCRT__DN_FLUSH; break;
}
TRACE( "sse2 flags=%08x newval=%08x mask=%08x\n", flags, newval, mask );
if (mask)
{
flags = (flags & ~mask) | (newval & mask);
/* Convert (masked) value back to fp word */
fpword = 0;
if (flags & MSVCRT__EM_INVALID) fpword |= 0x80;
if (flags & MSVCRT__EM_DENORMAL) fpword |= 0x100;
if (flags & MSVCRT__EM_ZERODIVIDE) fpword |= 0x200;
if (flags & MSVCRT__EM_OVERFLOW) fpword |= 0x400;
if (flags & MSVCRT__EM_UNDERFLOW) fpword |= 0x800;
if (flags & MSVCRT__EM_INEXACT) fpword |= 0x1000;
switch (flags & MSVCRT__MCW_RC)
{
case MSVCRT__RC_UP|MSVCRT__RC_DOWN: fpword |= 0x6000; break;
case MSVCRT__RC_UP: fpword |= 0x4000; break;
case MSVCRT__RC_DOWN: fpword |= 0x2000; break;
}
switch (flags & MSVCRT__MCW_DN)
{
case MSVCRT__DN_FLUSH_OPERANDS_SAVE_RESULTS: fpword |= 0x0040; break;
case MSVCRT__DN_SAVE_OPERANDS_FLUSH_RESULTS: fpword |= 0x8000; break;
case MSVCRT__DN_FLUSH: fpword |= 0x8040; break;
}
__asm__ __volatile__( "ldmxcsr %0" : : "m" (fpword) );
}
*sse2_cw = flags;
}
else *sse2_cw = 0;
return 1;
#else
FIXME( "not implemented\n" );
return 0;
#endif
}
#endif
/*********************************************************************
* _control87 (MSVCRT.@)
*/
unsigned int CDECL _control87(unsigned int newval, unsigned int mask)
{
#if defined(__i386__) || defined(__x86_64__)
unsigned int x86_cw, sse2_cw;
__control87_2( newval, mask, &x86_cw, &sse2_cw );
if ((x86_cw ^ sse2_cw) & (MSVCRT__MCW_EM | MSVCRT__MCW_RC)) x86_cw |= MSVCRT__EM_AMBIGUOUS;
return x86_cw;
#else
FIXME( "not implemented\n" );
return 0;
#endif
}
/*********************************************************************
* _controlfp (MSVCRT.@)
*/
unsigned int CDECL _controlfp(unsigned int newval, unsigned int mask)
{
return _control87( newval, mask & ~MSVCRT__EM_DENORMAL );
}
/*********************************************************************
* _set_controlfp (MSVCRT.@)
*/
void CDECL _set_controlfp( unsigned int newval, unsigned int mask )
{
_controlfp( newval, mask );
}
/*********************************************************************
* _controlfp_s (MSVCRT.@)
*/
int CDECL _controlfp_s(unsigned int *cur, unsigned int newval, unsigned int mask)
{
static const unsigned int all_flags = (MSVCRT__MCW_EM | MSVCRT__MCW_IC | MSVCRT__MCW_RC |
MSVCRT__MCW_PC | MSVCRT__MCW_DN);
unsigned int val;
if (!MSVCRT_CHECK_PMT( !(newval & mask & ~all_flags) ))
{
if (cur) *cur = _controlfp( 0, 0 ); /* retrieve it anyway */
*MSVCRT__errno() = MSVCRT_EINVAL;
return MSVCRT_EINVAL;
}
val = _controlfp( newval, mask );
if (cur) *cur = val;
return 0;
}
/*********************************************************************
* _copysign (MSVCRT.@)
*/
double CDECL _copysign(double num, double sign)
{
/* FIXME: Behaviour for Nan/Inf? */
if (sign < 0.0)
return num < 0.0 ? num : -num;
return num < 0.0 ? -num : num;
}
/*********************************************************************
* _finite (MSVCRT.@)
*/
int CDECL _finite(double num)
{
return (finite(num)?1:0); /* See comment for _isnan() */
}
/*********************************************************************
* _fpreset (MSVCRT.@)
*/
void CDECL _fpreset(void)
{
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
const unsigned int x86_cw = 0x27f;
__asm__ __volatile__( "fninit; fldcw %0" : : "m" (x86_cw) );
if (sse2_supported)
{
const unsigned long sse2_cw = 0x1f80;
__asm__ __volatile__( "ldmxcsr %0" : : "m" (sse2_cw) );
}
#else
FIXME( "not implemented\n" );
#endif
}
/*********************************************************************
* _isnan (MSVCRT.@)
*/
INT CDECL _isnan(double num)
{
/* Some implementations return -1 for true(glibc), msvcrt/crtdll return 1.
* Do the same, as the result may be used in calculations
*/
return isnan(num) ? 1 : 0;
}
/*********************************************************************
* _j0 (MSVCRT.@)
*/
double CDECL _j0(double num)
{
/* FIXME: errno handling */
return j0(num);
}
/*********************************************************************
* _j1 (MSVCRT.@)
*/
double CDECL _j1(double num)
{
/* FIXME: errno handling */
return j1(num);
}
/*********************************************************************
* jn (MSVCRT.@)
*/
double CDECL _jn(int n, double num)
{
/* FIXME: errno handling */
return jn(n, num);
}
/*********************************************************************
* _y0 (MSVCRT.@)
*/
double CDECL _y0(double num)
{
double retval;
if (!finite(num)) *MSVCRT__errno() = MSVCRT_EDOM;
retval = y0(num);
if (_fpclass(retval) == MSVCRT__FPCLASS_NINF)
{
*MSVCRT__errno() = MSVCRT_EDOM;
retval = sqrt(-1);
}
return retval;
}
/*********************************************************************
* _y1 (MSVCRT.@)
*/
double CDECL _y1(double num)
{
double retval;
if (!finite(num)) *MSVCRT__errno() = MSVCRT_EDOM;
retval = y1(num);
if (_fpclass(retval) == MSVCRT__FPCLASS_NINF)
{
*MSVCRT__errno() = MSVCRT_EDOM;
retval = sqrt(-1);
}
return retval;
}
/*********************************************************************
* _yn (MSVCRT.@)
*/
double CDECL _yn(int order, double num)
{
double retval;
if (!finite(num)) *MSVCRT__errno() = MSVCRT_EDOM;
retval = yn(order,num);
if (_fpclass(retval) == MSVCRT__FPCLASS_NINF)
{
*MSVCRT__errno() = MSVCRT_EDOM;
retval = sqrt(-1);
}
return retval;
}
/*********************************************************************
* _nextafter (MSVCRT.@)
*/
double CDECL _nextafter(double num, double next)
{
double retval;
if (!finite(num) || !finite(next)) *MSVCRT__errno() = MSVCRT_EDOM;
retval = nextafter(num,next);
return retval;
}
/*********************************************************************
* _ecvt (MSVCRT.@)
*/
char * CDECL _ecvt( double number, int ndigits, int *decpt, int *sign )
{
int prec, len;
thread_data_t *data = msvcrt_get_thread_data();
/* FIXME: check better for overflow (native supports over 300 chars's) */
ndigits = min( ndigits, 80 - 7); /* 7 : space for dec point, 1 for "e",
* 4 for exponent and one for
* terminating '\0' */
if (!data->efcvt_buffer)
data->efcvt_buffer = MSVCRT_malloc( 80 ); /* ought to be enough */
if( number < 0) {
*sign = TRUE;
number = -number;
} else
*sign = FALSE;
/* handle cases with zero ndigits or less */
prec = ndigits;
if( prec < 1) prec = 2;
len = snprintf(data->efcvt_buffer, 80, "%.*le", prec - 1, number);
/* take the decimal "point away */
if( prec != 1)
memmove( data->efcvt_buffer + 1, data->efcvt_buffer + 2, len - 1 );
/* take the exponential "e" out */
data->efcvt_buffer[ prec] = '\0';
/* read the exponent */
sscanf( data->efcvt_buffer + prec + 1, "%d", decpt);
(*decpt)++;
/* adjust for some border cases */
if( data->efcvt_buffer[0] == '0')/* value is zero */
*decpt = 0;
/* handle cases with zero ndigits or less */
if( ndigits < 1){
if( data->efcvt_buffer[ 0] >= '5')
(*decpt)++;
data->efcvt_buffer[ 0] = '\0';
}
TRACE("out=\"%s\"\n",data->efcvt_buffer);
return data->efcvt_buffer;
}
/*********************************************************************
* _ecvt_s (MSVCRT.@)
*/
int CDECL _ecvt_s( char *buffer, MSVCRT_size_t length, double number, int ndigits, int *decpt, int *sign )
{
int prec, len;
char *result;
const char infret[] = "1#INF";
if(!MSVCRT_CHECK_PMT(buffer != NULL) || !MSVCRT_CHECK_PMT(decpt != NULL) || !MSVCRT_CHECK_PMT(sign != NULL))
{
*MSVCRT__errno() = MSVCRT_EINVAL;
return MSVCRT_EINVAL;
}
if(!MSVCRT_CHECK_PMT(length > 2) || !MSVCRT_CHECK_PMT(ndigits < (int)length - 1))
{
*MSVCRT__errno() = MSVCRT_ERANGE;
return MSVCRT_ERANGE;
}
/* special case - inf */
if(number == HUGE_VAL || number == -HUGE_VAL)
{
memset(buffer, '0', ndigits);
memcpy(buffer, infret, min(ndigits, sizeof(infret) - 1 ) );
buffer[ndigits] = '\0';
(*decpt) = 1;
if(number == -HUGE_VAL)
(*sign) = 1;
else
(*sign) = 0;
return 0;
}
result = (char*)MSVCRT_malloc(max(ndigits + 7, 7));
if( number < 0) {
*sign = TRUE;
number = -number;
} else
*sign = FALSE;
/* handle cases with zero ndigits or less */
prec = ndigits;
if( prec < 1) prec = 2;
len = snprintf(result, 80, "%.*le", prec - 1, number);
/* take the decimal "point away */
if( prec != 1)
memmove( result + 1, result + 2, len - 1 );
/* take the exponential "e" out */
result[ prec] = '\0';
/* read the exponent */
sscanf( result + prec + 1, "%d", decpt);
(*decpt)++;
/* adjust for some border cases */
if( result[0] == '0')/* value is zero */
*decpt = 0;
/* handle cases with zero ndigits or less */
if( ndigits < 1){
if( result[ 0] >= '5')
(*decpt)++;
result[ 0] = '\0';
}
memcpy( buffer, result, max(ndigits + 1, 1) );
MSVCRT_free( result );
return 0;
}
/***********************************************************************
* _fcvt (MSVCRT.@)
*/
char * CDECL _fcvt( double number, int ndigits, int *decpt, int *sign )
{
thread_data_t *data = msvcrt_get_thread_data();
int stop, dec1, dec2;
char *ptr1, *ptr2, *first;
char buf[80]; /* ought to be enough */
if (!data->efcvt_buffer)
data->efcvt_buffer = MSVCRT_malloc( 80 ); /* ought to be enough */
if (number < 0)
{
*sign = 1;
number = -number;
} else *sign = 0;
snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
ptr1 = buf;
ptr2 = data->efcvt_buffer;
first = NULL;
dec1 = 0;
dec2 = 0;
/* For numbers below the requested resolution, work out where
the decimal point will be rather than finding it in the string */
if (number < 1.0 && number > 0.0) {
dec2 = log10(number + 1e-10);
if (-dec2 <= ndigits) dec2 = 0;
}
/* If requested digits is zero or less, we will need to truncate
* the returned string */
if (ndigits < 1) {
stop = strlen(buf) + ndigits;
} else {
stop = strlen(buf);
}
while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
while (*ptr1 != '\0' && *ptr1 != '.') {
if (!first) first = ptr2;
if ((ptr1 - buf) < stop) {
*ptr2++ = *ptr1++;
} else {
ptr1++;
}
dec1++;
}
if (ndigits > 0) {
ptr1++;
if (!first) {
while (*ptr1 == '0') { /* Process leading zeroes */
*ptr2++ = *ptr1++;
dec1--;
}
}
while (*ptr1 != '\0') {
if (!first) first = ptr2;
*ptr2++ = *ptr1++;
}
}
*ptr2 = '\0';
/* We never found a non-zero digit, then our number is either
* smaller than the requested precision, or 0.0 */
if (!first) {
if (number > 0.0) {
first = ptr2;
} else {
first = data->efcvt_buffer;
dec1 = 0;
}
}
*decpt = dec2 ? dec2 : dec1;
return first;
}
/***********************************************************************
* _fcvt_s (MSVCRT.@)
*/
int CDECL _fcvt_s(char* outbuffer, MSVCRT_size_t size, double number, int ndigits, int *decpt, int *sign)
{
int stop, dec1, dec2;
char *ptr1, *ptr2, *first;
char buf[80]; /* ought to be enough */
if (!outbuffer || !decpt || !sign || size == 0)
{
*MSVCRT__errno() = MSVCRT_EINVAL;
return MSVCRT_EINVAL;
}
if (number < 0)
{
*sign = 1;
number = -number;
} else *sign = 0;
snprintf(buf, 80, "%.*f", ndigits < 0 ? 0 : ndigits, number);
ptr1 = buf;
ptr2 = outbuffer;
first = NULL;
dec1 = 0;
dec2 = 0;
/* For numbers below the requested resolution, work out where
the decimal point will be rather than finding it in the string */
if (number < 1.0 && number > 0.0) {
dec2 = log10(number + 1e-10);
if (-dec2 <= ndigits) dec2 = 0;
}
/* If requested digits is zero or less, we will need to truncate
* the returned string */
if (ndigits < 1) {
stop = strlen(buf) + ndigits;
} else {
stop = strlen(buf);
}
while (*ptr1 == '0') ptr1++; /* Skip leading zeroes */
while (*ptr1 != '\0' && *ptr1 != '.') {
if (!first) first = ptr2;
if ((ptr1 - buf) < stop) {
if (size > 1) {
*ptr2++ = *ptr1++;
size--;
}
} else {
ptr1++;
}
dec1++;
}
if (ndigits > 0) {
ptr1++;
if (!first) {
while (*ptr1 == '0') { /* Process leading zeroes */
if (number == 0.0 && size > 1) {
*ptr2++ = '0';
size--;
}
ptr1++;
dec1--;
}
}
while (*ptr1 != '\0') {
if (!first) first = ptr2;
if (size > 1) {
*ptr2++ = *ptr1++;
size--;
}
}
}
*ptr2 = '\0';
/* We never found a non-zero digit, then our number is either
* smaller than the requested precision, or 0.0 */
if (!first && (number <= 0.0))
dec1 = 0;
*decpt = dec2 ? dec2 : dec1;
return 0;
}
/***********************************************************************
* _gcvt (MSVCRT.@)
*/
char * CDECL _gcvt( double number, int ndigit, char *buff )
{
if(!buff) {
*MSVCRT__errno() = MSVCRT_EINVAL;
return NULL;
}
if(ndigit < 0) {
*MSVCRT__errno() = MSVCRT_ERANGE;
return NULL;
}
MSVCRT_sprintf(buff, "%.*g", ndigit, number);
return buff;
}
/***********************************************************************
* _gcvt_s (MSVCRT.@)
*/
int CDECL _gcvt_s(char *buff, MSVCRT_size_t size, double number, int digits)
{
int len;
if(!buff) {
*MSVCRT__errno() = MSVCRT_EINVAL;
return MSVCRT_EINVAL;
}
if( digits<0 || digits>=size) {
if(size)
buff[0] = '\0';
*MSVCRT__errno() = MSVCRT_ERANGE;
return MSVCRT_ERANGE;
}
len = MSVCRT__scprintf("%.*g", digits, number);
if(len > size) {
buff[0] = '\0';
*MSVCRT__errno() = MSVCRT_ERANGE;
return MSVCRT_ERANGE;
}
MSVCRT_sprintf(buff, "%.*g", digits, number);
return 0;
}
#include <stdlib.h> /* div_t, ldiv_t */
/*********************************************************************
* div (MSVCRT.@)
* VERSION
* [i386] Windows binary compatible - returns the struct in eax/edx.
*/
#ifdef __i386__
unsigned __int64 CDECL MSVCRT_div(int num, int denom)
{
div_t dt = div(num,denom);
return ((unsigned __int64)dt.rem << 32) | (unsigned int)dt.quot;
}
#else
/*********************************************************************
* div (MSVCRT.@)
* VERSION
* [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
*/
MSVCRT_div_t CDECL MSVCRT_div(int num, int denom)
{
div_t dt = div(num,denom);
MSVCRT_div_t ret;
ret.quot = dt.quot;
ret.rem = dt.rem;
return ret;
}
#endif /* ifdef __i386__ */
/*********************************************************************
* ldiv (MSVCRT.@)
* VERSION
* [i386] Windows binary compatible - returns the struct in eax/edx.
*/
#ifdef __i386__
unsigned __int64 CDECL MSVCRT_ldiv(MSVCRT_long num, MSVCRT_long denom)
{
ldiv_t ldt = ldiv(num,denom);
return ((unsigned __int64)ldt.rem << 32) | (MSVCRT_ulong)ldt.quot;
}
#else
/*********************************************************************
* ldiv (MSVCRT.@)
* VERSION
* [!i386] Non-x86 can't run win32 apps so we don't need binary compatibility
*/
MSVCRT_ldiv_t CDECL MSVCRT_ldiv(MSVCRT_long num, MSVCRT_long denom)
{
ldiv_t result = ldiv(num,denom);
MSVCRT_ldiv_t ret;
ret.quot = result.quot;
ret.rem = result.rem;
return ret;
}
#endif /* ifdef __i386__ */
#ifdef __i386__
/*********************************************************************
* _adjust_fdiv (MSVCRT.@)
* Used by the MSVC compiler to work around the Pentium FDIV bug.
*/
int MSVCRT__adjust_fdiv = 0;
/***********************************************************************
* _adj_fdiv_m16i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m16i( short arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m32 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m32( unsigned int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m32i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m32i( int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_m64 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdiv_m64( unsigned __int64 arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdiv_r (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fdiv_r(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m16i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m16i( short arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m32 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m32( unsigned int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m32i (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m32i( int arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fdivr_m64 (MSVCRT.@)
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void __stdcall _adj_fdivr_m64( unsigned __int64 arg )
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fpatan (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fpatan(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fprem (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fprem(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fprem1 (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fprem1(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _adj_fptan (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _adj_fptan(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fdiv (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fdiv(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fdivr (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fdivr(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fprem (MSVCRT.@)
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fprem(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* _safe_fprem1 (MSVCRT.@)
*
* FIXME
* This function is likely to have the wrong number of arguments.
*
* NOTE
* I _think_ this function is intended to work around the Pentium
* fdiv bug.
*/
void _safe_fprem1(void)
{
TRACE("(): stub\n");
}
/***********************************************************************
* __libm_sse2_acos (MSVCRT.@)
*/
void __cdecl __libm_sse2_acos(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = acos( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_acosf (MSVCRT.@)
*/
void __cdecl __libm_sse2_acosf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = acosf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_asin (MSVCRT.@)
*/
void __cdecl __libm_sse2_asin(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = asin( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_asinf (MSVCRT.@)
*/
void __cdecl __libm_sse2_asinf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = asinf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_atan (MSVCRT.@)
*/
void __cdecl __libm_sse2_atan(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = atan( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_atan2 (MSVCRT.@)
*/
void __cdecl __libm_sse2_atan2(void)
{
double d1, d2;
__asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
d1 = atan2( d1, d2 );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
}
/***********************************************************************
* __libm_sse2_atanf (MSVCRT.@)
*/
void __cdecl __libm_sse2_atanf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = atanf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_cos (MSVCRT.@)
*/
void __cdecl __libm_sse2_cos(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = cos( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_cosf (MSVCRT.@)
*/
void __cdecl __libm_sse2_cosf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = cosf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_exp (MSVCRT.@)
*/
void __cdecl __libm_sse2_exp(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = exp( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_expf (MSVCRT.@)
*/
void __cdecl __libm_sse2_expf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = expf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_log (MSVCRT.@)
*/
void __cdecl __libm_sse2_log(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = log( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_log10 (MSVCRT.@)
*/
void __cdecl __libm_sse2_log10(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = log10( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_log10f (MSVCRT.@)
*/
void __cdecl __libm_sse2_log10f(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = log10f( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_logf (MSVCRT.@)
*/
void __cdecl __libm_sse2_logf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = logf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_pow (MSVCRT.@)
*/
void __cdecl __libm_sse2_pow(void)
{
double d1, d2;
__asm__ __volatile__( "movq %%xmm0,%0; movq %%xmm1,%1 " : "=m" (d1), "=m" (d2) );
d1 = pow( d1, d2 );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d1) );
}
/***********************************************************************
* __libm_sse2_powf (MSVCRT.@)
*/
void __cdecl __libm_sse2_powf(void)
{
float f1, f2;
__asm__ __volatile__( "movd %%xmm0,%0; movd %%xmm1,%1" : "=g" (f1), "=g" (f2) );
f1 = powf( f1, f2 );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f1) );
}
/***********************************************************************
* __libm_sse2_sin (MSVCRT.@)
*/
void __cdecl __libm_sse2_sin(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = sin( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_sinf (MSVCRT.@)
*/
void __cdecl __libm_sse2_sinf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = sinf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
/***********************************************************************
* __libm_sse2_tan (MSVCRT.@)
*/
void __cdecl __libm_sse2_tan(void)
{
double d;
__asm__ __volatile__( "movq %%xmm0,%0" : "=m" (d) );
d = tan( d );
__asm__ __volatile__( "movq %0,%%xmm0" : : "m" (d) );
}
/***********************************************************************
* __libm_sse2_tanf (MSVCRT.@)
*/
void __cdecl __libm_sse2_tanf(void)
{
float f;
__asm__ __volatile__( "movd %%xmm0,%0" : "=g" (f) );
f = tanf( f );
__asm__ __volatile__( "movd %0,%%xmm0" : : "g" (f) );
}
#endif /* __i386__ */