wine/dlls/d3dxof/mszip.c
2010-06-24 10:34:35 +02:00

646 lines
19 KiB
C

/*
* MSZIP decompression (taken from fdi.c of cabinet dll)
*
* Copyright 2000-2002 Stuart Caie
* Copyright 2002 Patrik Stridvall
* Copyright 2003 Greg Turner
* Copyright 2010 Christian Costa
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
*/
#include <stdarg.h>
#include "windef.h"
#include "winbase.h"
#include "wine/debug.h"
#include "mszip.h"
WINE_DEFAULT_DEBUG_CHANNEL(d3dxof);
THOSE_ZIP_CONSTS;
/********************************************************
* Ziphuft_free (internal)
*/
static void fdi_Ziphuft_free(HFDI hfdi, struct Ziphuft *t)
{
register struct Ziphuft *p, *q;
/* Go through linked list, freeing from the allocated (t[-1]) address. */
p = t;
while (p != NULL)
{
q = (--p)->v.t;
PFDI_FREE(hfdi, p);
p = q;
}
}
/*********************************************************
* fdi_Ziphuft_build (internal)
*/
static cab_LONG fdi_Ziphuft_build(cab_ULONG *b, cab_ULONG n, cab_ULONG s, const cab_UWORD *d, const cab_UWORD *e,
struct Ziphuft **t, cab_LONG *m, fdi_decomp_state *decomp_state)
{
cab_ULONG a; /* counter for codes of length k */
cab_ULONG el; /* length of EOB code (value 256) */
cab_ULONG f; /* i repeats in table every f entries */
cab_LONG g; /* maximum code length */
cab_LONG h; /* table level */
register cab_ULONG i; /* counter, current code */
register cab_ULONG j; /* counter */
register cab_LONG k; /* number of bits in current code */
cab_LONG *l; /* stack of bits per table */
register cab_ULONG *p; /* pointer into ZIP(c)[],ZIP(b)[],ZIP(v)[] */
register struct Ziphuft *q; /* points to current table */
struct Ziphuft r; /* table entry for structure assignment */
register cab_LONG w; /* bits before this table == (l * h) */
cab_ULONG *xp; /* pointer into x */
cab_LONG y; /* number of dummy codes added */
cab_ULONG z; /* number of entries in current table */
l = ZIP(lx)+1;
/* Generate counts for each bit length */
el = n > 256 ? b[256] : ZIPBMAX; /* set length of EOB code, if any */
for(i = 0; i < ZIPBMAX+1; ++i)
ZIP(c)[i] = 0;
p = b; i = n;
do
{
ZIP(c)[*p]++; p++; /* assume all entries <= ZIPBMAX */
} while (--i);
if (ZIP(c)[0] == n) /* null input--all zero length codes */
{
*t = NULL;
*m = 0;
return 0;
}
/* Find minimum and maximum length, bound *m by those */
for (j = 1; j <= ZIPBMAX; j++)
if (ZIP(c)[j])
break;
k = j; /* minimum code length */
if ((cab_ULONG)*m < j)
*m = j;
for (i = ZIPBMAX; i; i--)
if (ZIP(c)[i])
break;
g = i; /* maximum code length */
if ((cab_ULONG)*m > i)
*m = i;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= ZIP(c)[j]) < 0)
return 2; /* bad input: more codes than bits */
if ((y -= ZIP(c)[i]) < 0)
return 2;
ZIP(c)[i] += y;
/* Generate starting offsets LONGo the value table for each length */
ZIP(x)[1] = j = 0;
p = ZIP(c) + 1; xp = ZIP(x) + 2;
while (--i)
{ /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
p = b; i = 0;
do{
if ((j = *p++) != 0)
ZIP(v)[ZIP(x)[j]++] = i;
} while (++i < n);
/* Generate the Huffman codes and for each, make the table entries */
ZIP(x)[0] = i = 0; /* first Huffman code is zero */
p = ZIP(v); /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = l[-1] = 0; /* no bits decoded yet */
ZIP(u)[0] = NULL; /* just to keep compilers happy */
q = NULL; /* ditto */
z = 0; /* ditto */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++)
{
a = ZIP(c)[k];
while (a--)
{
/* here i is the Huffman code of length k bits for value *p */
/* make tables up to required level */
while (k > w + l[h])
{
w += l[h++]; /* add bits already decoded */
/* compute minimum size table less than or equal to *m bits */
if ((z = g - w) > (cab_ULONG)*m) /* upper limit */
z = *m;
if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */
{ /* too few codes for k-w bit table */
f -= a + 1; /* deduct codes from patterns left */
xp = ZIP(c) + k;
while (++j < z) /* try smaller tables up to z bits */
{
if ((f <<= 1) <= *++xp)
break; /* enough codes to use up j bits */
f -= *xp; /* else deduct codes from patterns */
}
}
if ((cab_ULONG)w + j > el && (cab_ULONG)w < el)
j = el - w; /* make EOB code end at table */
z = 1 << j; /* table entries for j-bit table */
l[h] = j; /* set table size in stack */
/* allocate and link in new table */
if (!(q = PFDI_ALLOC(CAB(hfdi), (z + 1)*sizeof(struct Ziphuft))))
{
if(h)
fdi_Ziphuft_free(CAB(hfdi), ZIP(u)[0]);
return 3; /* not enough memory */
}
*t = q + 1; /* link to list for Ziphuft_free() */
*(t = &(q->v.t)) = NULL;
ZIP(u)[h] = ++q; /* table starts after link */
/* connect to last table, if there is one */
if (h)
{
ZIP(x)[h] = i; /* save pattern for backing up */
r.b = (cab_UBYTE)l[h-1]; /* bits to dump before this table */
r.e = (cab_UBYTE)(16 + j); /* bits in this table */
r.v.t = q; /* pointer to this table */
j = (i & ((1 << w) - 1)) >> (w - l[h-1]);
ZIP(u)[h-1][j] = r; /* connect to last table */
}
}
/* set up table entry in r */
r.b = (cab_UBYTE)(k - w);
if (p >= ZIP(v) + n)
r.e = 99; /* out of values--invalid code */
else if (*p < s)
{
r.e = (cab_UBYTE)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */
r.v.n = *p++; /* simple code is just the value */
}
else
{
r.e = (cab_UBYTE)e[*p - s]; /* non-simple--look up in lists */
r.v.n = d[*p++ - s];
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != ZIP(x)[h])
w -= l[--h]; /* don't need to update q */
}
}
/* return actual size of base table */
*m = l[0];
/* Return true (1) if we were given an incomplete table */
return y != 0 && g != 1;
}
/*********************************************************
* fdi_Zipinflate_codes (internal)
*/
static cab_LONG fdi_Zipinflate_codes(const struct Ziphuft *tl, const struct Ziphuft *td,
cab_LONG bl, cab_LONG bd, fdi_decomp_state *decomp_state)
{
register cab_ULONG e; /* table entry flag/number of extra bits */
cab_ULONG n, d; /* length and index for copy */
cab_ULONG w; /* current window position */
const struct Ziphuft *t; /* pointer to table entry */
cab_ULONG ml, md; /* masks for bl and bd bits */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local copies of globals */
b = ZIP(bb); /* initialize bit buffer */
k = ZIP(bk);
w = ZIP(window_posn); /* initialize window position */
/* inflate the coded data */
ml = Zipmask[bl]; /* precompute masks for speed */
md = Zipmask[bd];
for(;;)
{
ZIPNEEDBITS((cab_ULONG)bl)
if((e = (t = tl + (b & ml))->e) > 16)
do
{
if (e == 99)
return 1;
ZIPDUMPBITS(t->b)
e -= 16;
ZIPNEEDBITS(e)
} while ((e = (t = t->v.t + (b & Zipmask[e]))->e) > 16);
ZIPDUMPBITS(t->b)
if (e == 16) /* then it's a literal */
CAB(outbuf)[w++] = (cab_UBYTE)t->v.n;
else /* it's an EOB or a length */
{
/* exit if end of block */
if(e == 15)
break;
/* get length of block to copy */
ZIPNEEDBITS(e)
n = t->v.n + (b & Zipmask[e]);
ZIPDUMPBITS(e);
/* decode distance of block to copy */
ZIPNEEDBITS((cab_ULONG)bd)
if ((e = (t = td + (b & md))->e) > 16)
do {
if (e == 99)
return 1;
ZIPDUMPBITS(t->b)
e -= 16;
ZIPNEEDBITS(e)
} while ((e = (t = t->v.t + (b & Zipmask[e]))->e) > 16);
ZIPDUMPBITS(t->b)
ZIPNEEDBITS(e)
d = w - t->v.n - (b & Zipmask[e]);
ZIPDUMPBITS(e)
do
{
d &= ZIPWSIZE - 1;
e = ZIPWSIZE - max(d, w);
e = min(e, n);
n -= e;
do
{
CAB(outbuf)[w++] = CAB(outbuf)[d++];
} while (--e);
} while (n);
}
}
/* restore the globals from the locals */
ZIP(window_posn) = w; /* restore global window pointer */
ZIP(bb) = b; /* restore global bit buffer */
ZIP(bk) = k;
/* done */
return 0;
}
/***********************************************************
* Zipinflate_stored (internal)
*/
static cab_LONG fdi_Zipinflate_stored(fdi_decomp_state *decomp_state)
/* "decompress" an inflated type 0 (stored) block. */
{
cab_ULONG n; /* number of bytes in block */
cab_ULONG w; /* current window position */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local copies of globals */
b = ZIP(bb); /* initialize bit buffer */
k = ZIP(bk);
w = ZIP(window_posn); /* initialize window position */
/* go to byte boundary */
n = k & 7;
ZIPDUMPBITS(n);
/* get the length and its complement */
ZIPNEEDBITS(16)
n = (b & 0xffff);
ZIPDUMPBITS(16)
ZIPNEEDBITS(16)
if (n != ((~b) & 0xffff))
return 1; /* error in compressed data */
ZIPDUMPBITS(16)
/* read and output the compressed data */
while(n--)
{
ZIPNEEDBITS(8)
CAB(outbuf)[w++] = (cab_UBYTE)b;
ZIPDUMPBITS(8)
}
/* restore the globals from the locals */
ZIP(window_posn) = w; /* restore global window pointer */
ZIP(bb) = b; /* restore global bit buffer */
ZIP(bk) = k;
return 0;
}
/******************************************************
* fdi_Zipinflate_fixed (internal)
*/
static cab_LONG fdi_Zipinflate_fixed(fdi_decomp_state *decomp_state)
{
struct Ziphuft *fixed_tl;
struct Ziphuft *fixed_td;
cab_LONG fixed_bl, fixed_bd;
cab_LONG i; /* temporary variable */
cab_ULONG *l;
l = ZIP(ll);
/* literal table */
for(i = 0; i < 144; i++)
l[i] = 8;
for(; i < 256; i++)
l[i] = 9;
for(; i < 280; i++)
l[i] = 7;
for(; i < 288; i++) /* make a complete, but wrong code set */
l[i] = 8;
fixed_bl = 7;
if((i = fdi_Ziphuft_build(l, 288, 257, Zipcplens, Zipcplext, &fixed_tl, &fixed_bl, decomp_state)))
return i;
/* distance table */
for(i = 0; i < 30; i++) /* make an incomplete code set */
l[i] = 5;
fixed_bd = 5;
if((i = fdi_Ziphuft_build(l, 30, 0, Zipcpdist, Zipcpdext, &fixed_td, &fixed_bd, decomp_state)) > 1)
{
fdi_Ziphuft_free(CAB(hfdi), fixed_tl);
return i;
}
/* decompress until an end-of-block code */
i = fdi_Zipinflate_codes(fixed_tl, fixed_td, fixed_bl, fixed_bd, decomp_state);
fdi_Ziphuft_free(CAB(hfdi), fixed_td);
fdi_Ziphuft_free(CAB(hfdi), fixed_tl);
return i;
}
/**************************************************************
* fdi_Zipinflate_dynamic (internal)
*/
static cab_LONG fdi_Zipinflate_dynamic(fdi_decomp_state *decomp_state)
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
{
cab_LONG i; /* temporary variables */
cab_ULONG j;
cab_ULONG *ll;
cab_ULONG l; /* last length */
cab_ULONG m; /* mask for bit lengths table */
cab_ULONG n; /* number of lengths to get */
struct Ziphuft *tl; /* literal/length code table */
struct Ziphuft *td; /* distance code table */
cab_LONG bl; /* lookup bits for tl */
cab_LONG bd; /* lookup bits for td */
cab_ULONG nb; /* number of bit length codes */
cab_ULONG nl; /* number of literal/length codes */
cab_ULONG nd; /* number of distance codes */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local bit buffer */
b = ZIP(bb);
k = ZIP(bk);
ll = ZIP(ll);
/* read in table lengths */
ZIPNEEDBITS(5)
nl = 257 + (b & 0x1f); /* number of literal/length codes */
ZIPDUMPBITS(5)
ZIPNEEDBITS(5)
nd = 1 + (b & 0x1f); /* number of distance codes */
ZIPDUMPBITS(5)
ZIPNEEDBITS(4)
nb = 4 + (b & 0xf); /* number of bit length codes */
ZIPDUMPBITS(4)
if(nl > 288 || nd > 32)
return 1; /* bad lengths */
/* read in bit-length-code lengths */
for(j = 0; j < nb; j++)
{
ZIPNEEDBITS(3)
ll[Zipborder[j]] = b & 7;
ZIPDUMPBITS(3)
}
for(; j < 19; j++)
ll[Zipborder[j]] = 0;
/* build decoding table for trees--single level, 7 bit lookup */
bl = 7;
if((i = fdi_Ziphuft_build(ll, 19, 19, NULL, NULL, &tl, &bl, decomp_state)) != 0)
{
if(i == 1)
fdi_Ziphuft_free(CAB(hfdi), tl);
return i; /* incomplete code set */
}
/* read in literal and distance code lengths */
n = nl + nd;
m = Zipmask[bl];
i = l = 0;
while((cab_ULONG)i < n)
{
ZIPNEEDBITS((cab_ULONG)bl)
j = (td = tl + (b & m))->b;
ZIPDUMPBITS(j)
j = td->v.n;
if (j < 16) /* length of code in bits (0..15) */
ll[i++] = l = j; /* save last length in l */
else if (j == 16) /* repeat last length 3 to 6 times */
{
ZIPNEEDBITS(2)
j = 3 + (b & 3);
ZIPDUMPBITS(2)
if((cab_ULONG)i + j > n)
return 1;
while (j--)
ll[i++] = l;
}
else if (j == 17) /* 3 to 10 zero length codes */
{
ZIPNEEDBITS(3)
j = 3 + (b & 7);
ZIPDUMPBITS(3)
if ((cab_ULONG)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
else /* j == 18: 11 to 138 zero length codes */
{
ZIPNEEDBITS(7)
j = 11 + (b & 0x7f);
ZIPDUMPBITS(7)
if ((cab_ULONG)i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
}
/* free decoding table for trees */
fdi_Ziphuft_free(CAB(hfdi), tl);
/* restore the global bit buffer */
ZIP(bb) = b;
ZIP(bk) = k;
/* build the decoding tables for literal/length and distance codes */
bl = ZIPLBITS;
if((i = fdi_Ziphuft_build(ll, nl, 257, Zipcplens, Zipcplext, &tl, &bl, decomp_state)) != 0)
{
if(i == 1)
fdi_Ziphuft_free(CAB(hfdi), tl);
return i; /* incomplete code set */
}
bd = ZIPDBITS;
fdi_Ziphuft_build(ll + nl, nd, 0, Zipcpdist, Zipcpdext, &td, &bd, decomp_state);
/* decompress until an end-of-block code */
if(fdi_Zipinflate_codes(tl, td, bl, bd, decomp_state))
return 1;
/* free the decoding tables, return */
fdi_Ziphuft_free(CAB(hfdi), tl);
fdi_Ziphuft_free(CAB(hfdi), td);
return 0;
}
/*****************************************************
* fdi_Zipinflate_block (internal)
*/
static cab_LONG fdi_Zipinflate_block(cab_LONG *e, fdi_decomp_state *decomp_state) /* e == last block flag */
{ /* decompress an inflated block */
cab_ULONG t; /* block type */
register cab_ULONG b; /* bit buffer */
register cab_ULONG k; /* number of bits in bit buffer */
/* make local bit buffer */
b = ZIP(bb);
k = ZIP(bk);
/* read in last block bit */
ZIPNEEDBITS(1)
*e = (cab_LONG)b & 1;
ZIPDUMPBITS(1)
/* read in block type */
ZIPNEEDBITS(2)
t = b & 3;
ZIPDUMPBITS(2)
/* restore the global bit buffer */
ZIP(bb) = b;
ZIP(bk) = k;
/* inflate that block type */
if(t == 2)
return fdi_Zipinflate_dynamic(decomp_state);
if(t == 0)
return fdi_Zipinflate_stored(decomp_state);
if(t == 1)
return fdi_Zipinflate_fixed(decomp_state);
/* bad block type */
return 2;
}
/****************************************************
* ZIPfdi_decomp(internal)
*/
static int ZIPfdi_decomp(int inlen, int outlen, fdi_decomp_state *decomp_state)
{
cab_LONG e; /* last block flag */
TRACE("(inlen == %d, outlen == %d)\n", inlen, outlen);
ZIP(inpos) = CAB(inbuf);
ZIP(bb) = ZIP(bk) = ZIP(window_posn) = 0;
if(outlen > ZIPWSIZE)
return DECR_DATAFORMAT;
/* CK = Chris Kirmse, official Microsoft purloiner */
if(ZIP(inpos)[0] != 0x43 || ZIP(inpos)[1] != 0x4B)
return DECR_ILLEGALDATA;
ZIP(inpos) += 2;
do {
if(fdi_Zipinflate_block(&e, decomp_state))
return DECR_ILLEGALDATA;
} while(!e);
/* return success */
return DECR_OK;
}
static void * __cdecl fdi_alloc(ULONG cb)
{
return HeapAlloc(GetProcessHeap(), 0, cb);
}
static void __cdecl fdi_free(void *pv)
{
HeapFree(GetProcessHeap(), 0, pv);
}
int mszip_decompress(unsigned int inlen, unsigned int outlen, char* inbuffer, char* outbuffer)
{
int ret;
fdi_decomp_state decomp_state;
FDI_Int fdi;
TRACE("(%u, %u, %p, %p)\n", inlen, outlen, inbuffer, outbuffer);
if ((inlen > CAB_INPUTMAX) || (outlen > CAB_BLOCKMAX))
{
FIXME("Big file not supported yet (inlen = %u, outlen = %u)\n", inlen, outlen);
return DECR_DATAFORMAT;
}
fdi.pfnalloc = fdi_alloc;
fdi.pfnfree = fdi_free;
decomp_state.hfdi = (void*)&fdi;
memcpy(decomp_state.inbuf, inbuffer, inlen);
ret = ZIPfdi_decomp(inlen, outlen, &decomp_state);
memcpy(outbuffer, decomp_state.outbuf, outlen);
return ret;
}