wine/dlls/cabinet/cabextract.c
2004-01-27 00:01:43 +00:00

2653 lines
80 KiB
C

/*
* cabextract.c
*
* Copyright 2000-2002 Stuart Caie
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Principal author: Stuart Caie <kyzer@4u.net>
*
* Based on specification documents from Microsoft Corporation
* Quantum decompression researched and implemented by Matthew Russoto
* Huffman code adapted from unlzx by Dave Tritscher.
* InfoZip team's INFLATE implementation adapted to MSZIP by Dirk Stoecker.
* Major LZX fixes by Jae Jung.
*/
#include "config.h"
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include "windef.h"
#include "winbase.h"
#include "winerror.h"
#include "cabinet.h"
#include "wine/debug.h"
WINE_DEFAULT_DEBUG_CHANNEL(cabinet);
THOSE_ZIP_CONSTS;
/* all the file IO is abstracted into these routines:
* cabinet_(open|close|read|seek|skip|getoffset)
* file_(open|close|write)
*/
/* try to open a cabinet file, returns success */
BOOL cabinet_open(struct cabinet *cab)
{
char *name = (char *)cab->filename;
HANDLE fh;
TRACE("(cab == ^%p)\n", cab);
if ((fh = CreateFileA( name, GENERIC_READ, FILE_SHARE_READ,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL )) == INVALID_HANDLE_VALUE) {
ERR("Couldn't open %s\n", debugstr_a(name));
return FALSE;
}
/* seek to end of file and get the length */
if ((cab->filelen = SetFilePointer(fh, 0, NULL, FILE_END)) == INVALID_SET_FILE_POINTER) {
if (GetLastError() != NO_ERROR) {
ERR("Seek END failed: %s\n", debugstr_a(name));
CloseHandle(fh);
return FALSE;
}
}
/* return to the start of the file */
if (SetFilePointer(fh, 0, NULL, FILE_BEGIN) == INVALID_SET_FILE_POINTER) {
ERR("Seek BEGIN failed: %s\n", debugstr_a(name));
CloseHandle(fh);
return FALSE;
}
cab->fh = fh;
return TRUE;
}
/*******************************************************************
* cabinet_close (internal)
*
* close the file handle in a struct cabinet.
*/
void cabinet_close(struct cabinet *cab) {
TRACE("(cab == ^%p)\n", cab);
if (cab->fh) CloseHandle(cab->fh);
cab->fh = 0;
}
/*******************************************************
* ensure_filepath2 (internal)
*/
BOOL ensure_filepath2(char *path) {
BOOL ret = TRUE;
int len;
char *new_path;
new_path = HeapAlloc(GetProcessHeap(), 0, (strlen(path) + 1));
strcpy(new_path, path);
while((len = strlen(new_path)) && new_path[len - 1] == '\\')
new_path[len - 1] = 0;
TRACE("About to try to create directory %s\n", debugstr_a(new_path));
while(!CreateDirectoryA(new_path, NULL)) {
char *slash;
DWORD last_error = GetLastError();
if(last_error == ERROR_ALREADY_EXISTS)
break;
if(last_error != ERROR_PATH_NOT_FOUND) {
ret = FALSE;
break;
}
if(!(slash = strrchr(new_path, '\\'))) {
ret = FALSE;
break;
}
len = slash - new_path;
new_path[len] = 0;
if(! ensure_filepath2(new_path)) {
ret = FALSE;
break;
}
new_path[len] = '\\';
TRACE("New path in next iteration: %s\n", debugstr_a(new_path));
}
HeapFree(GetProcessHeap(), 0, new_path);
return ret;
}
/**********************************************************************
* ensure_filepath (internal)
*
* ensure_filepath("a\b\c\d.txt") ensures a, a\b and a\b\c exist as dirs
*/
BOOL ensure_filepath(char *path) {
char new_path[MAX_PATH];
int len, i, lastslashpos = -1;
TRACE("(path == %s)\n", debugstr_a(path));
strcpy(new_path, path);
/* remove trailing slashes (shouldn't need to but wth...) */
while ((len = strlen(new_path)) && new_path[len - 1] == '\\')
new_path[len - 1] = 0;
/* find the position of the last '\\' */
for (i=0; i<MAX_PATH; i++) {
if (new_path[i] == 0) break;
if (new_path[i] == '\\')
lastslashpos = i;
}
if (lastslashpos > 0) {
new_path[lastslashpos] = 0;
/* may be trailing slashes but ensure_filepath2 will chop them */
return ensure_filepath2(new_path);
} else
return TRUE; /* ? */
}
/*******************************************************************
* file_open (internal)
*
* opens a file for output, returns success
*/
BOOL file_open(struct cab_file *fi, BOOL lower, LPCSTR dir)
{
char c, *s, *d, *name;
BOOL ok = FALSE;
TRACE("(fi == ^%p, lower == %s, dir == %s)\n", fi, lower ? "TRUE" : "FALSE", debugstr_a(dir));
if (!(name = malloc(strlen(fi->filename) + (dir ? strlen(dir) : 0) + 2))) {
ERR("out of memory!\n");
return FALSE;
}
/* start with blank name */
*name = 0;
/* add output directory if needed */
if (dir) {
strcpy(name, dir);
strcat(name, "\\");
}
/* remove leading slashes */
s = (char *) fi->filename;
while (*s == '\\') s++;
/* copy from fi->filename to new name.
* lowercases characters if needed.
*/
d = &name[strlen(name)];
do {
c = *s++;
*d++ = (lower ? tolower((unsigned char) c) : c);
} while (c);
/* create directories if needed, attempt to write file */
if (ensure_filepath(name)) {
fi->fh = CreateFileA(name, GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);
if (fi->fh != INVALID_HANDLE_VALUE)
ok = TRUE;
else {
ERR("CreateFileA returned INVALID_HANDLE_VALUE\n");
fi->fh = 0;
}
} else
ERR("Couldn't ensure filepath for %s\n", debugstr_a(name));
if (!ok) {
ERR("Couldn't open file %s for writing\n", debugstr_a(name));
}
/* as full filename is no longer needed, free it */
free(name);
return ok;
}
/********************************************************
* close_file (internal)
*
* closes a completed file
*/
void file_close(struct cab_file *fi)
{
TRACE("(fi == ^%p)\n", fi);
if (fi->fh) {
CloseHandle(fi->fh);
}
fi->fh = 0;
}
/******************************************************************
* file_write (internal)
*
* writes from buf to a file specified as a cab_file struct.
* returns success/failure
*/
BOOL file_write(struct cab_file *fi, cab_UBYTE *buf, cab_off_t length)
{
DWORD bytes_written;
TRACE("(fi == ^%p, buf == ^%p, length == %u)\n", fi, buf, length);
if ((!WriteFile( fi->fh, (LPCVOID) buf, length, &bytes_written, FALSE) ||
(bytes_written != length))) {
ERR("Error writing file: %s\n", debugstr_a(fi->filename));
return FALSE;
}
return TRUE;
}
/*******************************************************************
* cabinet_skip (internal)
*
* advance the file pointer associated with the cab structure
* by distance bytes
*/
void cabinet_skip(struct cabinet *cab, cab_off_t distance)
{
TRACE("(cab == ^%p, distance == %u)\n", cab, distance);
if (SetFilePointer(cab->fh, distance, NULL, FILE_CURRENT) == INVALID_SET_FILE_POINTER) {
if (distance != INVALID_SET_FILE_POINTER)
ERR("%s\n", debugstr_a((char *) cab->filename));
}
}
/*******************************************************************
* cabinet_seek (internal)
*
* seek to the specified absolute offset in a cab
*/
void cabinet_seek(struct cabinet *cab, cab_off_t offset) {
TRACE("(cab == ^%p, offset == %u)\n", cab, offset);
if (SetFilePointer(cab->fh, offset, NULL, FILE_BEGIN) != offset)
ERR("%s seek failure\n", debugstr_a((char *)cab->filename));
}
/*******************************************************************
* cabinet_getoffset (internal)
*
* returns the file pointer position of a cab
*/
cab_off_t cabinet_getoffset(struct cabinet *cab)
{
return SetFilePointer(cab->fh, 0, NULL, FILE_CURRENT);
}
/*******************************************************************
* cabinet_read (internal)
*
* read data from a cabinet, returns success
*/
BOOL cabinet_read(struct cabinet *cab, cab_UBYTE *buf, cab_off_t length)
{
DWORD bytes_read;
cab_off_t avail = cab->filelen - cabinet_getoffset(cab);
TRACE("(cab == ^%p, buf == ^%p, length == %u)\n", cab, buf, length);
if (length > avail) {
WARN("%s: WARNING; cabinet is truncated\n", debugstr_a((char *)cab->filename));
length = avail;
}
if (! ReadFile( cab->fh, (LPVOID) buf, length, &bytes_read, NULL )) {
ERR("%s read error\n", debugstr_a((char *) cab->filename));
return FALSE;
} else if (bytes_read != length) {
ERR("%s read size mismatch\n", debugstr_a((char *) cab->filename));
return FALSE;
}
return TRUE;
}
/**********************************************************************
* cabinet_read_string (internal)
*
* allocate and read an aribitrarily long string from the cabinet
*/
char *cabinet_read_string(struct cabinet *cab)
{
cab_off_t len=256, base = cabinet_getoffset(cab), maxlen = cab->filelen - base;
BOOL ok = FALSE;
int i;
cab_UBYTE *buf = NULL;
TRACE("(cab == ^%p)\n", cab);
do {
if (len > maxlen) len = maxlen;
if (!(buf = realloc(buf, (size_t) len))) break;
if (!cabinet_read(cab, buf, (size_t) len)) break;
/* search for a null terminator in what we've just read */
for (i=0; i < len; i++) {
if (!buf[i]) {ok=TRUE; break;}
}
if (!ok) {
if (len == maxlen) {
ERR("%s: WARNING; cabinet is truncated\n", debugstr_a((char *) cab->filename));
break;
}
len += 256;
cabinet_seek(cab, base);
}
} while (!ok);
if (!ok) {
if (buf)
free(buf);
else
ERR("out of memory!\n");
return NULL;
}
/* otherwise, set the stream to just after the string and return */
cabinet_seek(cab, base + ((cab_off_t) strlen((char *) buf)) + 1);
return (char *) buf;
}
/******************************************************************
* cabinet_read_entries (internal)
*
* reads the header and all folder and file entries in this cabinet
*/
BOOL cabinet_read_entries(struct cabinet *cab)
{
int num_folders, num_files, header_resv, folder_resv = 0, i;
struct cab_folder *fol, *linkfol = NULL;
struct cab_file *file, *linkfile = NULL;
cab_off_t base_offset;
cab_UBYTE buf[64];
TRACE("(cab == ^%p)\n", cab);
/* read in the CFHEADER */
base_offset = cabinet_getoffset(cab);
if (!cabinet_read(cab, buf, cfhead_SIZEOF)) {
return FALSE;
}
/* check basic MSCF signature */
if (EndGetI32(buf+cfhead_Signature) != 0x4643534d) {
ERR("%s: not a Microsoft cabinet file\n", debugstr_a((char *) cab->filename));
return FALSE;
}
/* get the number of folders */
num_folders = EndGetI16(buf+cfhead_NumFolders);
if (num_folders == 0) {
ERR("%s: no folders in cabinet\n", debugstr_a((char *) cab->filename));
return FALSE;
}
/* get the number of files */
num_files = EndGetI16(buf+cfhead_NumFiles);
if (num_files == 0) {
ERR("%s: no files in cabinet\n", debugstr_a((char *) cab->filename));
return FALSE;
}
/* just check the header revision */
if ((buf[cfhead_MajorVersion] > 1) ||
(buf[cfhead_MajorVersion] == 1 && buf[cfhead_MinorVersion] > 3))
{
WARN("%s: WARNING; cabinet format version > 1.3\n", debugstr_a((char *) cab->filename));
}
/* read the reserved-sizes part of header, if present */
cab->flags = EndGetI16(buf+cfhead_Flags);
if (cab->flags & cfheadRESERVE_PRESENT) {
if (!cabinet_read(cab, buf, cfheadext_SIZEOF)) return FALSE;
header_resv = EndGetI16(buf+cfheadext_HeaderReserved);
folder_resv = buf[cfheadext_FolderReserved];
cab->block_resv = buf[cfheadext_DataReserved];
if (header_resv > 60000) {
WARN("%s: WARNING; header reserved space > 60000\n", debugstr_a((char *) cab->filename));
}
/* skip the reserved header */
if (header_resv)
if (SetFilePointer(cab->fh, (cab_off_t) header_resv, NULL, FILE_CURRENT) == INVALID_SET_FILE_POINTER)
ERR("seek failure: %s\n", debugstr_a((char *) cab->filename));
}
if (cab->flags & cfheadPREV_CABINET) {
cab->prevname = cabinet_read_string(cab);
if (!cab->prevname) return FALSE;
cab->previnfo = cabinet_read_string(cab);
}
if (cab->flags & cfheadNEXT_CABINET) {
cab->nextname = cabinet_read_string(cab);
if (!cab->nextname) return FALSE;
cab->nextinfo = cabinet_read_string(cab);
}
/* read folders */
for (i = 0; i < num_folders; i++) {
if (!cabinet_read(cab, buf, cffold_SIZEOF)) return FALSE;
if (folder_resv) cabinet_skip(cab, folder_resv);
fol = (struct cab_folder *) calloc(1, sizeof(struct cab_folder));
if (!fol) {
ERR("out of memory!\n");
return FALSE;
}
fol->cab[0] = cab;
fol->offset[0] = base_offset + (cab_off_t) EndGetI32(buf+cffold_DataOffset);
fol->num_blocks = EndGetI16(buf+cffold_NumBlocks);
fol->comp_type = EndGetI16(buf+cffold_CompType);
if (!linkfol)
cab->folders = fol;
else
linkfol->next = fol;
linkfol = fol;
}
/* read files */
for (i = 0; i < num_files; i++) {
if (!cabinet_read(cab, buf, cffile_SIZEOF))
return FALSE;
file = (struct cab_file *) calloc(1, sizeof(struct cab_file));
if (!file) {
ERR("out of memory!\n");
return FALSE;
}
file->length = EndGetI32(buf+cffile_UncompressedSize);
file->offset = EndGetI32(buf+cffile_FolderOffset);
file->index = EndGetI16(buf+cffile_FolderIndex);
file->time = EndGetI16(buf+cffile_Time);
file->date = EndGetI16(buf+cffile_Date);
file->attribs = EndGetI16(buf+cffile_Attribs);
file->filename = cabinet_read_string(cab);
if (!file->filename) {
free(file);
return FALSE;
}
if (!linkfile)
cab->files = file;
else
linkfile->next = file;
linkfile = file;
}
return TRUE;
}
/***********************************************************
* load_cab_offset (internal)
*
* validates and reads file entries from a cabinet at offset [offset] in
* file [name]. Returns a cabinet structure if successful, or NULL
* otherwise.
*/
struct cabinet *load_cab_offset(LPCSTR name, cab_off_t offset)
{
struct cabinet *cab = (struct cabinet *) calloc(1, sizeof(struct cabinet));
int ok;
TRACE("(name == %s, offset == %u)\n", debugstr_a((char *) name), offset);
if (!cab) return NULL;
cab->filename = name;
if ((ok = cabinet_open(cab))) {
cabinet_seek(cab, offset);
ok = cabinet_read_entries(cab);
cabinet_close(cab);
}
if (ok) return cab;
free(cab);
return NULL;
}
/* MSZIP decruncher */
/* Dirk Stoecker wrote the ZIP decoder, based on the InfoZip deflate code */
/********************************************************
* Ziphuft_free (internal)
*/
void Ziphuft_free(struct Ziphuft *t)
{
register struct Ziphuft *p, *q;
/* Go through linked list, freeing from the allocated (t[-1]) address. */
p = t;
while (p != (struct Ziphuft *)NULL)
{
q = (--p)->v.t;
free(p);
p = q;
}
}
/*********************************************************
* Ziphuft_build (internal)
*/
cab_LONG Ziphuft_build(cab_ULONG *b, cab_ULONG n, cab_ULONG s, cab_UWORD *d, cab_UWORD *e,
struct Ziphuft **t, cab_LONG *m, cab_decomp_state *decomp_state)
{
cab_ULONG a; /* counter for codes of length k */
cab_ULONG el; /* length of EOB code (value 256) */
cab_ULONG f; /* i repeats in table every f entries */
cab_LONG g; /* maximum code length */
cab_LONG h; /* table level */
register cab_ULONG i; /* counter, current code */
register cab_ULONG j; /* counter */
register cab_LONG k; /* number of bits in current code */
cab_LONG *l; /* stack of bits per table */
register cab_ULONG *p; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */
register struct Ziphuft *q; /* points to current table */
struct Ziphuft r; /* table entry for structure assignment */
register cab_LONG w; /* bits before this table == (l * h) */
cab_ULONG *xp; /* pointer into x */
cab_LONG y; /* number of dummy codes added */
cab_ULONG z; /* number of entries in current table */
l = ZIP(lx)+1;
/* Generate counts for each bit length */
el = n > 256 ? b[256] : ZIPBMAX; /* set length of EOB code, if any */
for(i = 0; i < ZIPBMAX+1; ++i)
ZIP(c)[i] = 0;
p = b; i = n;
do
{
ZIP(c)[*p]++; p++; /* assume all entries <= ZIPBMAX */
} while (--i);
if (ZIP(c)[0] == n) /* null input--all zero length codes */
{
*t = (struct Ziphuft *)NULL;
*m = 0;
return 0;
}
/* Find minimum and maximum length, bound *m by those */
for (j = 1; j <= ZIPBMAX; j++)
if (ZIP(c)[j])
break;
k = j; /* minimum code length */
if ((cab_ULONG)*m < j)
*m = j;
for (i = ZIPBMAX; i; i--)
if (ZIP(c)[i])
break;
g = i; /* maximum code length */
if ((cab_ULONG)*m > i)
*m = i;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= ZIP(c)[j]) < 0)
return 2; /* bad input: more codes than bits */
if ((y -= ZIP(c)[i]) < 0)
return 2;
ZIP(c)[i] += y;
/* Generate starting offsets LONGo the value table for each length */
ZIP(x)[1] = j = 0;
p = ZIP(c) + 1; xp = ZIP(x) + 2;
while (--i)
{ /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
p = b; i = 0;
do{
if ((j = *p++) != 0)
ZIP(v)[ZIP(x)[j]++] = i;
} while (++i < n);
/* Generate the Huffman codes and for each, make the table entries */
ZIP(x)[0] = i = 0; /* first Huffman code is zero */
p = ZIP(v); /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = l[-1] = 0; /* no bits decoded yet */
ZIP(u)[0] = (struct Ziphuft *)NULL; /* just to keep compilers happy */
q = (struct Ziphuft *)NULL; /* ditto */
z = 0; /* ditto */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++)
{
a = ZIP(c)[k];
while (a--)
{
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > w + l[h])
{
w += l[h++]; /* add bits already decoded */
/* compute minimum size table less than or equal to *m bits */
z = (z = g - w) > (cab_ULONG)*m ? *m : z; /* upper limit */
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
{ /* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = ZIP(c) + k;
while (++j < z) /* try smaller tables up to z bits */
{
if ((f <<= 1) <= *++xp)
break; /* enough codes to use up j bits */
f -= *xp; /* else deduct codes from patterns */
}
}
if ((cab_ULONG)w + j > el && (cab_ULONG)w < el)
j = el - w; /* make EOB code end at table */
z = 1 << j; /* table entries for j-bit table */
l[h] = j; /* set table size in stack */
/* allocate and link in new table */
if (!(q = (struct Ziphuft *) malloc((z + 1)*sizeof(struct Ziphuft))))
{
if(h)
Ziphuft_free(ZIP(u)[0]);
return 3; /* not enough memory */
}
*t = q + 1; /* link to list for Ziphuft_free() */
*(t = &(q->v.t)) = (struct Ziphuft *)NULL;
ZIP(u)[h] = ++q; /* table starts after link */
/* connect to last table, if there is one */
if (h)
{
ZIP(x)[h] = i; /* save pattern for backing up */
r.b = (cab_UBYTE)l[h-1]; /* bits to dump before this table */
r.e = (cab_UBYTE)(16 + j); /* bits in this table */
r.v.t = q; /* pointer to this table */
j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
ZIP(u)[h-1][j] = r; /* connect to last table */
}
}
/* set up table entry in r */
r.b = (cab_UBYTE)(k - w);
if (p >= ZIP(v) + n)
r.e = 99; /* out of values--invalid code */
else if (*p < s)
{
r.e = (cab_UBYTE)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
r.v.n = *p++; /* simple code is just the value */
}
else
{
r.e = (cab_UBYTE)e[*p - s]; /* non-simple--look up in lists */
r.v.n = d[*p++ - s];
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != ZIP(x)[h])
w -= l[--h]; /* don't need to update q */
}
}
/* return actual size of base table */
*m = l[0];
/* Return true (1) if we were given an incomplete table */
return y != 0 && g != 1;
}
/*********************************************************
* Zipinflate_codes (internal)
*/
cab_LONG Zipinflate_codes(struct Ziphuft *tl, struct Ziphuft *td,
cab_LONG bl, cab_LONG bd, cab_decomp_state *decomp_state)
{
register cab_ULONG e; /* table entry flag/number of extra bits */
cab_ULONG n, d; /* length and index for copy */
cab_ULONG w; /* current window position */
struct Ziphuft *t; /* pointer to table entry */
cab_ULONG ml, md; /* masks for bl and bd bits */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local copies of globals */
b = ZIP(bb); /* initialize bit buffer */
k = ZIP(bk);
w = ZIP(window_posn); /* initialize window position */
/* inflate the coded data */
ml = Zipmask[bl]; /* precompute masks for speed */
md = Zipmask[bd];
for(;;)
{
ZIPNEEDBITS((cab_ULONG)bl)
if((e = (t = tl + ((cab_ULONG)b & ml))->e) > 16)
do
{
if (e == 99)
return 1;
ZIPDUMPBITS(t->b)
e -= 16;
ZIPNEEDBITS(e)
} while ((e = (t = t->v.t + ((cab_ULONG)b & Zipmask[e]))->e) > 16);
ZIPDUMPBITS(t->b)
if (e == 16) /* then it's a literal */
CAB(outbuf)[w++] = (cab_UBYTE)t->v.n;
else /* it's an EOB or a length */
{
/* exit if end of block */
if(e == 15)
break;
/* get length of block to copy */
ZIPNEEDBITS(e)
n = t->v.n + ((cab_ULONG)b & Zipmask[e]);
ZIPDUMPBITS(e);
/* decode distance of block to copy */
ZIPNEEDBITS((cab_ULONG)bd)
if ((e = (t = td + ((cab_ULONG)b & md))->e) > 16)
do {
if (e == 99)
return 1;
ZIPDUMPBITS(t->b)
e -= 16;
ZIPNEEDBITS(e)
} while ((e = (t = t->v.t + ((cab_ULONG)b & Zipmask[e]))->e) > 16);
ZIPDUMPBITS(t->b)
ZIPNEEDBITS(e)
d = w - t->v.n - ((cab_ULONG)b & Zipmask[e]);
ZIPDUMPBITS(e)
do
{
n -= (e = (e = ZIPWSIZE - ((d &= ZIPWSIZE-1) > w ? d : w)) > n ?n:e);
do
{
CAB(outbuf)[w++] = CAB(outbuf)[d++];
} while (--e);
} while (n);
}
}
/* restore the globals from the locals */
ZIP(window_posn) = w; /* restore global window pointer */
ZIP(bb) = b; /* restore global bit buffer */
ZIP(bk) = k;
/* done */
return 0;
}
/***********************************************************
* Zipinflate_stored (internal)
*/
cab_LONG Zipinflate_stored(cab_decomp_state *decomp_state)
/* "decompress" an inflated type 0 (stored) block. */
{
cab_ULONG n; /* number of bytes in block */
cab_ULONG w; /* current window position */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local copies of globals */
b = ZIP(bb); /* initialize bit buffer */
k = ZIP(bk);
w = ZIP(window_posn); /* initialize window position */
/* go to byte boundary */
n = k & 7;
ZIPDUMPBITS(n);
/* get the length and its complement */
ZIPNEEDBITS(16)
n = ((cab_ULONG)b & 0xffff);
ZIPDUMPBITS(16)
ZIPNEEDBITS(16)
if (n != (cab_ULONG)((~b) & 0xffff))
return 1; /* error in compressed data */
ZIPDUMPBITS(16)
/* read and output the compressed data */
while(n--)
{
ZIPNEEDBITS(8)
CAB(outbuf)[w++] = (cab_UBYTE)b;
ZIPDUMPBITS(8)
}
/* restore the globals from the locals */
ZIP(window_posn) = w; /* restore global window pointer */
ZIP(bb) = b; /* restore global bit buffer */
ZIP(bk) = k;
return 0;
}
/******************************************************
* Zipinflate_fixed (internal)
*/
cab_LONG Zipinflate_fixed(cab_decomp_state *decomp_state)
{
struct Ziphuft *fixed_tl;
struct Ziphuft *fixed_td;
cab_LONG fixed_bl, fixed_bd;
cab_LONG i; /* temporary variable */
cab_ULONG *l;
l = ZIP(ll);
/* literal table */
for(i = 0; i < 144; i++)
l[i] = 8;
for(; i < 256; i++)
l[i] = 9;
for(; i < 280; i++)
l[i] = 7;
for(; i < 288; i++) /* make a complete, but wrong code set */
l[i] = 8;
fixed_bl = 7;
if((i = Ziphuft_build(l, 288, 257, (cab_UWORD *) Zipcplens,
(cab_UWORD *) Zipcplext, &fixed_tl, &fixed_bl, decomp_state)))
return i;
/* distance table */
for(i = 0; i < 30; i++) /* make an incomplete code set */
l[i] = 5;
fixed_bd = 5;
if((i = Ziphuft_build(l, 30, 0, (cab_UWORD *) Zipcpdist, (cab_UWORD *) Zipcpdext,
&fixed_td, &fixed_bd, decomp_state)) > 1)
{
Ziphuft_free(fixed_tl);
return i;
}
/* decompress until an end-of-block code */
i = Zipinflate_codes(fixed_tl, fixed_td, fixed_bl, fixed_bd, decomp_state);
Ziphuft_free(fixed_td);
Ziphuft_free(fixed_tl);
return i;
}
/**************************************************************
* Zipinflate_dynamic (internal)
*/
cab_LONG Zipinflate_dynamic(cab_decomp_state *decomp_state)
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
{
cab_LONG i; /* temporary variables */
cab_ULONG j;
cab_ULONG *ll;
cab_ULONG l; /* last length */
cab_ULONG m; /* mask for bit lengths table */
cab_ULONG n; /* number of lengths to get */
struct Ziphuft *tl; /* literal/length code table */
struct Ziphuft *td; /* distance code table */
cab_LONG bl; /* lookup bits for tl */
cab_LONG bd; /* lookup bits for td */
cab_ULONG nb; /* number of bit length codes */
cab_ULONG nl; /* number of literal/length codes */
cab_ULONG nd; /* number of distance codes */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local bit buffer */
b = ZIP(bb);
k = ZIP(bk);
ll = ZIP(ll);
/* read in table lengths */
ZIPNEEDBITS(5)
nl = 257 + ((cab_ULONG)b & 0x1f); /* number of literal/length codes */
ZIPDUMPBITS(5)
ZIPNEEDBITS(5)
nd = 1 + ((cab_ULONG)b & 0x1f); /* number of distance codes */
ZIPDUMPBITS(5)
ZIPNEEDBITS(4)
nb = 4 + ((cab_ULONG)b & 0xf); /* number of bit length codes */
ZIPDUMPBITS(4)
if(nl > 288 || nd > 32)
return 1; /* bad lengths */
/* read in bit-length-code lengths */
for(j = 0; j < nb; j++)
{
ZIPNEEDBITS(3)
ll[Zipborder[j]] = (cab_ULONG)b & 7;
ZIPDUMPBITS(3)
}
for(; j < 19; j++)
ll[Zipborder[j]] = 0;
/* build decoding table for trees--single level, 7 bit lookup */
bl = 7;
if((i = Ziphuft_build(ll, 19, 19, NULL, NULL, &tl, &bl, decomp_state)) != 0)
{
if(i == 1)
Ziphuft_free(tl);
return i; /* incomplete code set */
}
/* read in literal and distance code lengths */
n = nl + nd;
m = Zipmask[bl];
i = l = 0;
while((cab_ULONG)i < n)
{
ZIPNEEDBITS((cab_ULONG)bl)
j = (td = tl + ((cab_ULONG)b & m))->b;
ZIPDUMPBITS(j)
j = td->v.n;
if (j < 16) /* length of code in bits (0..15) */
ll[i++] = l = j; /* save last length in l */
else if (j == 16) /* repeat last length 3 to 6 times */
{
ZIPNEEDBITS(2)
j = 3 + ((cab_ULONG)b & 3);
ZIPDUMPBITS(2)
if((cab_ULONG)i + j > n)
return 1;
while (j--)
ll[i++] = l;
}
else if (j == 17) /* 3 to 10 zero length codes */
{
ZIPNEEDBITS(3)
j = 3 + ((cab_ULONG)b & 7);
ZIPDUMPBITS(3)
if ((cab_ULONG)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
else /* j == 18: 11 to 138 zero length codes */
{
ZIPNEEDBITS(7)
j = 11 + ((cab_ULONG)b & 0x7f);
ZIPDUMPBITS(7)
if ((cab_ULONG)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
}
/* free decoding table for trees */
Ziphuft_free(tl);
/* restore the global bit buffer */
ZIP(bb) = b;
ZIP(bk) = k;
/* build the decoding tables for literal/length and distance codes */
bl = ZIPLBITS;
if((i = Ziphuft_build(ll, nl, 257, (cab_UWORD *) Zipcplens, (cab_UWORD *) Zipcplext,
&tl, &bl, decomp_state)) != 0)
{
if(i == 1)
Ziphuft_free(tl);
return i; /* incomplete code set */
}
bd = ZIPDBITS;
Ziphuft_build(ll + nl, nd, 0, (cab_UWORD *) Zipcpdist, (cab_UWORD *) Zipcpdext,
&td, &bd, decomp_state);
/* decompress until an end-of-block code */
if(Zipinflate_codes(tl, td, bl, bd, decomp_state))
return 1;
/* free the decoding tables, return */
Ziphuft_free(tl);
Ziphuft_free(td);
return 0;
}
/*****************************************************
* Zipinflate_block (internal)
*/
cab_LONG Zipinflate_block(cab_LONG *e, cab_decomp_state *decomp_state) /* e == last block flag */
{ /* decompress an inflated block */
cab_ULONG t; /* block type */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local bit buffer */
b = ZIP(bb);
k = ZIP(bk);
/* read in last block bit */
ZIPNEEDBITS(1)
*e = (cab_LONG)b & 1;
ZIPDUMPBITS(1)
/* read in block type */
ZIPNEEDBITS(2)
t = (cab_ULONG)b & 3;
ZIPDUMPBITS(2)
/* restore the global bit buffer */
ZIP(bb) = b;
ZIP(bk) = k;
/* inflate that block type */
if(t == 2)
return Zipinflate_dynamic(decomp_state);
if(t == 0)
return Zipinflate_stored(decomp_state);
if(t == 1)
return Zipinflate_fixed(decomp_state);
/* bad block type */
return 2;
}
/****************************************************
* ZIPdecompress (internal)
*/
int ZIPdecompress(int inlen, int outlen, cab_decomp_state *decomp_state)
{
cab_LONG e; /* last block flag */
TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
ZIP(inpos) = CAB(inbuf);
ZIP(bb) = ZIP(bk) = ZIP(window_posn) = 0;
if(outlen > ZIPWSIZE)
return DECR_DATAFORMAT;
/* CK = Chris Kirmse, official Microsoft purloiner */
if(ZIP(inpos)[0] != 0x43 || ZIP(inpos)[1] != 0x4B)
return DECR_ILLEGALDATA;
ZIP(inpos) += 2;
do
{
if(Zipinflate_block(&e, decomp_state))
return DECR_ILLEGALDATA;
} while(!e);
/* return success */
return DECR_OK;
}
/* Quantum decruncher */
/* This decruncher was researched and implemented by Matthew Russoto. */
/* It has since been tidied up by Stuart Caie */
/******************************************************************
* QTMinitmodel (internal)
*
* Initialise a model which decodes symbols from [s] to [s]+[n]-1
*/
void QTMinitmodel(struct QTMmodel *m, struct QTMmodelsym *sym, int n, int s) {
int i;
m->shiftsleft = 4;
m->entries = n;
m->syms = sym;
memset(m->tabloc, 0xFF, sizeof(m->tabloc)); /* clear out look-up table */
for (i = 0; i < n; i++) {
m->tabloc[i+s] = i; /* set up a look-up entry for symbol */
m->syms[i].sym = i+s; /* actual symbol */
m->syms[i].cumfreq = n-i; /* current frequency of that symbol */
}
m->syms[n].cumfreq = 0;
}
/******************************************************************
* QTMinit (internal)
*/
int QTMinit(int window, int level, cab_decomp_state *decomp_state) {
int wndsize = 1 << window, msz = window * 2, i;
cab_ULONG j;
/* QTM supports window sizes of 2^10 (1Kb) through 2^21 (2Mb) */
/* if a previously allocated window is big enough, keep it */
if (window < 10 || window > 21) return DECR_DATAFORMAT;
if (QTM(actual_size) < wndsize) {
if (QTM(window)) free(QTM(window));
QTM(window) = NULL;
}
if (!QTM(window)) {
if (!(QTM(window) = malloc(wndsize))) return DECR_NOMEMORY;
QTM(actual_size) = wndsize;
}
QTM(window_size) = wndsize;
QTM(window_posn) = 0;
/* initialise static slot/extrabits tables */
for (i = 0, j = 0; i < 27; i++) {
CAB(q_length_extra)[i] = (i == 26) ? 0 : (i < 2 ? 0 : i - 2) >> 2;
CAB(q_length_base)[i] = j; j += 1 << ((i == 26) ? 5 : CAB(q_length_extra)[i]);
}
for (i = 0, j = 0; i < 42; i++) {
CAB(q_extra_bits)[i] = (i < 2 ? 0 : i-2) >> 1;
CAB(q_position_base)[i] = j; j += 1 << CAB(q_extra_bits)[i];
}
/* initialise arithmetic coding models */
QTMinitmodel(&QTM(model7), &QTM(m7sym)[0], 7, 0);
QTMinitmodel(&QTM(model00), &QTM(m00sym)[0], 0x40, 0x00);
QTMinitmodel(&QTM(model40), &QTM(m40sym)[0], 0x40, 0x40);
QTMinitmodel(&QTM(model80), &QTM(m80sym)[0], 0x40, 0x80);
QTMinitmodel(&QTM(modelC0), &QTM(mC0sym)[0], 0x40, 0xC0);
/* model 4 depends on table size, ranges from 20 to 24 */
QTMinitmodel(&QTM(model4), &QTM(m4sym)[0], (msz < 24) ? msz : 24, 0);
/* model 5 depends on table size, ranges from 20 to 36 */
QTMinitmodel(&QTM(model5), &QTM(m5sym)[0], (msz < 36) ? msz : 36, 0);
/* model 6pos depends on table size, ranges from 20 to 42 */
QTMinitmodel(&QTM(model6pos), &QTM(m6psym)[0], msz, 0);
QTMinitmodel(&QTM(model6len), &QTM(m6lsym)[0], 27, 0);
return DECR_OK;
}
/****************************************************************
* QTMupdatemodel (internal)
*/
void QTMupdatemodel(struct QTMmodel *model, int sym) {
struct QTMmodelsym temp;
int i, j;
for (i = 0; i < sym; i++) model->syms[i].cumfreq += 8;
if (model->syms[0].cumfreq > 3800) {
if (--model->shiftsleft) {
for (i = model->entries - 1; i >= 0; i--) {
/* -1, not -2; the 0 entry saves this */
model->syms[i].cumfreq >>= 1;
if (model->syms[i].cumfreq <= model->syms[i+1].cumfreq) {
model->syms[i].cumfreq = model->syms[i+1].cumfreq + 1;
}
}
}
else {
model->shiftsleft = 50;
for (i = 0; i < model->entries ; i++) {
/* no -1, want to include the 0 entry */
/* this converts cumfreqs into frequencies, then shifts right */
model->syms[i].cumfreq -= model->syms[i+1].cumfreq;
model->syms[i].cumfreq++; /* avoid losing things entirely */
model->syms[i].cumfreq >>= 1;
}
/* now sort by frequencies, decreasing order -- this must be an
* inplace selection sort, or a sort with the same (in)stability
* characteristics
*/
for (i = 0; i < model->entries - 1; i++) {
for (j = i + 1; j < model->entries; j++) {
if (model->syms[i].cumfreq < model->syms[j].cumfreq) {
temp = model->syms[i];
model->syms[i] = model->syms[j];
model->syms[j] = temp;
}
}
}
/* then convert frequencies back to cumfreq */
for (i = model->entries - 1; i >= 0; i--) {
model->syms[i].cumfreq += model->syms[i+1].cumfreq;
}
/* then update the other part of the table */
for (i = 0; i < model->entries; i++) {
model->tabloc[model->syms[i].sym] = i;
}
}
}
}
/*******************************************************************
* QTMdecompress (internal)
*/
int QTMdecompress(int inlen, int outlen, cab_decomp_state *decomp_state)
{
cab_UBYTE *inpos = CAB(inbuf);
cab_UBYTE *window = QTM(window);
cab_UBYTE *runsrc, *rundest;
cab_ULONG window_posn = QTM(window_posn);
cab_ULONG window_size = QTM(window_size);
/* used by bitstream macros */
register int bitsleft, bitrun, bitsneed;
register cab_ULONG bitbuf;
/* used by GET_SYMBOL */
cab_ULONG range;
cab_UWORD symf;
int i;
int extra, togo = outlen, match_length = 0, copy_length;
cab_UBYTE selector, sym;
cab_ULONG match_offset = 0;
cab_UWORD H = 0xFFFF, L = 0, C;
TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
/* read initial value of C */
Q_INIT_BITSTREAM;
Q_READ_BITS(C, 16);
/* apply 2^x-1 mask */
window_posn &= window_size - 1;
/* runs can't straddle the window wraparound */
if ((window_posn + togo) > window_size) {
TRACE("straddled run\n");
return DECR_DATAFORMAT;
}
while (togo > 0) {
GET_SYMBOL(model7, selector);
switch (selector) {
case 0:
GET_SYMBOL(model00, sym); window[window_posn++] = sym; togo--;
break;
case 1:
GET_SYMBOL(model40, sym); window[window_posn++] = sym; togo--;
break;
case 2:
GET_SYMBOL(model80, sym); window[window_posn++] = sym; togo--;
break;
case 3:
GET_SYMBOL(modelC0, sym); window[window_posn++] = sym; togo--;
break;
case 4:
/* selector 4 = fixed length of 3 */
GET_SYMBOL(model4, sym);
Q_READ_BITS(extra, CAB(q_extra_bits)[sym]);
match_offset = CAB(q_position_base)[sym] + extra + 1;
match_length = 3;
break;
case 5:
/* selector 5 = fixed length of 4 */
GET_SYMBOL(model5, sym);
Q_READ_BITS(extra, CAB(q_extra_bits)[sym]);
match_offset = CAB(q_position_base)[sym] + extra + 1;
match_length = 4;
break;
case 6:
/* selector 6 = variable length */
GET_SYMBOL(model6len, sym);
Q_READ_BITS(extra, CAB(q_length_extra)[sym]);
match_length = CAB(q_length_base)[sym] + extra + 5;
GET_SYMBOL(model6pos, sym);
Q_READ_BITS(extra, CAB(q_extra_bits)[sym]);
match_offset = CAB(q_position_base)[sym] + extra + 1;
break;
default:
TRACE("Selector is bogus\n");
return DECR_ILLEGALDATA;
}
/* if this is a match */
if (selector >= 4) {
rundest = window + window_posn;
togo -= match_length;
/* copy any wrapped around source data */
if (window_posn >= match_offset) {
/* no wrap */
runsrc = rundest - match_offset;
} else {
runsrc = rundest + (window_size - match_offset);
copy_length = match_offset - window_posn;
if (copy_length < match_length) {
match_length -= copy_length;
window_posn += copy_length;
while (copy_length-- > 0) *rundest++ = *runsrc++;
runsrc = window;
}
}
window_posn += match_length;
/* copy match data - no worries about destination wraps */
while (match_length-- > 0) *rundest++ = *runsrc++;
}
} /* while (togo > 0) */
if (togo != 0) {
TRACE("Frame overflow, this_run = %d\n", togo);
return DECR_ILLEGALDATA;
}
memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) -
outlen, outlen);
QTM(window_posn) = window_posn;
return DECR_OK;
}
/* LZX decruncher */
/* Microsoft's LZX document and their implementation of the
* com.ms.util.cab Java package do not concur.
*
* In the LZX document, there is a table showing the correlation between
* window size and the number of position slots. It states that the 1MB
* window = 40 slots and the 2MB window = 42 slots. In the implementation,
* 1MB = 42 slots, 2MB = 50 slots. The actual calculation is 'find the
* first slot whose position base is equal to or more than the required
* window size'. This would explain why other tables in the document refer
* to 50 slots rather than 42.
*
* The constant NUM_PRIMARY_LENGTHS used in the decompression pseudocode
* is not defined in the specification.
*
* The LZX document does not state the uncompressed block has an
* uncompressed length field. Where does this length field come from, so
* we can know how large the block is? The implementation has it as the 24
* bits following after the 3 blocktype bits, before the alignment
* padding.
*
* The LZX document states that aligned offset blocks have their aligned
* offset huffman tree AFTER the main and length trees. The implementation
* suggests that the aligned offset tree is BEFORE the main and length
* trees.
*
* The LZX document decoding algorithm states that, in an aligned offset
* block, if an extra_bits value is 1, 2 or 3, then that number of bits
* should be read and the result added to the match offset. This is
* correct for 1 and 2, but not 3, where just a huffman symbol (using the
* aligned tree) should be read.
*
* Regarding the E8 preprocessing, the LZX document states 'No translation
* may be performed on the last 6 bytes of the input block'. This is
* correct. However, the pseudocode provided checks for the *E8 leader*
* up to the last 6 bytes. If the leader appears between -10 and -7 bytes
* from the end, this would cause the next four bytes to be modified, at
* least one of which would be in the last 6 bytes, which is not allowed
* according to the spec.
*
* The specification states that the huffman trees must always contain at
* least one element. However, many CAB files contain blocks where the
* length tree is completely empty (because there are no matches), and
* this is expected to succeed.
*/
/* LZX uses what it calls 'position slots' to represent match offsets.
* What this means is that a small 'position slot' number and a small
* offset from that slot are encoded instead of one large offset for
* every match.
* - lzx_position_base is an index to the position slot bases
* - lzx_extra_bits states how many bits of offset-from-base data is needed.
*/
/************************************************************
* LZXinit (internal)
*/
int LZXinit(int window, cab_decomp_state *decomp_state) {
cab_ULONG wndsize = 1 << window;
int i, j, posn_slots;
/* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */
/* if a previously allocated window is big enough, keep it */
if (window < 15 || window > 21) return DECR_DATAFORMAT;
if (LZX(actual_size) < wndsize) {
if (LZX(window)) free(LZX(window));
LZX(window) = NULL;
}
if (!LZX(window)) {
if (!(LZX(window) = malloc(wndsize))) return DECR_NOMEMORY;
LZX(actual_size) = wndsize;
}
LZX(window_size) = wndsize;
/* initialise static tables */
for (i=0, j=0; i <= 50; i += 2) {
CAB(extra_bits)[i] = CAB(extra_bits)[i+1] = j; /* 0,0,0,0,1,1,2,2,3,3... */
if ((i != 0) && (j < 17)) j++; /* 0,0,1,2,3,4...15,16,17,17,17,17... */
}
for (i=0, j=0; i <= 50; i++) {
CAB(lzx_position_base)[i] = j; /* 0,1,2,3,4,6,8,12,16,24,32,... */
j += 1 << CAB(extra_bits)[i]; /* 1,1,1,1,2,2,4,4,8,8,16,16,32,32,... */
}
/* calculate required position slots */
if (window == 20) posn_slots = 42;
else if (window == 21) posn_slots = 50;
else posn_slots = window << 1;
/*posn_slots=i=0; while (i < wndsize) i += 1 << CAB(extra_bits)[posn_slots++]; */
LZX(R0) = LZX(R1) = LZX(R2) = 1;
LZX(main_elements) = LZX_NUM_CHARS + (posn_slots << 3);
LZX(header_read) = 0;
LZX(frames_read) = 0;
LZX(block_remaining) = 0;
LZX(block_type) = LZX_BLOCKTYPE_INVALID;
LZX(intel_curpos) = 0;
LZX(intel_started) = 0;
LZX(window_posn) = 0;
/* initialise tables to 0 (because deltas will be applied to them) */
for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) LZX(MAINTREE_len)[i] = 0;
for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) LZX(LENGTH_len)[i] = 0;
return DECR_OK;
}
/*************************************************************************
* make_decode_table (internal)
*
* This function was coded by David Tritscher. It builds a fast huffman
* decoding table out of just a canonical huffman code lengths table.
*
* PARAMS
* nsyms: total number of symbols in this huffman tree.
* nbits: any symbols with a code length of nbits or less can be decoded
* in one lookup of the table.
* length: A table to get code lengths from [0 to syms-1]
* table: The table to fill up with decoded symbols and pointers.
*
* RETURNS
* OK: 0
* error: 1
*/
int make_decode_table(cab_ULONG nsyms, cab_ULONG nbits, cab_UBYTE *length, cab_UWORD *table) {
register cab_UWORD sym;
register cab_ULONG leaf;
register cab_UBYTE bit_num = 1;
cab_ULONG fill;
cab_ULONG pos = 0; /* the current position in the decode table */
cab_ULONG table_mask = 1 << nbits;
cab_ULONG bit_mask = table_mask >> 1; /* don't do 0 length codes */
cab_ULONG next_symbol = bit_mask; /* base of allocation for long codes */
/* fill entries for codes short enough for a direct mapping */
while (bit_num <= nbits) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] == bit_num) {
leaf = pos;
if((pos += bit_mask) > table_mask) return 1; /* table overrun */
/* fill all possible lookups of this symbol with the symbol itself */
fill = bit_mask;
while (fill-- > 0) table[leaf++] = sym;
}
}
bit_mask >>= 1;
bit_num++;
}
/* if there are any codes longer than nbits */
if (pos != table_mask) {
/* clear the remainder of the table */
for (sym = pos; sym < table_mask; sym++) table[sym] = 0;
/* give ourselves room for codes to grow by up to 16 more bits */
pos <<= 16;
table_mask <<= 16;
bit_mask = 1 << 15;
while (bit_num <= 16) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] == bit_num) {
leaf = pos >> 16;
for (fill = 0; fill < bit_num - nbits; fill++) {
/* if this path hasn't been taken yet, 'allocate' two entries */
if (table[leaf] == 0) {
table[(next_symbol << 1)] = 0;
table[(next_symbol << 1) + 1] = 0;
table[leaf] = next_symbol++;
}
/* follow the path and select either left or right for next bit */
leaf = table[leaf] << 1;
if ((pos >> (15-fill)) & 1) leaf++;
}
table[leaf] = sym;
if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
}
}
bit_mask >>= 1;
bit_num++;
}
}
/* full table? */
if (pos == table_mask) return 0;
/* either erroneous table, or all elements are 0 - let's find out. */
for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1;
return 0;
}
/************************************************************
* lzx_read_lens (internal)
*/
int lzx_read_lens(cab_UBYTE *lens, cab_ULONG first, cab_ULONG last, struct lzx_bits *lb,
cab_decomp_state *decomp_state) {
cab_ULONG i,j, x,y;
int z;
register cab_ULONG bitbuf = lb->bb;
register int bitsleft = lb->bl;
cab_UBYTE *inpos = lb->ip;
cab_UWORD *hufftbl;
for (x = 0; x < 20; x++) {
READ_BITS(y, 4);
LENTABLE(PRETREE)[x] = y;
}
BUILD_TABLE(PRETREE);
for (x = first; x < last; ) {
READ_HUFFSYM(PRETREE, z);
if (z == 17) {
READ_BITS(y, 4); y += 4;
while (y--) lens[x++] = 0;
}
else if (z == 18) {
READ_BITS(y, 5); y += 20;
while (y--) lens[x++] = 0;
}
else if (z == 19) {
READ_BITS(y, 1); y += 4;
READ_HUFFSYM(PRETREE, z);
z = lens[x] - z; if (z < 0) z += 17;
while (y--) lens[x++] = z;
}
else {
z = lens[x] - z; if (z < 0) z += 17;
lens[x++] = z;
}
}
lb->bb = bitbuf;
lb->bl = bitsleft;
lb->ip = inpos;
return 0;
}
/*******************************************************
* LZXdecompress (internal)
*/
int LZXdecompress(int inlen, int outlen, cab_decomp_state *decomp_state) {
cab_UBYTE *inpos = CAB(inbuf);
cab_UBYTE *endinp = inpos + inlen;
cab_UBYTE *window = LZX(window);
cab_UBYTE *runsrc, *rundest;
cab_UWORD *hufftbl; /* used in READ_HUFFSYM macro as chosen decoding table */
cab_ULONG window_posn = LZX(window_posn);
cab_ULONG window_size = LZX(window_size);
cab_ULONG R0 = LZX(R0);
cab_ULONG R1 = LZX(R1);
cab_ULONG R2 = LZX(R2);
register cab_ULONG bitbuf;
register int bitsleft;
cab_ULONG match_offset, i,j,k; /* ijk used in READ_HUFFSYM macro */
struct lzx_bits lb; /* used in READ_LENGTHS macro */
int togo = outlen, this_run, main_element, aligned_bits;
int match_length, copy_length, length_footer, extra, verbatim_bits;
TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
INIT_BITSTREAM;
/* read header if necessary */
if (!LZX(header_read)) {
i = j = 0;
READ_BITS(k, 1); if (k) { READ_BITS(i,16); READ_BITS(j,16); }
LZX(intel_filesize) = (i << 16) | j; /* or 0 if not encoded */
LZX(header_read) = 1;
}
/* main decoding loop */
while (togo > 0) {
/* last block finished, new block expected */
if (LZX(block_remaining) == 0) {
if (LZX(block_type) == LZX_BLOCKTYPE_UNCOMPRESSED) {
if (LZX(block_length) & 1) inpos++; /* realign bitstream to word */
INIT_BITSTREAM;
}
READ_BITS(LZX(block_type), 3);
READ_BITS(i, 16);
READ_BITS(j, 8);
LZX(block_remaining) = LZX(block_length) = (i << 8) | j;
switch (LZX(block_type)) {
case LZX_BLOCKTYPE_ALIGNED:
for (i = 0; i < 8; i++) { READ_BITS(j, 3); LENTABLE(ALIGNED)[i] = j; }
BUILD_TABLE(ALIGNED);
/* rest of aligned header is same as verbatim */
case LZX_BLOCKTYPE_VERBATIM:
READ_LENGTHS(MAINTREE, 0, 256, lzx_read_lens);
READ_LENGTHS(MAINTREE, 256, LZX(main_elements), lzx_read_lens);
BUILD_TABLE(MAINTREE);
if (LENTABLE(MAINTREE)[0xE8] != 0) LZX(intel_started) = 1;
READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS, lzx_read_lens);
BUILD_TABLE(LENGTH);
break;
case LZX_BLOCKTYPE_UNCOMPRESSED:
LZX(intel_started) = 1; /* because we can't assume otherwise */
ENSURE_BITS(16); /* get up to 16 pad bits into the buffer */
if (bitsleft > 16) inpos -= 2; /* and align the bitstream! */
R0 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
R1 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
R2 = inpos[0]|(inpos[1]<<8)|(inpos[2]<<16)|(inpos[3]<<24);inpos+=4;
break;
default:
return DECR_ILLEGALDATA;
}
}
/* buffer exhaustion check */
if (inpos > endinp) {
/* it's possible to have a file where the next run is less than
* 16 bits in size. In this case, the READ_HUFFSYM() macro used
* in building the tables will exhaust the buffer, so we should
* allow for this, but not allow those accidentally read bits to
* be used (so we check that there are at least 16 bits
* remaining - in this boundary case they aren't really part of
* the compressed data)
*/
if (inpos > (endinp+2) || bitsleft < 16) return DECR_ILLEGALDATA;
}
while ((this_run = LZX(block_remaining)) > 0 && togo > 0) {
if (this_run > togo) this_run = togo;
togo -= this_run;
LZX(block_remaining) -= this_run;
/* apply 2^x-1 mask */
window_posn &= window_size - 1;
/* runs can't straddle the window wraparound */
if ((window_posn + this_run) > window_size)
return DECR_DATAFORMAT;
switch (LZX(block_type)) {
case LZX_BLOCKTYPE_VERBATIM:
while (this_run > 0) {
READ_HUFFSYM(MAINTREE, main_element);
if (main_element < LZX_NUM_CHARS) {
/* literal: 0 to LZX_NUM_CHARS-1 */
window[window_posn++] = main_element;
this_run--;
}
else {
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
main_element -= LZX_NUM_CHARS;
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
READ_HUFFSYM(LENGTH, length_footer);
match_length += length_footer;
}
match_length += LZX_MIN_MATCH;
match_offset = main_element >> 3;
if (match_offset > 2) {
/* not repeated offset */
if (match_offset != 3) {
extra = CAB(extra_bits)[match_offset];
READ_BITS(verbatim_bits, extra);
match_offset = CAB(lzx_position_base)[match_offset]
- 2 + verbatim_bits;
}
else {
match_offset = 1;
}
/* update repeated offset LRU queue */
R2 = R1; R1 = R0; R0 = match_offset;
}
else if (match_offset == 0) {
match_offset = R0;
}
else if (match_offset == 1) {
match_offset = R1;
R1 = R0; R0 = match_offset;
}
else /* match_offset == 2 */ {
match_offset = R2;
R2 = R0; R0 = match_offset;
}
rundest = window + window_posn;
this_run -= match_length;
/* copy any wrapped around source data */
if (window_posn >= match_offset) {
/* no wrap */
runsrc = rundest - match_offset;
} else {
runsrc = rundest + (window_size - match_offset);
copy_length = match_offset - window_posn;
if (copy_length < match_length) {
match_length -= copy_length;
window_posn += copy_length;
while (copy_length-- > 0) *rundest++ = *runsrc++;
runsrc = window;
}
}
window_posn += match_length;
/* copy match data - no worries about destination wraps */
while (match_length-- > 0) *rundest++ = *runsrc++;
}
}
break;
case LZX_BLOCKTYPE_ALIGNED:
while (this_run > 0) {
READ_HUFFSYM(MAINTREE, main_element);
if (main_element < LZX_NUM_CHARS) {
/* literal: 0 to LZX_NUM_CHARS-1 */
window[window_posn++] = main_element;
this_run--;
}
else {
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
main_element -= LZX_NUM_CHARS;
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
READ_HUFFSYM(LENGTH, length_footer);
match_length += length_footer;
}
match_length += LZX_MIN_MATCH;
match_offset = main_element >> 3;
if (match_offset > 2) {
/* not repeated offset */
extra = CAB(extra_bits)[match_offset];
match_offset = CAB(lzx_position_base)[match_offset] - 2;
if (extra > 3) {
/* verbatim and aligned bits */
extra -= 3;
READ_BITS(verbatim_bits, extra);
match_offset += (verbatim_bits << 3);
READ_HUFFSYM(ALIGNED, aligned_bits);
match_offset += aligned_bits;
}
else if (extra == 3) {
/* aligned bits only */
READ_HUFFSYM(ALIGNED, aligned_bits);
match_offset += aligned_bits;
}
else if (extra > 0) { /* extra==1, extra==2 */
/* verbatim bits only */
READ_BITS(verbatim_bits, extra);
match_offset += verbatim_bits;
}
else /* extra == 0 */ {
/* ??? */
match_offset = 1;
}
/* update repeated offset LRU queue */
R2 = R1; R1 = R0; R0 = match_offset;
}
else if (match_offset == 0) {
match_offset = R0;
}
else if (match_offset == 1) {
match_offset = R1;
R1 = R0; R0 = match_offset;
}
else /* match_offset == 2 */ {
match_offset = R2;
R2 = R0; R0 = match_offset;
}
rundest = window + window_posn;
this_run -= match_length;
/* copy any wrapped around source data */
if (window_posn >= match_offset) {
/* no wrap */
runsrc = rundest - match_offset;
} else {
runsrc = rundest + (window_size - match_offset);
copy_length = match_offset - window_posn;
if (copy_length < match_length) {
match_length -= copy_length;
window_posn += copy_length;
while (copy_length-- > 0) *rundest++ = *runsrc++;
runsrc = window;
}
}
window_posn += match_length;
/* copy match data - no worries about destination wraps */
while (match_length-- > 0) *rundest++ = *runsrc++;
}
}
break;
case LZX_BLOCKTYPE_UNCOMPRESSED:
if ((inpos + this_run) > endinp) return DECR_ILLEGALDATA;
memcpy(window + window_posn, inpos, (size_t) this_run);
inpos += this_run; window_posn += this_run;
break;
default:
return DECR_ILLEGALDATA; /* might as well */
}
}
}
if (togo != 0) return DECR_ILLEGALDATA;
memcpy(CAB(outbuf), window + ((!window_posn) ? window_size : window_posn) -
outlen, (size_t) outlen);
LZX(window_posn) = window_posn;
LZX(R0) = R0;
LZX(R1) = R1;
LZX(R2) = R2;
/* intel E8 decoding */
if ((LZX(frames_read)++ < 32768) && LZX(intel_filesize) != 0) {
if (outlen <= 6 || !LZX(intel_started)) {
LZX(intel_curpos) += outlen;
}
else {
cab_UBYTE *data = CAB(outbuf);
cab_UBYTE *dataend = data + outlen - 10;
cab_LONG curpos = LZX(intel_curpos);
cab_LONG filesize = LZX(intel_filesize);
cab_LONG abs_off, rel_off;
LZX(intel_curpos) = curpos + outlen;
while (data < dataend) {
if (*data++ != 0xE8) { curpos++; continue; }
abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24);
if ((abs_off >= -curpos) && (abs_off < filesize)) {
rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize;
data[0] = (cab_UBYTE) rel_off;
data[1] = (cab_UBYTE) (rel_off >> 8);
data[2] = (cab_UBYTE) (rel_off >> 16);
data[3] = (cab_UBYTE) (rel_off >> 24);
}
data += 4;
curpos += 5;
}
}
}
return DECR_OK;
}
/*********************************************************
* find_cabs_in_file (internal)
*/
struct cabinet *find_cabs_in_file(LPCSTR name, cab_UBYTE search_buf[])
{
struct cabinet *cab, *cab2, *firstcab = NULL, *linkcab = NULL;
cab_UBYTE *pstart = &search_buf[0], *pend, *p;
cab_off_t offset, caboff, cablen = 0, foffset = 0, filelen, length;
int state = 0, found = 0, ok = 0;
TRACE("(name == %s)\n", debugstr_a((char *) name));
/* open the file and search for cabinet headers */
if ((cab = (struct cabinet *) calloc(1, sizeof(struct cabinet)))) {
cab->filename = name;
if (cabinet_open(cab)) {
filelen = cab->filelen;
for (offset = 0; (offset < filelen); offset += length) {
/* search length is either the full length of the search buffer,
* or the amount of data remaining to the end of the file,
* whichever is less.
*/
length = filelen - offset;
if (length > CAB_SEARCH_SIZE) length = CAB_SEARCH_SIZE;
/* fill the search buffer with data from disk */
if (!cabinet_read(cab, search_buf, length)) break;
/* read through the entire buffer. */
p = pstart;
pend = &search_buf[length];
while (p < pend) {
switch (state) {
/* starting state */
case 0:
/* we spend most of our time in this while loop, looking for
* a leading 'M' of the 'MSCF' signature
*/
while (*p++ != 0x4D && p < pend);
if (p < pend) state = 1; /* if we found tht 'M', advance state */
break;
/* verify that the next 3 bytes are 'S', 'C' and 'F' */
case 1: state = (*p++ == 0x53) ? 2 : 0; break;
case 2: state = (*p++ == 0x43) ? 3 : 0; break;
case 3: state = (*p++ == 0x46) ? 4 : 0; break;
/* we don't care about bytes 4-7 */
/* bytes 8-11 are the overall length of the cabinet */
case 8: cablen = *p++; state++; break;
case 9: cablen |= *p++ << 8; state++; break;
case 10: cablen |= *p++ << 16; state++; break;
case 11: cablen |= *p++ << 24; state++; break;
/* we don't care about bytes 12-15 */
/* bytes 16-19 are the offset within the cabinet of the filedata */
case 16: foffset = *p++; state++; break;
case 17: foffset |= *p++ << 8; state++; break;
case 18: foffset |= *p++ << 16; state++; break;
case 19: foffset |= *p++ << 24;
/* now we have received 20 bytes of potential cab header. */
/* work out the offset in the file of this potential cabinet */
caboff = offset + (p-pstart) - 20;
/* check that the files offset is less than the alleged length
* of the cabinet, and that the offset + the alleged length are
* 'roughly' within the end of overall file length
*/
if ((foffset < cablen) &&
((caboff + foffset) < (filelen + 32)) &&
((caboff + cablen) < (filelen + 32)) )
{
/* found a potential result - try loading it */
found++;
cab2 = load_cab_offset(name, caboff);
if (cab2) {
/* success */
ok++;
/* cause the search to restart after this cab's data. */
offset = caboff + cablen;
if (offset < cab->filelen) cabinet_seek(cab, offset);
length = 0;
p = pend;
/* link the cab into the list */
if (linkcab == NULL) firstcab = cab2;
else linkcab->next = cab2;
linkcab = cab2;
}
}
state = 0;
break;
default:
p++, state++; break;
}
}
}
cabinet_close(cab);
}
free(cab);
}
/* if there were cabinets that were found but are not ok, point this out */
if (found > ok) {
WARN("%s: found %d bad cabinets\n", debugstr_a(name), found-ok);
}
/* if no cabinets were found, let the user know */
if (!firstcab) {
WARN("%s: not a Microsoft cabinet file.\n", debugstr_a(name));
}
return firstcab;
}
/***********************************************************************
* find_cabinet_file (internal)
*
* tries to find *cabname, from the directory path of origcab, correcting the
* case of *cabname if necessary, If found, writes back to *cabname.
*/
void find_cabinet_file(char **cabname, LPCSTR origcab) {
char *tail, *cab, *name, *nextpart, nametmp[MAX_PATH], *filepart;
int found = 0;
TRACE("(*cabname == ^%p, origcab == %s)\n", cabname ? *cabname : NULL, debugstr_a(origcab));
/* ensure we have a cabinet name at all */
if (!(name = *cabname)) {
WARN("no cabinet name at all\n");
}
/* find if there's a directory path in the origcab */
tail = origcab ? max(strrchr(origcab, '/'), strrchr(origcab, '\\')) : NULL;
if ((cab = (char *) malloc(MAX_PATH))) {
/* add the directory path from the original cabinet name */
if (tail) {
memcpy(cab, origcab, tail - origcab);
cab[tail - origcab] = '\0';
} else {
/* default directory path of '.' */
cab[0] = '.';
cab[1] = '\0';
}
do {
TRACE("trying cab == %s\n", debugstr_a(cab));
/* we don't want null cabinet filenames */
if (name[0] == '\0') {
WARN("null cab name\n");
break;
}
/* if there is a directory component in the cabinet name,
* look for that alone first
*/
nextpart = strchr(name, '\\');
if (nextpart) *nextpart = '\0';
found = SearchPathA(cab, name, NULL, MAX_PATH, nametmp, &filepart);
/* if the component was not found, look for it in the current dir */
if (!found) {
found = SearchPathA(".", name, NULL, MAX_PATH, nametmp, &filepart);
}
if (found)
TRACE("found: %s\n", debugstr_a(nametmp));
else
TRACE("not found.\n");
/* restore the real name and skip to the next directory component
* or actual cabinet name
*/
if (nextpart) *nextpart = '\\', name = &nextpart[1];
/* while there is another directory component, and while we
* successfully found the current component
*/
} while (nextpart && found);
/* if we found the cabinet, change the next cabinet's name.
* otherwise, pretend nothing happened
*/
if (found) {
free((void *) *cabname);
*cabname = cab;
strncpy(cab, nametmp, found+1);
TRACE("result: %s\n", debugstr_a(cab));
} else {
free((void *) cab);
TRACE("result: nothing\n");
}
}
}
/************************************************************************
* process_files (internal)
*
* this does the tricky job of running through every file in the cabinet,
* including spanning cabinets, and working out which file is in which
* folder in which cabinet. It also throws out the duplicate file entries
* that appear in spanning cabinets. There is memory leakage here because
* those entries are not freed. See the XAD CAB client (function CAB_GetInfo
* in CAB.c) for an implementation of this that correctly frees the discarded
* file entries.
*/
struct cab_file *process_files(struct cabinet *basecab) {
struct cabinet *cab;
struct cab_file *outfi = NULL, *linkfi = NULL, *nextfi, *fi, *cfi;
struct cab_folder *fol, *firstfol, *lastfol = NULL, *predfol;
int i, mergeok;
FIXME("(basecab == ^%p): Memory leak.\n", basecab);
for (cab = basecab; cab; cab = cab->nextcab) {
/* firstfol = first folder in this cabinet */
/* lastfol = last folder in this cabinet */
/* predfol = last folder in previous cabinet (or NULL if first cabinet) */
predfol = lastfol;
firstfol = cab->folders;
for (lastfol = firstfol; lastfol->next;) lastfol = lastfol->next;
mergeok = 1;
for (fi = cab->files; fi; fi = nextfi) {
i = fi->index;
nextfi = fi->next;
if (i < cffileCONTINUED_FROM_PREV) {
for (fol = firstfol; fol && i--; ) fol = fol->next;
fi->folder = fol; /* NULL if an invalid folder index */
}
else {
/* folder merging */
if (i == cffileCONTINUED_TO_NEXT
|| i == cffileCONTINUED_PREV_AND_NEXT) {
if (cab->nextcab && !lastfol->contfile) lastfol->contfile = fi;
}
if (i == cffileCONTINUED_FROM_PREV
|| i == cffileCONTINUED_PREV_AND_NEXT) {
/* these files are to be continued in yet another
* cabinet, don't merge them in just yet */
if (i == cffileCONTINUED_PREV_AND_NEXT) mergeok = 0;
/* only merge once per cabinet */
if (predfol) {
if ((cfi = predfol->contfile)
&& (cfi->offset == fi->offset)
&& (cfi->length == fi->length)
&& (strcmp(cfi->filename, fi->filename) == 0)
&& (predfol->comp_type == firstfol->comp_type)) {
/* increase the number of splits */
if ((i = ++(predfol->num_splits)) > CAB_SPLITMAX) {
mergeok = 0;
ERR("%s: internal error: CAB_SPLITMAX exceeded. please report this to wine-devel@winehq.org)\n",
debugstr_a(basecab->filename));
}
else {
/* copy information across from the merged folder */
predfol->offset[i] = firstfol->offset[0];
predfol->cab[i] = firstfol->cab[0];
predfol->next = firstfol->next;
predfol->contfile = firstfol->contfile;
if (firstfol == lastfol) lastfol = predfol;
firstfol = predfol;
predfol = NULL; /* don't merge again within this cabinet */
}
}
else {
/* if the folders won't merge, don't add their files */
mergeok = 0;
}
}
if (mergeok) fi->folder = firstfol;
}
}
if (fi->folder) {
if (linkfi) linkfi->next = fi; else outfi = fi;
linkfi = fi;
}
} /* for (fi= .. */
} /* for (cab= ...*/
return outfi;
}
/****************************************************************
* convertUTF (internal)
*
* translate UTF -> ASCII
*
* UTF translates two-byte unicode characters into 1, 2 or 3 bytes.
* %000000000xxxxxxx -> %0xxxxxxx
* %00000xxxxxyyyyyy -> %110xxxxx %10yyyyyy
* %xxxxyyyyyyzzzzzz -> %1110xxxx %10yyyyyy %10zzzzzz
*
* Therefore, the inverse is as follows:
* First char:
* 0x00 - 0x7F = one byte char
* 0x80 - 0xBF = invalid
* 0xC0 - 0xDF = 2 byte char (next char only 0x80-0xBF is valid)
* 0xE0 - 0xEF = 3 byte char (next 2 chars only 0x80-0xBF is valid)
* 0xF0 - 0xFF = invalid
*
* FIXME: use a winapi to do this
*/
int convertUTF(cab_UBYTE *in) {
cab_UBYTE c, *out = in, *end = in + strlen((char *) in) + 1;
cab_ULONG x;
do {
/* read unicode character */
if ((c = *in++) < 0x80) x = c;
else {
if (c < 0xC0) return 0;
else if (c < 0xE0) {
x = (c & 0x1F) << 6;
if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F);
}
else if (c < 0xF0) {
x = (c & 0xF) << 12;
if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F)<<6;
if ((c = *in++) < 0x80 || c > 0xBF) return 0; else x |= (c & 0x3F);
}
else return 0;
}
/* terrible unicode -> ASCII conversion */
if (x > 127) x = '_';
if (in > end) return 0; /* just in case */
} while ((*out++ = (cab_UBYTE) x));
return 1;
}
/****************************************************
* NONEdecompress (internal)
*/
int NONEdecompress(int inlen, int outlen, cab_decomp_state *decomp_state)
{
if (inlen != outlen) return DECR_ILLEGALDATA;
memcpy(CAB(outbuf), CAB(inbuf), (size_t) inlen);
return DECR_OK;
}
/**************************************************
* checksum (internal)
*/
cab_ULONG checksum(cab_UBYTE *data, cab_UWORD bytes, cab_ULONG csum) {
int len;
cab_ULONG ul = 0;
for (len = bytes >> 2; len--; data += 4) {
csum ^= ((data[0]) | (data[1]<<8) | (data[2]<<16) | (data[3]<<24));
}
switch (bytes & 3) {
case 3: ul |= *data++ << 16;
case 2: ul |= *data++ << 8;
case 1: ul |= *data;
}
csum ^= ul;
return csum;
}
/**********************************************************
* decompress (internal)
*/
int decompress(struct cab_file *fi, int savemode, int fix, cab_decomp_state *decomp_state)
{
cab_ULONG bytes = savemode ? fi->length : fi->offset - CAB(offset);
struct cabinet *cab = CAB(current)->cab[CAB(split)];
cab_UBYTE buf[cfdata_SIZEOF], *data;
cab_UWORD inlen, len, outlen, cando;
cab_ULONG cksum;
cab_LONG err;
TRACE("(fi == ^%p, savemode == %d, fix == %d)\n", fi, savemode, fix);
while (bytes > 0) {
/* cando = the max number of bytes we can do */
cando = CAB(outlen);
if (cando > bytes) cando = bytes;
/* if cando != 0 */
if (cando && savemode)
file_write(fi, CAB(outpos), cando);
CAB(outpos) += cando;
CAB(outlen) -= cando;
bytes -= cando; if (!bytes) break;
/* we only get here if we emptied the output buffer */
/* read data header + data */
inlen = outlen = 0;
while (outlen == 0) {
/* read the block header, skip the reserved part */
if (!cabinet_read(cab, buf, cfdata_SIZEOF)) return DECR_INPUT;
cabinet_skip(cab, cab->block_resv);
/* we shouldn't get blocks over CAB_INPUTMAX in size */
data = CAB(inbuf) + inlen;
len = EndGetI16(buf+cfdata_CompressedSize);
inlen += len;
if (inlen > CAB_INPUTMAX) return DECR_INPUT;
if (!cabinet_read(cab, data, len)) return DECR_INPUT;
/* clear two bytes after read-in data */
data[len+1] = data[len+2] = 0;
/* perform checksum test on the block (if one is stored) */
cksum = EndGetI32(buf+cfdata_CheckSum);
if (cksum && cksum != checksum(buf+4, 4, checksum(data, len, 0))) {
/* checksum is wrong */
if (fix && ((fi->folder->comp_type & cffoldCOMPTYPE_MASK)
== cffoldCOMPTYPE_MSZIP))
{
WARN("%s: checksum failed\n", debugstr_a(fi->filename));
}
else {
return DECR_CHECKSUM;
}
}
/* outlen=0 means this block was part of a split block */
outlen = EndGetI16(buf+cfdata_UncompressedSize);
if (outlen == 0) {
cabinet_close(cab);
cab = CAB(current)->cab[++CAB(split)];
if (!cabinet_open(cab)) return DECR_INPUT;
cabinet_seek(cab, CAB(current)->offset[CAB(split)]);
}
}
/* decompress block */
if ((err = CAB(decompress)(inlen, outlen, decomp_state))) {
if (fix && ((fi->folder->comp_type & cffoldCOMPTYPE_MASK)
== cffoldCOMPTYPE_MSZIP))
{
ERR("%s: failed decrunching block\n", debugstr_a(fi->filename));
}
else {
return err;
}
}
CAB(outlen) = outlen;
CAB(outpos) = CAB(outbuf);
}
return DECR_OK;
}
/****************************************************************
* extract_file (internal)
*
* workhorse to extract a particular file from a cab
*/
void extract_file(struct cab_file *fi, int lower, int fix, LPCSTR dir, cab_decomp_state *decomp_state)
{
struct cab_folder *fol = fi->folder, *oldfol = CAB(current);
cab_LONG err = DECR_OK;
TRACE("(fi == ^%p, lower == %d, fix == %d, dir == %s)\n", fi, lower, fix, debugstr_a(dir));
/* is a change of folder needed? do we need to reset the current folder? */
if (fol != oldfol || fi->offset < CAB(offset)) {
cab_UWORD comptype = fol->comp_type;
int ct1 = comptype & cffoldCOMPTYPE_MASK;
int ct2 = oldfol ? (oldfol->comp_type & cffoldCOMPTYPE_MASK) : 0;
/* if the archiver has changed, call the old archiver's free() function */
if (ct1 != ct2) {
switch (ct2) {
case cffoldCOMPTYPE_LZX:
if (LZX(window)) {
free(LZX(window));
LZX(window) = NULL;
}
break;
case cffoldCOMPTYPE_QUANTUM:
if (QTM(window)) {
free(QTM(window));
QTM(window) = NULL;
}
break;
}
}
switch (ct1) {
case cffoldCOMPTYPE_NONE:
CAB(decompress) = NONEdecompress;
break;
case cffoldCOMPTYPE_MSZIP:
CAB(decompress) = ZIPdecompress;
break;
case cffoldCOMPTYPE_QUANTUM:
CAB(decompress) = QTMdecompress;
err = QTMinit((comptype >> 8) & 0x1f, (comptype >> 4) & 0xF, decomp_state);
break;
case cffoldCOMPTYPE_LZX:
CAB(decompress) = LZXdecompress;
err = LZXinit((comptype >> 8) & 0x1f, decomp_state);
break;
default:
err = DECR_DATAFORMAT;
}
if (err) goto exit_handler;
/* initialisation OK, set current folder and reset offset */
if (oldfol) cabinet_close(oldfol->cab[CAB(split)]);
if (!cabinet_open(fol->cab[0])) goto exit_handler;
cabinet_seek(fol->cab[0], fol->offset[0]);
CAB(current) = fol;
CAB(offset) = 0;
CAB(outlen) = 0; /* discard existing block */
CAB(split) = 0;
}
if (fi->offset > CAB(offset)) {
/* decode bytes and send them to /dev/null */
if ((err = decompress(fi, 0, fix, decomp_state))) goto exit_handler;
CAB(offset) = fi->offset;
}
if (!file_open(fi, lower, dir)) return;
err = decompress(fi, 1, fix, decomp_state);
if (err) CAB(current) = NULL; else CAB(offset) += fi->length;
file_close(fi);
exit_handler:
if (err) {
const char *errmsg;
char *cabname;
switch (err) {
case DECR_NOMEMORY:
errmsg = "out of memory!\n"; break;
case DECR_ILLEGALDATA:
errmsg = "%s: illegal or corrupt data\n"; break;
case DECR_DATAFORMAT:
errmsg = "%s: unsupported data format\n"; break;
case DECR_CHECKSUM:
errmsg = "%s: checksum error\n"; break;
case DECR_INPUT:
errmsg = "%s: input error\n"; break;
case DECR_OUTPUT:
errmsg = "%s: output error\n"; break;
default:
errmsg = "%s: unknown error (BUG)\n";
}
if (CAB(current)) {
cabname = (char *) (CAB(current)->cab[CAB(split)]->filename);
}
else {
cabname = (char *) (fi->folder->cab[0]->filename);
}
ERR(errmsg, cabname);
}
}
/*********************************************************
* print_fileinfo (internal)
*/
void print_fileinfo(struct cab_file *fi) {
int d = fi->date, t = fi->time;
char *fname = NULL;
if (fi->attribs & cffile_A_NAME_IS_UTF) {
fname = malloc(strlen(fi->filename) + 1);
if (fname) {
strcpy(fname, fi->filename);
convertUTF((cab_UBYTE *) fname);
}
}
TRACE("%9u | %02d.%02d.%04d %02d:%02d:%02d | %s\n",
fi->length,
d & 0x1f, (d>>5) & 0xf, (d>>9) + 1980,
t >> 11, (t>>5) & 0x3f, (t << 1) & 0x3e,
fname ? fname : fi->filename
);
if (fname) free(fname);
}
/****************************************************************************
* process_cabinet (internal)
*
* called to simply "extract" a cabinet file. Will find every cabinet file
* in that file, search for every chained cabinet attached to those cabinets,
* and will either extract the cabinets, or ? (call a callback?)
*
* PARAMS
* cabname [I] name of the cabinet file to extract
* dir [I] directory to extract to
* fix [I] attempt to process broken cabinets
* lower [I] ? (lower case something or other?)
* dest [O]
*
* RETURNS
* Success: TRUE
* Failure: FALSE
*/
BOOL process_cabinet(LPCSTR cabname, LPCSTR dir, BOOL fix, BOOL lower, EXTRACTdest *dest)
{
struct cabinet *basecab, *cab, *cab1, *cab2;
struct cab_file *filelist, *fi;
struct ExtractFileList **destlistptr = &(dest->filelist);
/* The first result of a search will be returned, and
* the remaining results will be chained to it via the cab->next structure
* member.
*/
cab_UBYTE search_buf[CAB_SEARCH_SIZE];
cab_decomp_state decomp_state_local;
cab_decomp_state *decomp_state = &decomp_state_local;
/* has the list-mode header been seen before? */
int viewhdr = 0;
ZeroMemory(decomp_state, sizeof(cab_decomp_state));
TRACE("Extract %s\n", debugstr_a(cabname));
/* load the file requested */
basecab = find_cabs_in_file(cabname, search_buf);
if (!basecab) return FALSE;
/* iterate over all cabinets found in that file */
for (cab = basecab; cab; cab=cab->next) {
/* bi-directionally load any spanning cabinets -- backwards */
for (cab1 = cab; cab1->flags & cfheadPREV_CABINET; cab1 = cab1->prevcab) {
TRACE("%s: extends backwards to %s (%s)\n", debugstr_a(cabname),
debugstr_a(cab1->prevname), debugstr_a(cab1->previnfo));
find_cabinet_file(&(cab1->prevname), cabname);
if (!(cab1->prevcab = load_cab_offset(cab1->prevname, 0))) {
ERR("%s: can't read previous cabinet %s\n", debugstr_a(cabname), debugstr_a(cab1->prevname));
break;
}
cab1->prevcab->nextcab = cab1;
}
/* bi-directionally load any spanning cabinets -- forwards */
for (cab2 = cab; cab2->flags & cfheadNEXT_CABINET; cab2 = cab2->nextcab) {
TRACE("%s: extends to %s (%s)\n", debugstr_a(cabname),
debugstr_a(cab2->nextname), debugstr_a(cab2->nextinfo));
find_cabinet_file(&(cab2->nextname), cabname);
if (!(cab2->nextcab = load_cab_offset(cab2->nextname, 0))) {
ERR("%s: can't read next cabinet %s\n", debugstr_a(cabname), debugstr_a(cab2->nextname));
break;
}
cab2->nextcab->prevcab = cab2;
}
filelist = process_files(cab1);
CAB(current) = NULL;
if (!viewhdr) {
TRACE("File size | Date Time | Name\n");
TRACE("----------+---------------------+-------------\n");
viewhdr = 1;
}
for (fi = filelist; fi; fi = fi->next) {
print_fileinfo(fi);
dest->filecount++;
}
TRACE("Beginning Extraction...\n");
for (fi = filelist; fi; fi = fi->next) {
TRACE(" extracting: %s\n", debugstr_a(fi->filename));
extract_file(fi, lower, fix, dir, decomp_state);
sprintf(dest->lastfile, "%s%s%s",
strlen(dest->directory) ? dest->directory : "",
strlen(dest->directory) ? "\\": "",
fi->filename);
*destlistptr = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,
sizeof(struct ExtractFileList));
if(*destlistptr) {
(*destlistptr)->unknown = TRUE; /* FIXME: were do we get the value? */
(*destlistptr)->filename = HeapAlloc(GetProcessHeap(), 0, (
strlen(fi->filename)+1));
if((*destlistptr)->filename)
lstrcpyA((*destlistptr)->filename, fi->filename);
destlistptr = &((*destlistptr)->next);
}
}
}
TRACE("Finished processing cabinet.\n");
return TRUE;
}