mirror of
https://github.com/reactos/wine.git
synced 2024-12-11 05:14:25 +00:00
619 lines
19 KiB
C
619 lines
19 KiB
C
/*
|
|
* dlls/rsaenh/tomcrypt.h
|
|
* Function prototypes, type definitions and constant definitions
|
|
* for LibTomCrypt code.
|
|
*
|
|
* Copyright 2004 Michael Jung
|
|
* Based on public domain code by Tom St Denis (tomstdenis@iahu.ca)
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
/*
|
|
* This file contains code from the LibTomCrypt cryptographic
|
|
* library written by Tom St Denis (tomstdenis@iahu.ca). LibTomCrypt
|
|
* is in the public domain. The code in this file is tailored to
|
|
* special requirements. Take a look at http://libtomcrypt.org for the
|
|
* original version.
|
|
*/
|
|
|
|
#ifndef __WINE_TOMCRYPT_H_
|
|
#define __WINE_TOMCRYPT_H_
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <limits.h>
|
|
#include "basetsd.h"
|
|
|
|
/* error codes [will be expanded in future releases] */
|
|
enum {
|
|
CRYPT_OK=0, /* Result OK */
|
|
CRYPT_ERROR, /* Generic Error */
|
|
CRYPT_NOP, /* Not a failure but no operation was performed */
|
|
|
|
CRYPT_INVALID_KEYSIZE, /* Invalid key size given */
|
|
CRYPT_INVALID_ROUNDS, /* Invalid number of rounds */
|
|
CRYPT_FAIL_TESTVECTOR, /* Algorithm failed test vectors */
|
|
|
|
CRYPT_BUFFER_OVERFLOW, /* Not enough space for output */
|
|
CRYPT_INVALID_PACKET, /* Invalid input packet given */
|
|
|
|
CRYPT_INVALID_PRNGSIZE, /* Invalid number of bits for a PRNG */
|
|
CRYPT_ERROR_READPRNG, /* Could not read enough from PRNG */
|
|
|
|
CRYPT_INVALID_CIPHER, /* Invalid cipher specified */
|
|
CRYPT_INVALID_HASH, /* Invalid hash specified */
|
|
CRYPT_INVALID_PRNG, /* Invalid PRNG specified */
|
|
|
|
CRYPT_MEM, /* Out of memory */
|
|
|
|
CRYPT_PK_TYPE_MISMATCH, /* Not equivalent types of PK keys */
|
|
CRYPT_PK_NOT_PRIVATE, /* Requires a private PK key */
|
|
|
|
CRYPT_INVALID_ARG, /* Generic invalid argument */
|
|
CRYPT_FILE_NOTFOUND, /* File Not Found */
|
|
|
|
CRYPT_PK_INVALID_TYPE, /* Invalid type of PK key */
|
|
CRYPT_PK_INVALID_SYSTEM,/* Invalid PK system specified */
|
|
CRYPT_PK_DUP, /* Duplicate key already in key ring */
|
|
CRYPT_PK_NOT_FOUND, /* Key not found in keyring */
|
|
CRYPT_PK_INVALID_SIZE, /* Invalid size input for PK parameters */
|
|
|
|
CRYPT_INVALID_PRIME_SIZE/* Invalid size of prime requested */
|
|
};
|
|
|
|
#define CONST64(a,b) ((((ULONG64)(a)) << 32) | (b))
|
|
typedef ULONG64 ulong64;
|
|
|
|
/* this is the "32-bit at least" data type
|
|
* Re-define it to suit your platform but it must be at least 32-bits
|
|
*/
|
|
typedef ULONG32 ulong32;
|
|
|
|
/* ---- HELPER MACROS ---- */
|
|
#define STORE32H(x, y) \
|
|
{ (y)[0] = (unsigned char)(((x)>>24)&255); (y)[1] = (unsigned char)(((x)>>16)&255); \
|
|
(y)[2] = (unsigned char)(((x)>>8)&255); (y)[3] = (unsigned char)((x)&255); }
|
|
|
|
#define LOAD32H(x, y) \
|
|
{ x = ((unsigned long)((y)[0] & 255)<<24) | \
|
|
((unsigned long)((y)[1] & 255)<<16) | \
|
|
((unsigned long)((y)[2] & 255)<<8) | \
|
|
((unsigned long)((y)[3] & 255)); }
|
|
|
|
#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && !defined(INTEL_CC)
|
|
|
|
static inline unsigned ROR(unsigned word, int i)
|
|
{
|
|
__asm__("rorl %%cl,%0"
|
|
:"=r" (word)
|
|
:"0" (word),"c" (i));
|
|
return word;
|
|
}
|
|
|
|
#else
|
|
|
|
/* rotates the hard way */
|
|
#define ROR(x, y) ( ((((unsigned long)(x)&0xFFFFFFFFUL)>>(unsigned long)((y)&31)) | \
|
|
((unsigned long)(x)<<(unsigned long)(32-((y)&31)))) & 0xFFFFFFFFUL)
|
|
|
|
#endif
|
|
|
|
#undef MIN
|
|
#define MIN(x, y) ( ((x)<(y))?(x):(y) )
|
|
|
|
#define byte(x, n) (((x) >> (8 * (n))) & 255)
|
|
|
|
typedef struct tag_rc2_key {
|
|
unsigned xkey[64];
|
|
} rc2_key;
|
|
|
|
typedef struct tag_des_key {
|
|
ulong32 ek[32], dk[32];
|
|
} des_key;
|
|
|
|
typedef struct tag_des3_key {
|
|
ulong32 ek[3][32], dk[3][32];
|
|
} des3_key;
|
|
|
|
int rc2_setup(const unsigned char *key, int keylen, int bits, int num_rounds, rc2_key *skey);
|
|
void rc2_ecb_encrypt(const unsigned char *pt, unsigned char *ct, rc2_key *key);
|
|
void rc2_ecb_decrypt(const unsigned char *ct, unsigned char *pt, rc2_key *key);
|
|
|
|
int des_setup(const unsigned char *key, int keylen, int num_rounds, des_key *skey);
|
|
void des_ecb_encrypt(const unsigned char *pt, unsigned char *ct, des_key *key);
|
|
void des_ecb_decrypt(const unsigned char *ct, unsigned char *pt, des_key *key);
|
|
|
|
int des3_setup(const unsigned char *key, int keylen, int num_rounds, des3_key *skey);
|
|
void des3_ecb_encrypt(const unsigned char *pt, unsigned char *ct, des3_key *key);
|
|
void des3_ecb_decrypt(const unsigned char *ct, unsigned char *pt, des3_key *key);
|
|
|
|
typedef struct tag_md2_state {
|
|
unsigned char chksum[16], X[48], buf[16];
|
|
unsigned long curlen;
|
|
} md2_state;
|
|
|
|
int md2_init(md2_state * md);
|
|
int md2_process(md2_state * md, const unsigned char *buf, unsigned long len);
|
|
int md2_done(md2_state * md, unsigned char *hash);
|
|
|
|
struct rc4_prng {
|
|
int x, y;
|
|
unsigned char buf[256];
|
|
};
|
|
|
|
typedef union Prng_state {
|
|
struct rc4_prng rc4;
|
|
} prng_state;
|
|
|
|
int rc4_start(prng_state *prng);
|
|
int rc4_add_entropy(const unsigned char *buf, unsigned long len, prng_state *prng);
|
|
int rc4_ready(prng_state *prng);
|
|
unsigned long rc4_read(unsigned char *buf, unsigned long len, prng_state *prng);
|
|
|
|
/* some default configurations.
|
|
*
|
|
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
|
|
* A "mp_word" must be able to hold 2*DIGIT_BIT + 1 bits
|
|
*
|
|
* At the very least a mp_digit must be able to hold 7 bits
|
|
* [any size beyond that is ok provided it doesn't overflow the data type]
|
|
*/
|
|
typedef unsigned long mp_digit;
|
|
typedef ulong64 mp_word;
|
|
#define DIGIT_BIT 28
|
|
|
|
#define MP_DIGIT_BIT DIGIT_BIT
|
|
#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
|
|
#define MP_DIGIT_MAX MP_MASK
|
|
|
|
/* equalities */
|
|
#define MP_LT -1 /* less than */
|
|
#define MP_EQ 0 /* equal to */
|
|
#define MP_GT 1 /* greater than */
|
|
|
|
#define MP_ZPOS 0 /* positive integer */
|
|
#define MP_NEG 1 /* negative */
|
|
|
|
#define MP_OKAY 0 /* ok result */
|
|
#define MP_MEM -2 /* out of mem */
|
|
#define MP_VAL -3 /* invalid input */
|
|
#define MP_RANGE MP_VAL
|
|
|
|
#define MP_YES 1 /* yes response */
|
|
#define MP_NO 0 /* no response */
|
|
|
|
/* Primality generation flags */
|
|
#define LTM_PRIME_BBS 0x0001 /* BBS style prime */
|
|
#define LTM_PRIME_SAFE 0x0002 /* Safe prime (p-1)/2 == prime */
|
|
#define LTM_PRIME_2MSB_OFF 0x0004 /* force 2nd MSB to 0 */
|
|
#define LTM_PRIME_2MSB_ON 0x0008 /* force 2nd MSB to 1 */
|
|
|
|
typedef int mp_err;
|
|
|
|
/* you'll have to tune these... */
|
|
extern int KARATSUBA_MUL_CUTOFF,
|
|
KARATSUBA_SQR_CUTOFF;
|
|
|
|
/* define this to use lower memory usage routines (exptmods mostly) */
|
|
/* #define MP_LOW_MEM */
|
|
|
|
#define MP_PREC 64 /* default digits of precision */
|
|
|
|
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
|
|
#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
|
|
|
|
/* the infamous mp_int structure */
|
|
typedef struct {
|
|
int used, alloc, sign;
|
|
mp_digit *dp;
|
|
} mp_int;
|
|
|
|
/* callback for mp_prime_random, should fill dst with random bytes and return how many read [up to len] */
|
|
typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
|
|
|
|
#define DIGIT(m,k) ((m)->dp[(k)])
|
|
|
|
/* error code to char* string */
|
|
char *mp_error_to_string(int code);
|
|
|
|
/* ---> init and deinit bignum functions <--- */
|
|
/* init a bignum */
|
|
int mp_init(mp_int *a);
|
|
|
|
/* free a bignum */
|
|
void mp_clear(mp_int *a);
|
|
|
|
/* init a null terminated series of arguments */
|
|
int mp_init_multi(mp_int *mp, ...);
|
|
|
|
/* clear a null terminated series of arguments */
|
|
void mp_clear_multi(mp_int *mp, ...);
|
|
|
|
/* exchange two ints */
|
|
void mp_exch(mp_int *a, mp_int *b);
|
|
|
|
/* shrink ram required for a bignum */
|
|
int mp_shrink(mp_int *a);
|
|
|
|
/* grow an int to a given size */
|
|
int mp_grow(mp_int *a, int size);
|
|
|
|
/* init to a given number of digits */
|
|
int mp_init_size(mp_int *a, int size);
|
|
|
|
/* ---> Basic Manipulations <--- */
|
|
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
|
|
#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
|
|
#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
|
|
|
|
/* set to zero */
|
|
void mp_zero(mp_int *a);
|
|
|
|
/* set to a digit */
|
|
void mp_set(mp_int *a, mp_digit b);
|
|
|
|
/* set a 32-bit const */
|
|
int mp_set_int(mp_int *a, unsigned long b);
|
|
|
|
/* get a 32-bit value */
|
|
unsigned long mp_get_int(mp_int * a);
|
|
|
|
/* initialize and set a digit */
|
|
int mp_init_set (mp_int * a, mp_digit b);
|
|
|
|
/* initialize and set 32-bit value */
|
|
int mp_init_set_int (mp_int * a, unsigned long b);
|
|
|
|
/* copy, b = a */
|
|
int mp_copy(const mp_int *a, mp_int *b);
|
|
|
|
/* inits and copies, a = b */
|
|
int mp_init_copy(mp_int *a, const mp_int *b);
|
|
|
|
/* trim unused digits */
|
|
void mp_clamp(mp_int *a);
|
|
|
|
/* ---> digit manipulation <--- */
|
|
|
|
/* right shift by "b" digits */
|
|
void mp_rshd(mp_int *a, int b);
|
|
|
|
/* left shift by "b" digits */
|
|
int mp_lshd(mp_int *a, int b);
|
|
|
|
/* c = a / 2**b */
|
|
int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
|
|
|
|
/* b = a/2 */
|
|
int mp_div_2(mp_int *a, mp_int *b);
|
|
|
|
/* c = a * 2**b */
|
|
int mp_mul_2d(mp_int *a, int b, mp_int *c);
|
|
|
|
/* b = a*2 */
|
|
int mp_mul_2(mp_int *a, mp_int *b);
|
|
|
|
/* c = a mod 2**d */
|
|
int mp_mod_2d(mp_int *a, int b, mp_int *c);
|
|
|
|
/* computes a = 2**b */
|
|
int mp_2expt(mp_int *a, int b);
|
|
|
|
/* Counts the number of lsbs which are zero before the first zero bit */
|
|
int mp_cnt_lsb(mp_int *a);
|
|
|
|
/* I Love Earth! */
|
|
|
|
/* makes a pseudo-random int of a given size */
|
|
int mp_rand(mp_int *a, int digits);
|
|
|
|
/* ---> binary operations <--- */
|
|
/* c = a XOR b */
|
|
int mp_xor(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* c = a OR b */
|
|
int mp_or(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* c = a AND b */
|
|
int mp_and(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* ---> Basic arithmetic <--- */
|
|
|
|
/* b = -a */
|
|
int mp_neg(mp_int *a, mp_int *b);
|
|
|
|
/* b = |a| */
|
|
int mp_abs(mp_int *a, mp_int *b);
|
|
|
|
/* compare a to b */
|
|
int mp_cmp(mp_int *a, mp_int *b);
|
|
|
|
/* compare |a| to |b| */
|
|
int mp_cmp_mag(mp_int *a, mp_int *b);
|
|
|
|
/* c = a + b */
|
|
int mp_add(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* c = a - b */
|
|
int mp_sub(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* c = a * b */
|
|
int mp_mul(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* b = a*a */
|
|
int mp_sqr(mp_int *a, mp_int *b);
|
|
|
|
/* a/b => cb + d == a */
|
|
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
/* c = a mod b, 0 <= c < b */
|
|
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* ---> single digit functions <--- */
|
|
|
|
/* compare against a single digit */
|
|
int mp_cmp_d(mp_int *a, mp_digit b);
|
|
|
|
/* c = a + b */
|
|
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
/* c = a - b */
|
|
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
/* c = a * b */
|
|
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
/* a/b => cb + d == a */
|
|
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
|
|
|
|
/* a/3 => 3c + d == a */
|
|
int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
|
|
|
|
/* c = a**b */
|
|
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
/* c = a mod b, 0 <= c < b */
|
|
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
|
|
|
|
/* ---> number theory <--- */
|
|
|
|
/* d = a + b (mod c) */
|
|
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
/* d = a - b (mod c) */
|
|
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
/* d = a * b (mod c) */
|
|
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
/* c = a * a (mod b) */
|
|
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* c = 1/a (mod b) */
|
|
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* c = (a, b) */
|
|
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* produces value such that U1*a + U2*b = U3 */
|
|
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
|
|
|
|
/* c = [a, b] or (a*b)/(a, b) */
|
|
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* finds one of the b'th root of a, such that |c|**b <= |a|
|
|
*
|
|
* returns error if a < 0 and b is even
|
|
*/
|
|
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
|
|
|
|
/* special sqrt algo */
|
|
int mp_sqrt(mp_int *arg, mp_int *ret);
|
|
|
|
/* is number a square? */
|
|
int mp_is_square(mp_int *arg, int *ret);
|
|
|
|
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
|
|
int mp_jacobi(mp_int *a, mp_int *n, int *c);
|
|
|
|
/* used to setup the Barrett reduction for a given modulus b */
|
|
int mp_reduce_setup(mp_int *a, mp_int *b);
|
|
|
|
/* Barrett Reduction, computes a (mod b) with a precomputed value c
|
|
*
|
|
* Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
|
|
* compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
|
|
*/
|
|
int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
|
|
|
|
/* setups the montgomery reduction */
|
|
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
|
|
|
|
/* computes a = B**n mod b without division or multiplication useful for
|
|
* normalizing numbers in a Montgomery system.
|
|
*/
|
|
int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
|
|
|
|
/* computes x/R == x (mod N) via Montgomery Reduction */
|
|
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
|
|
|
|
/* returns 1 if a is a valid DR modulus */
|
|
int mp_dr_is_modulus(mp_int *a);
|
|
|
|
/* sets the value of "d" required for mp_dr_reduce */
|
|
void mp_dr_setup(mp_int *a, mp_digit *d);
|
|
|
|
/* reduces a modulo b using the Diminished Radix method */
|
|
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
|
|
|
|
/* returns true if a can be reduced with mp_reduce_2k */
|
|
int mp_reduce_is_2k(mp_int *a);
|
|
|
|
/* determines k value for 2k reduction */
|
|
int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
|
|
|
|
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
|
|
int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
|
|
|
|
/* d = a**b (mod c) */
|
|
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
|
|
|
|
/* ---> Primes <--- */
|
|
|
|
/* number of primes */
|
|
#define PRIME_SIZE 256
|
|
|
|
/* table of first PRIME_SIZE primes */
|
|
extern const mp_digit __prime_tab[];
|
|
|
|
/* result=1 if a is divisible by one of the first PRIME_SIZE primes */
|
|
int mp_prime_is_divisible(mp_int *a, int *result);
|
|
|
|
/* performs one Fermat test of "a" using base "b".
|
|
* Sets result to 0 if composite or 1 if probable prime
|
|
*/
|
|
int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
|
|
|
|
/* performs one Miller-Rabin test of "a" using base "b".
|
|
* Sets result to 0 if composite or 1 if probable prime
|
|
*/
|
|
int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
|
|
|
|
/* This gives [for a given bit size] the number of trials required
|
|
* such that Miller-Rabin gives a prob of failure lower than 2^-96
|
|
*/
|
|
int mp_prime_rabin_miller_trials(int size);
|
|
|
|
/* performs t rounds of Miller-Rabin on "a" using the first
|
|
* t prime bases. Also performs an initial sieve of trial
|
|
* division. Determines if "a" is prime with probability
|
|
* of error no more than (1/4)**t.
|
|
*
|
|
* Sets result to 1 if probably prime, 0 otherwise
|
|
*/
|
|
int mp_prime_is_prime(mp_int *a, int t, int *result);
|
|
|
|
/* finds the next prime after the number "a" using "t" trials
|
|
* of Miller-Rabin.
|
|
*
|
|
* bbs_style = 1 means the prime must be congruent to 3 mod 4
|
|
*/
|
|
int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
|
|
|
|
/* makes a truly random prime of a given size (bytes),
|
|
* call with bbs = 1 if you want it to be congruent to 3 mod 4
|
|
*
|
|
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
|
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
|
* so it can be NULL
|
|
*
|
|
* The prime generated will be larger than 2^(8*size).
|
|
*/
|
|
#define mp_prime_random(a, t, size, bbs, cb, dat) mp_prime_random_ex(a, t, ((size) * 8) + 1, (bbs==1)?LTM_PRIME_BBS:0, cb, dat)
|
|
|
|
/* makes a truly random prime of a given size (bits),
|
|
*
|
|
* Flags are as follows:
|
|
*
|
|
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
|
|
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
|
|
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
|
|
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
|
|
*
|
|
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
|
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
|
* so it can be NULL
|
|
*
|
|
*/
|
|
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat);
|
|
|
|
/* ---> radix conversion <--- */
|
|
int mp_count_bits(mp_int *a);
|
|
|
|
int mp_unsigned_bin_size(mp_int *a);
|
|
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
|
|
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
|
|
|
|
int mp_signed_bin_size(mp_int *a);
|
|
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
|
|
int mp_to_signed_bin(mp_int *a, unsigned char *b);
|
|
|
|
int mp_read_radix(mp_int *a, char *str, int radix);
|
|
int mp_toradix(mp_int *a, char *str, int radix);
|
|
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen);
|
|
int mp_radix_size(mp_int *a, int radix, int *size);
|
|
|
|
int mp_fread(mp_int *a, int radix, FILE *stream);
|
|
int mp_fwrite(mp_int *a, int radix, FILE *stream);
|
|
|
|
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
|
|
#define mp_raw_size(mp) mp_signed_bin_size(mp)
|
|
#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
|
|
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
|
|
#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
|
|
#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
|
|
|
|
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
|
|
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
|
|
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
|
|
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
|
|
|
|
/* lowlevel functions, do not call! */
|
|
int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
|
|
int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
|
|
#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
|
|
int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
|
int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
|
int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
|
int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
|
|
int fast_s_mp_sqr(mp_int *a, mp_int *b);
|
|
int s_mp_sqr(mp_int *a, mp_int *b);
|
|
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
|
|
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
|
|
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
|
|
int mp_toom_sqr(mp_int *a, mp_int *b);
|
|
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
|
|
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c);
|
|
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
|
|
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
|
|
int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
|
|
void bn_reverse(unsigned char *s, int len);
|
|
|
|
extern const char *mp_s_rmap;
|
|
|
|
#define PK_PRIVATE 0 /* PK private keys */
|
|
#define PK_PUBLIC 1 /* PK public keys */
|
|
|
|
/* Min and Max RSA key sizes (in bits) */
|
|
#define MIN_RSA_SIZE 384
|
|
#define MAX_RSA_SIZE 16384
|
|
|
|
typedef struct Rsa_key {
|
|
int type;
|
|
mp_int e, d, N, p, q, qP, dP, dQ;
|
|
} rsa_key;
|
|
|
|
int rsa_make_key(int size, long e, rsa_key *key);
|
|
|
|
int rsa_exptmod(const unsigned char *in, unsigned long inlen,
|
|
unsigned char *out, unsigned long *outlen, int which,
|
|
rsa_key *key);
|
|
|
|
void rsa_free(rsa_key *key);
|
|
|
|
#endif /* __WINE_TOMCRYPT_H_ */
|