mirror of
https://github.com/reactos/wine.git
synced 2024-11-25 20:59:54 +00:00
2177 lines
65 KiB
C
2177 lines
65 KiB
C
/*
|
|
* Graphics paths (BeginPath, EndPath etc.)
|
|
*
|
|
* Copyright 1997, 1998 Martin Boehme
|
|
* 1999 Huw D M Davies
|
|
* Copyright 2005 Dmitry Timoshkov
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA
|
|
*/
|
|
|
|
#include "config.h"
|
|
#include "wine/port.h"
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#if defined(HAVE_FLOAT_H)
|
|
#include <float.h>
|
|
#endif
|
|
|
|
#include "windef.h"
|
|
#include "winbase.h"
|
|
#include "wingdi.h"
|
|
#include "winerror.h"
|
|
|
|
#include "gdi_private.h"
|
|
#include "wine/debug.h"
|
|
|
|
WINE_DEFAULT_DEBUG_CHANNEL(gdi);
|
|
|
|
/* Notes on the implementation
|
|
*
|
|
* The implementation is based on dynamically resizable arrays of points and
|
|
* flags. I dithered for a bit before deciding on this implementation, and
|
|
* I had even done a bit of work on a linked list version before switching
|
|
* to arrays. It's a bit of a tradeoff. When you use linked lists, the
|
|
* implementation of FlattenPath is easier, because you can rip the
|
|
* PT_BEZIERTO entries out of the middle of the list and link the
|
|
* corresponding PT_LINETO entries in. However, when you use arrays,
|
|
* PathToRegion becomes easier, since you can essentially just pass your array
|
|
* of points to CreatePolyPolygonRgn. Also, if I'd used linked lists, I would
|
|
* have had the extra effort of creating a chunk-based allocation scheme
|
|
* in order to use memory effectively. That's why I finally decided to use
|
|
* arrays. Note by the way that the array based implementation has the same
|
|
* linear time complexity that linked lists would have since the arrays grow
|
|
* exponentially.
|
|
*
|
|
* The points are stored in the path in device coordinates. This is
|
|
* consistent with the way Windows does things (for instance, see the Win32
|
|
* SDK documentation for GetPath).
|
|
*
|
|
* The word "stroke" appears in several places (e.g. in the flag
|
|
* GdiPath.newStroke). A stroke consists of a PT_MOVETO followed by one or
|
|
* more PT_LINETOs or PT_BEZIERTOs, up to, but not including, the next
|
|
* PT_MOVETO. Note that this is not the same as the definition of a figure;
|
|
* a figure can contain several strokes.
|
|
*
|
|
* I modified the drawing functions (MoveTo, LineTo etc.) to test whether
|
|
* the path is open and to call the corresponding function in path.c if this
|
|
* is the case. A more elegant approach would be to modify the function
|
|
* pointers in the DC_FUNCTIONS structure; however, this would be a lot more
|
|
* complex. Also, the performance degradation caused by my approach in the
|
|
* case where no path is open is so small that it cannot be measured.
|
|
*
|
|
* Martin Boehme
|
|
*/
|
|
|
|
/* FIXME: A lot of stuff isn't implemented yet. There is much more to come. */
|
|
|
|
#define NUM_ENTRIES_INITIAL 16 /* Initial size of points / flags arrays */
|
|
#define GROW_FACTOR_NUMER 2 /* Numerator of grow factor for the array */
|
|
#define GROW_FACTOR_DENOM 1 /* Denominator of grow factor */
|
|
|
|
/* A floating point version of the POINT structure */
|
|
typedef struct tagFLOAT_POINT
|
|
{
|
|
FLOAT x, y;
|
|
} FLOAT_POINT;
|
|
|
|
|
|
static BOOL PATH_PathToRegion(GdiPath *pPath, INT nPolyFillMode,
|
|
HRGN *pHrgn);
|
|
static void PATH_EmptyPath(GdiPath *pPath);
|
|
static BOOL PATH_ReserveEntries(GdiPath *pPath, INT numEntries);
|
|
static BOOL PATH_DoArcPart(GdiPath *pPath, FLOAT_POINT corners[],
|
|
double angleStart, double angleEnd, BYTE startEntryType);
|
|
static void PATH_ScaleNormalizedPoint(FLOAT_POINT corners[], double x,
|
|
double y, POINT *pPoint);
|
|
static void PATH_NormalizePoint(FLOAT_POINT corners[], const FLOAT_POINT
|
|
*pPoint, double *pX, double *pY);
|
|
static BOOL PATH_CheckCorners(DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2);
|
|
|
|
/* Performs a world-to-viewport transformation on the specified point (which
|
|
* is in floating point format).
|
|
*/
|
|
static inline void INTERNAL_LPTODP_FLOAT(DC *dc, FLOAT_POINT *point)
|
|
{
|
|
FLOAT x, y;
|
|
|
|
/* Perform the transformation */
|
|
x = point->x;
|
|
y = point->y;
|
|
point->x = x * dc->xformWorld2Vport.eM11 +
|
|
y * dc->xformWorld2Vport.eM21 +
|
|
dc->xformWorld2Vport.eDx;
|
|
point->y = x * dc->xformWorld2Vport.eM12 +
|
|
y * dc->xformWorld2Vport.eM22 +
|
|
dc->xformWorld2Vport.eDy;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* BeginPath (GDI32.@)
|
|
*/
|
|
BOOL WINAPI BeginPath(HDC hdc)
|
|
{
|
|
BOOL ret = TRUE;
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pBeginPath)
|
|
ret = dc->funcs->pBeginPath(dc->physDev);
|
|
else
|
|
{
|
|
/* If path is already open, do nothing */
|
|
if(dc->path.state != PATH_Open)
|
|
{
|
|
/* Make sure that path is empty */
|
|
PATH_EmptyPath(&dc->path);
|
|
|
|
/* Initialize variables for new path */
|
|
dc->path.newStroke=TRUE;
|
|
dc->path.state=PATH_Open;
|
|
}
|
|
}
|
|
GDI_ReleaseObj( hdc );
|
|
return ret;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* EndPath (GDI32.@)
|
|
*/
|
|
BOOL WINAPI EndPath(HDC hdc)
|
|
{
|
|
BOOL ret = TRUE;
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pEndPath)
|
|
ret = dc->funcs->pEndPath(dc->physDev);
|
|
else
|
|
{
|
|
/* Check that path is currently being constructed */
|
|
if(dc->path.state!=PATH_Open)
|
|
{
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
ret = FALSE;
|
|
}
|
|
/* Set flag to indicate that path is finished */
|
|
else dc->path.state=PATH_Closed;
|
|
}
|
|
GDI_ReleaseObj( hdc );
|
|
return ret;
|
|
}
|
|
|
|
|
|
/******************************************************************************
|
|
* AbortPath [GDI32.@]
|
|
* Closes and discards paths from device context
|
|
*
|
|
* NOTES
|
|
* Check that SetLastError is being called correctly
|
|
*
|
|
* PARAMS
|
|
* hdc [I] Handle to device context
|
|
*
|
|
* RETURNS
|
|
* Success: TRUE
|
|
* Failure: FALSE
|
|
*/
|
|
BOOL WINAPI AbortPath( HDC hdc )
|
|
{
|
|
BOOL ret = TRUE;
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pAbortPath)
|
|
ret = dc->funcs->pAbortPath(dc->physDev);
|
|
else /* Remove all entries from the path */
|
|
PATH_EmptyPath( &dc->path );
|
|
GDI_ReleaseObj( hdc );
|
|
return ret;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* CloseFigure (GDI32.@)
|
|
*
|
|
* FIXME: Check that SetLastError is being called correctly
|
|
*/
|
|
BOOL WINAPI CloseFigure(HDC hdc)
|
|
{
|
|
BOOL ret = TRUE;
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pCloseFigure)
|
|
ret = dc->funcs->pCloseFigure(dc->physDev);
|
|
else
|
|
{
|
|
/* Check that path is open */
|
|
if(dc->path.state!=PATH_Open)
|
|
{
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
ret = FALSE;
|
|
}
|
|
else
|
|
{
|
|
/* FIXME: Shouldn't we draw a line to the beginning of the
|
|
figure? */
|
|
/* Set PT_CLOSEFIGURE on the last entry and start a new stroke */
|
|
if(dc->path.numEntriesUsed)
|
|
{
|
|
dc->path.pFlags[dc->path.numEntriesUsed-1]|=PT_CLOSEFIGURE;
|
|
dc->path.newStroke=TRUE;
|
|
}
|
|
}
|
|
}
|
|
GDI_ReleaseObj( hdc );
|
|
return ret;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* GetPath (GDI32.@)
|
|
*/
|
|
INT WINAPI GetPath(HDC hdc, LPPOINT pPoints, LPBYTE pTypes,
|
|
INT nSize)
|
|
{
|
|
INT ret = -1;
|
|
GdiPath *pPath;
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
|
|
if(!dc) return -1;
|
|
|
|
pPath = &dc->path;
|
|
|
|
/* Check that path is closed */
|
|
if(pPath->state!=PATH_Closed)
|
|
{
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
goto done;
|
|
}
|
|
|
|
if(nSize==0)
|
|
ret = pPath->numEntriesUsed;
|
|
else if(nSize<pPath->numEntriesUsed)
|
|
{
|
|
SetLastError(ERROR_INVALID_PARAMETER);
|
|
goto done;
|
|
}
|
|
else
|
|
{
|
|
memcpy(pPoints, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed);
|
|
memcpy(pTypes, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed);
|
|
|
|
/* Convert the points to logical coordinates */
|
|
if(!DPtoLP(hdc, pPoints, pPath->numEntriesUsed))
|
|
{
|
|
/* FIXME: Is this the correct value? */
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
goto done;
|
|
}
|
|
else ret = pPath->numEntriesUsed;
|
|
}
|
|
done:
|
|
GDI_ReleaseObj( hdc );
|
|
return ret;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* PathToRegion (GDI32.@)
|
|
*
|
|
* FIXME
|
|
* Check that SetLastError is being called correctly
|
|
*
|
|
* The documentation does not state this explicitly, but a test under Windows
|
|
* shows that the region which is returned should be in device coordinates.
|
|
*/
|
|
HRGN WINAPI PathToRegion(HDC hdc)
|
|
{
|
|
GdiPath *pPath;
|
|
HRGN hrgnRval = 0;
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
|
|
/* Get pointer to path */
|
|
if(!dc) return 0;
|
|
|
|
pPath = &dc->path;
|
|
|
|
/* Check that path is closed */
|
|
if(pPath->state!=PATH_Closed) SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
else
|
|
{
|
|
/* FIXME: Should we empty the path even if conversion failed? */
|
|
if(PATH_PathToRegion(pPath, GetPolyFillMode(hdc), &hrgnRval))
|
|
PATH_EmptyPath(pPath);
|
|
else
|
|
hrgnRval=0;
|
|
}
|
|
GDI_ReleaseObj( hdc );
|
|
return hrgnRval;
|
|
}
|
|
|
|
static BOOL PATH_FillPath(DC *dc, GdiPath *pPath)
|
|
{
|
|
INT mapMode, graphicsMode;
|
|
SIZE ptViewportExt, ptWindowExt;
|
|
POINT ptViewportOrg, ptWindowOrg;
|
|
XFORM xform;
|
|
HRGN hrgn;
|
|
|
|
if(dc->funcs->pFillPath)
|
|
return dc->funcs->pFillPath(dc->physDev);
|
|
|
|
/* Check that path is closed */
|
|
if(pPath->state!=PATH_Closed)
|
|
{
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Construct a region from the path and fill it */
|
|
if(PATH_PathToRegion(pPath, dc->polyFillMode, &hrgn))
|
|
{
|
|
/* Since PaintRgn interprets the region as being in logical coordinates
|
|
* but the points we store for the path are already in device
|
|
* coordinates, we have to set the mapping mode to MM_TEXT temporarily.
|
|
* Using SaveDC to save information about the mapping mode / world
|
|
* transform would be easier but would require more overhead, especially
|
|
* now that SaveDC saves the current path.
|
|
*/
|
|
|
|
/* Save the information about the old mapping mode */
|
|
mapMode=GetMapMode(dc->hSelf);
|
|
GetViewportExtEx(dc->hSelf, &ptViewportExt);
|
|
GetViewportOrgEx(dc->hSelf, &ptViewportOrg);
|
|
GetWindowExtEx(dc->hSelf, &ptWindowExt);
|
|
GetWindowOrgEx(dc->hSelf, &ptWindowOrg);
|
|
|
|
/* Save world transform
|
|
* NB: The Windows documentation on world transforms would lead one to
|
|
* believe that this has to be done only in GM_ADVANCED; however, my
|
|
* tests show that resetting the graphics mode to GM_COMPATIBLE does
|
|
* not reset the world transform.
|
|
*/
|
|
GetWorldTransform(dc->hSelf, &xform);
|
|
|
|
/* Set MM_TEXT */
|
|
SetMapMode(dc->hSelf, MM_TEXT);
|
|
SetViewportOrgEx(dc->hSelf, 0, 0, NULL);
|
|
SetWindowOrgEx(dc->hSelf, 0, 0, NULL);
|
|
graphicsMode=GetGraphicsMode(dc->hSelf);
|
|
SetGraphicsMode(dc->hSelf, GM_ADVANCED);
|
|
ModifyWorldTransform(dc->hSelf, &xform, MWT_IDENTITY);
|
|
SetGraphicsMode(dc->hSelf, graphicsMode);
|
|
|
|
/* Paint the region */
|
|
PaintRgn(dc->hSelf, hrgn);
|
|
DeleteObject(hrgn);
|
|
/* Restore the old mapping mode */
|
|
SetMapMode(dc->hSelf, mapMode);
|
|
SetViewportExtEx(dc->hSelf, ptViewportExt.cx, ptViewportExt.cy, NULL);
|
|
SetViewportOrgEx(dc->hSelf, ptViewportOrg.x, ptViewportOrg.y, NULL);
|
|
SetWindowExtEx(dc->hSelf, ptWindowExt.cx, ptWindowExt.cy, NULL);
|
|
SetWindowOrgEx(dc->hSelf, ptWindowOrg.x, ptWindowOrg.y, NULL);
|
|
|
|
/* Go to GM_ADVANCED temporarily to restore the world transform */
|
|
graphicsMode=GetGraphicsMode(dc->hSelf);
|
|
SetGraphicsMode(dc->hSelf, GM_ADVANCED);
|
|
SetWorldTransform(dc->hSelf, &xform);
|
|
SetGraphicsMode(dc->hSelf, graphicsMode);
|
|
return TRUE;
|
|
}
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* FillPath (GDI32.@)
|
|
*
|
|
* FIXME
|
|
* Check that SetLastError is being called correctly
|
|
*/
|
|
BOOL WINAPI FillPath(HDC hdc)
|
|
{
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
BOOL bRet = FALSE;
|
|
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pFillPath)
|
|
bRet = dc->funcs->pFillPath(dc->physDev);
|
|
else
|
|
{
|
|
bRet = PATH_FillPath(dc, &dc->path);
|
|
if(bRet)
|
|
{
|
|
/* FIXME: Should the path be emptied even if conversion
|
|
failed? */
|
|
PATH_EmptyPath(&dc->path);
|
|
}
|
|
}
|
|
GDI_ReleaseObj( hdc );
|
|
return bRet;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* SelectClipPath (GDI32.@)
|
|
* FIXME
|
|
* Check that SetLastError is being called correctly
|
|
*/
|
|
BOOL WINAPI SelectClipPath(HDC hdc, INT iMode)
|
|
{
|
|
GdiPath *pPath;
|
|
HRGN hrgnPath;
|
|
BOOL success = FALSE;
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pSelectClipPath)
|
|
success = dc->funcs->pSelectClipPath(dc->physDev, iMode);
|
|
else
|
|
{
|
|
pPath = &dc->path;
|
|
|
|
/* Check that path is closed */
|
|
if(pPath->state!=PATH_Closed)
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
/* Construct a region from the path */
|
|
else if(PATH_PathToRegion(pPath, GetPolyFillMode(hdc), &hrgnPath))
|
|
{
|
|
success = ExtSelectClipRgn( hdc, hrgnPath, iMode ) != ERROR;
|
|
DeleteObject(hrgnPath);
|
|
|
|
/* Empty the path */
|
|
if(success)
|
|
PATH_EmptyPath(pPath);
|
|
/* FIXME: Should this function delete the path even if it failed? */
|
|
}
|
|
}
|
|
GDI_ReleaseObj( hdc );
|
|
return success;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* Exported functions
|
|
*/
|
|
|
|
/* PATH_InitGdiPath
|
|
*
|
|
* Initializes the GdiPath structure.
|
|
*/
|
|
void PATH_InitGdiPath(GdiPath *pPath)
|
|
{
|
|
assert(pPath!=NULL);
|
|
|
|
pPath->state=PATH_Null;
|
|
pPath->pPoints=NULL;
|
|
pPath->pFlags=NULL;
|
|
pPath->numEntriesUsed=0;
|
|
pPath->numEntriesAllocated=0;
|
|
}
|
|
|
|
/* PATH_DestroyGdiPath
|
|
*
|
|
* Destroys a GdiPath structure (frees the memory in the arrays).
|
|
*/
|
|
void PATH_DestroyGdiPath(GdiPath *pPath)
|
|
{
|
|
assert(pPath!=NULL);
|
|
|
|
HeapFree( GetProcessHeap(), 0, pPath->pPoints );
|
|
HeapFree( GetProcessHeap(), 0, pPath->pFlags );
|
|
}
|
|
|
|
/* PATH_AssignGdiPath
|
|
*
|
|
* Copies the GdiPath structure "pPathSrc" to "pPathDest". A deep copy is
|
|
* performed, i.e. the contents of the pPoints and pFlags arrays are copied,
|
|
* not just the pointers. Since this means that the arrays in pPathDest may
|
|
* need to be resized, pPathDest should have been initialized using
|
|
* PATH_InitGdiPath (in C++, this function would be an assignment operator,
|
|
* not a copy constructor).
|
|
* Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL PATH_AssignGdiPath(GdiPath *pPathDest, const GdiPath *pPathSrc)
|
|
{
|
|
assert(pPathDest!=NULL && pPathSrc!=NULL);
|
|
|
|
/* Make sure destination arrays are big enough */
|
|
if(!PATH_ReserveEntries(pPathDest, pPathSrc->numEntriesUsed))
|
|
return FALSE;
|
|
|
|
/* Perform the copy operation */
|
|
memcpy(pPathDest->pPoints, pPathSrc->pPoints,
|
|
sizeof(POINT)*pPathSrc->numEntriesUsed);
|
|
memcpy(pPathDest->pFlags, pPathSrc->pFlags,
|
|
sizeof(BYTE)*pPathSrc->numEntriesUsed);
|
|
|
|
pPathDest->state=pPathSrc->state;
|
|
pPathDest->numEntriesUsed=pPathSrc->numEntriesUsed;
|
|
pPathDest->newStroke=pPathSrc->newStroke;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_MoveTo
|
|
*
|
|
* Should be called when a MoveTo is performed on a DC that has an
|
|
* open path. This starts a new stroke. Returns TRUE if successful, else
|
|
* FALSE.
|
|
*/
|
|
BOOL PATH_MoveTo(DC *dc)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
/* FIXME: Do we have to call SetLastError? */
|
|
return FALSE;
|
|
|
|
/* Start a new stroke */
|
|
pPath->newStroke=TRUE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_LineTo
|
|
*
|
|
* Should be called when a LineTo is performed on a DC that has an
|
|
* open path. This adds a PT_LINETO entry to the path (and possibly
|
|
* a PT_MOVETO entry, if this is the first LineTo in a stroke).
|
|
* Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL PATH_LineTo(DC *dc, INT x, INT y)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT point, pointCurPos;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
/* Convert point to device coordinates */
|
|
point.x=x;
|
|
point.y=y;
|
|
if(!LPtoDP(dc->hSelf, &point, 1))
|
|
return FALSE;
|
|
|
|
/* Add a PT_MOVETO if necessary */
|
|
if(pPath->newStroke)
|
|
{
|
|
pPath->newStroke=FALSE;
|
|
pointCurPos.x = dc->CursPosX;
|
|
pointCurPos.y = dc->CursPosY;
|
|
if(!LPtoDP(dc->hSelf, &pointCurPos, 1))
|
|
return FALSE;
|
|
if(!PATH_AddEntry(pPath, &pointCurPos, PT_MOVETO))
|
|
return FALSE;
|
|
}
|
|
|
|
/* Add a PT_LINETO entry */
|
|
return PATH_AddEntry(pPath, &point, PT_LINETO);
|
|
}
|
|
|
|
/* PATH_RoundRect
|
|
*
|
|
* Should be called when a call to RoundRect is performed on a DC that has
|
|
* an open path. Returns TRUE if successful, else FALSE.
|
|
*
|
|
* FIXME: it adds the same entries to the path as windows does, but there
|
|
* is an error in the bezier drawing code so that there are small pixel-size
|
|
* gaps when the resulting path is drawn by StrokePath()
|
|
*/
|
|
BOOL PATH_RoundRect(DC *dc, INT x1, INT y1, INT x2, INT y2, INT ell_width, INT ell_height)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT corners[2], pointTemp;
|
|
FLOAT_POINT ellCorners[2];
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
if(!PATH_CheckCorners(dc,corners,x1,y1,x2,y2))
|
|
return FALSE;
|
|
|
|
/* Add points to the roundrect path */
|
|
ellCorners[0].x = corners[1].x-ell_width;
|
|
ellCorners[0].y = corners[0].y;
|
|
ellCorners[1].x = corners[1].x;
|
|
ellCorners[1].y = corners[0].y+ell_height;
|
|
if(!PATH_DoArcPart(pPath, ellCorners, 0, -M_PI_2, PT_MOVETO))
|
|
return FALSE;
|
|
pointTemp.x = corners[0].x+ell_width/2;
|
|
pointTemp.y = corners[0].y;
|
|
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
|
|
return FALSE;
|
|
ellCorners[0].x = corners[0].x;
|
|
ellCorners[1].x = corners[0].x+ell_width;
|
|
if(!PATH_DoArcPart(pPath, ellCorners, -M_PI_2, -M_PI, FALSE))
|
|
return FALSE;
|
|
pointTemp.x = corners[0].x;
|
|
pointTemp.y = corners[1].y-ell_height/2;
|
|
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
|
|
return FALSE;
|
|
ellCorners[0].y = corners[1].y-ell_height;
|
|
ellCorners[1].y = corners[1].y;
|
|
if(!PATH_DoArcPart(pPath, ellCorners, M_PI, M_PI_2, FALSE))
|
|
return FALSE;
|
|
pointTemp.x = corners[1].x-ell_width/2;
|
|
pointTemp.y = corners[1].y;
|
|
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
|
|
return FALSE;
|
|
ellCorners[0].x = corners[1].x-ell_width;
|
|
ellCorners[1].x = corners[1].x;
|
|
if(!PATH_DoArcPart(pPath, ellCorners, M_PI_2, 0, FALSE))
|
|
return FALSE;
|
|
|
|
/* Close the roundrect figure */
|
|
if(!CloseFigure(dc->hSelf))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_Rectangle
|
|
*
|
|
* Should be called when a call to Rectangle is performed on a DC that has
|
|
* an open path. Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL PATH_Rectangle(DC *dc, INT x1, INT y1, INT x2, INT y2)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT corners[2], pointTemp;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
if(!PATH_CheckCorners(dc,corners,x1,y1,x2,y2))
|
|
return FALSE;
|
|
|
|
/* Close any previous figure */
|
|
if(!CloseFigure(dc->hSelf))
|
|
{
|
|
/* The CloseFigure call shouldn't have failed */
|
|
assert(FALSE);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Add four points to the path */
|
|
pointTemp.x=corners[1].x;
|
|
pointTemp.y=corners[0].y;
|
|
if(!PATH_AddEntry(pPath, &pointTemp, PT_MOVETO))
|
|
return FALSE;
|
|
if(!PATH_AddEntry(pPath, corners, PT_LINETO))
|
|
return FALSE;
|
|
pointTemp.x=corners[0].x;
|
|
pointTemp.y=corners[1].y;
|
|
if(!PATH_AddEntry(pPath, &pointTemp, PT_LINETO))
|
|
return FALSE;
|
|
if(!PATH_AddEntry(pPath, corners+1, PT_LINETO))
|
|
return FALSE;
|
|
|
|
/* Close the rectangle figure */
|
|
if(!CloseFigure(dc->hSelf))
|
|
{
|
|
/* The CloseFigure call shouldn't have failed */
|
|
assert(FALSE);
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_Ellipse
|
|
*
|
|
* Should be called when a call to Ellipse is performed on a DC that has
|
|
* an open path. This adds four Bezier splines representing the ellipse
|
|
* to the path. Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL PATH_Ellipse(DC *dc, INT x1, INT y1, INT x2, INT y2)
|
|
{
|
|
return( PATH_Arc(dc, x1, y1, x2, y2, x1, (y1+y2)/2, x1, (y1+y2)/2,0) &&
|
|
CloseFigure(dc->hSelf) );
|
|
}
|
|
|
|
/* PATH_Arc
|
|
*
|
|
* Should be called when a call to Arc is performed on a DC that has
|
|
* an open path. This adds up to five Bezier splines representing the arc
|
|
* to the path. When 'lines' is 1, we add 1 extra line to get a chord,
|
|
* and when 'lines' is 2, we add 2 extra lines to get a pie.
|
|
* Returns TRUE if successful, else FALSE.
|
|
*/
|
|
BOOL PATH_Arc(DC *dc, INT x1, INT y1, INT x2, INT y2,
|
|
INT xStart, INT yStart, INT xEnd, INT yEnd, INT lines)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
double angleStart, angleEnd, angleStartQuadrant, angleEndQuadrant=0.0;
|
|
/* Initialize angleEndQuadrant to silence gcc's warning */
|
|
double x, y;
|
|
FLOAT_POINT corners[2], pointStart, pointEnd;
|
|
POINT centre;
|
|
BOOL start, end;
|
|
INT temp;
|
|
|
|
/* FIXME: This function should check for all possible error returns */
|
|
/* FIXME: Do we have to respect newStroke? */
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
/* Check for zero height / width */
|
|
/* FIXME: Only in GM_COMPATIBLE? */
|
|
if(x1==x2 || y1==y2)
|
|
return TRUE;
|
|
|
|
/* Convert points to device coordinates */
|
|
corners[0].x=(FLOAT)x1;
|
|
corners[0].y=(FLOAT)y1;
|
|
corners[1].x=(FLOAT)x2;
|
|
corners[1].y=(FLOAT)y2;
|
|
pointStart.x=(FLOAT)xStart;
|
|
pointStart.y=(FLOAT)yStart;
|
|
pointEnd.x=(FLOAT)xEnd;
|
|
pointEnd.y=(FLOAT)yEnd;
|
|
INTERNAL_LPTODP_FLOAT(dc, corners);
|
|
INTERNAL_LPTODP_FLOAT(dc, corners+1);
|
|
INTERNAL_LPTODP_FLOAT(dc, &pointStart);
|
|
INTERNAL_LPTODP_FLOAT(dc, &pointEnd);
|
|
|
|
/* Make sure first corner is top left and second corner is bottom right */
|
|
if(corners[0].x>corners[1].x)
|
|
{
|
|
temp=corners[0].x;
|
|
corners[0].x=corners[1].x;
|
|
corners[1].x=temp;
|
|
}
|
|
if(corners[0].y>corners[1].y)
|
|
{
|
|
temp=corners[0].y;
|
|
corners[0].y=corners[1].y;
|
|
corners[1].y=temp;
|
|
}
|
|
|
|
/* Compute start and end angle */
|
|
PATH_NormalizePoint(corners, &pointStart, &x, &y);
|
|
angleStart=atan2(y, x);
|
|
PATH_NormalizePoint(corners, &pointEnd, &x, &y);
|
|
angleEnd=atan2(y, x);
|
|
|
|
/* Make sure the end angle is "on the right side" of the start angle */
|
|
if(dc->ArcDirection==AD_CLOCKWISE)
|
|
{
|
|
if(angleEnd<=angleStart)
|
|
{
|
|
angleEnd+=2*M_PI;
|
|
assert(angleEnd>=angleStart);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(angleEnd>=angleStart)
|
|
{
|
|
angleEnd-=2*M_PI;
|
|
assert(angleEnd<=angleStart);
|
|
}
|
|
}
|
|
|
|
/* In GM_COMPATIBLE, don't include bottom and right edges */
|
|
if(dc->GraphicsMode==GM_COMPATIBLE)
|
|
{
|
|
corners[1].x--;
|
|
corners[1].y--;
|
|
}
|
|
|
|
/* Add the arc to the path with one Bezier spline per quadrant that the
|
|
* arc spans */
|
|
start=TRUE;
|
|
end=FALSE;
|
|
do
|
|
{
|
|
/* Determine the start and end angles for this quadrant */
|
|
if(start)
|
|
{
|
|
angleStartQuadrant=angleStart;
|
|
if(dc->ArcDirection==AD_CLOCKWISE)
|
|
angleEndQuadrant=(floor(angleStart/M_PI_2)+1.0)*M_PI_2;
|
|
else
|
|
angleEndQuadrant=(ceil(angleStart/M_PI_2)-1.0)*M_PI_2;
|
|
}
|
|
else
|
|
{
|
|
angleStartQuadrant=angleEndQuadrant;
|
|
if(dc->ArcDirection==AD_CLOCKWISE)
|
|
angleEndQuadrant+=M_PI_2;
|
|
else
|
|
angleEndQuadrant-=M_PI_2;
|
|
}
|
|
|
|
/* Have we reached the last part of the arc? */
|
|
if((dc->ArcDirection==AD_CLOCKWISE &&
|
|
angleEnd<angleEndQuadrant) ||
|
|
(dc->ArcDirection==AD_COUNTERCLOCKWISE &&
|
|
angleEnd>angleEndQuadrant))
|
|
{
|
|
/* Adjust the end angle for this quadrant */
|
|
angleEndQuadrant=angleEnd;
|
|
end=TRUE;
|
|
}
|
|
|
|
/* Add the Bezier spline to the path */
|
|
PATH_DoArcPart(pPath, corners, angleStartQuadrant, angleEndQuadrant,
|
|
start ? PT_MOVETO : FALSE);
|
|
start=FALSE;
|
|
} while(!end);
|
|
|
|
/* chord: close figure. pie: add line and close figure */
|
|
if(lines==1)
|
|
{
|
|
if(!CloseFigure(dc->hSelf))
|
|
return FALSE;
|
|
}
|
|
else if(lines==2)
|
|
{
|
|
centre.x = (corners[0].x+corners[1].x)/2;
|
|
centre.y = (corners[0].y+corners[1].y)/2;
|
|
if(!PATH_AddEntry(pPath, ¢re, PT_LINETO | PT_CLOSEFIGURE))
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL PATH_PolyBezierTo(DC *dc, const POINT *pts, DWORD cbPoints)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT pt;
|
|
UINT i;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
/* Add a PT_MOVETO if necessary */
|
|
if(pPath->newStroke)
|
|
{
|
|
pPath->newStroke=FALSE;
|
|
pt.x = dc->CursPosX;
|
|
pt.y = dc->CursPosY;
|
|
if(!LPtoDP(dc->hSelf, &pt, 1))
|
|
return FALSE;
|
|
if(!PATH_AddEntry(pPath, &pt, PT_MOVETO))
|
|
return FALSE;
|
|
}
|
|
|
|
for(i = 0; i < cbPoints; i++) {
|
|
pt = pts[i];
|
|
if(!LPtoDP(dc->hSelf, &pt, 1))
|
|
return FALSE;
|
|
PATH_AddEntry(pPath, &pt, PT_BEZIERTO);
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL PATH_PolyBezier(DC *dc, const POINT *pts, DWORD cbPoints)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT pt;
|
|
UINT i;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
for(i = 0; i < cbPoints; i++) {
|
|
pt = pts[i];
|
|
if(!LPtoDP(dc->hSelf, &pt, 1))
|
|
return FALSE;
|
|
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_BEZIERTO);
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL PATH_Polyline(DC *dc, const POINT *pts, DWORD cbPoints)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT pt;
|
|
UINT i;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
for(i = 0; i < cbPoints; i++) {
|
|
pt = pts[i];
|
|
if(!LPtoDP(dc->hSelf, &pt, 1))
|
|
return FALSE;
|
|
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO : PT_LINETO);
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL PATH_PolylineTo(DC *dc, const POINT *pts, DWORD cbPoints)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT pt;
|
|
UINT i;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
/* Add a PT_MOVETO if necessary */
|
|
if(pPath->newStroke)
|
|
{
|
|
pPath->newStroke=FALSE;
|
|
pt.x = dc->CursPosX;
|
|
pt.y = dc->CursPosY;
|
|
if(!LPtoDP(dc->hSelf, &pt, 1))
|
|
return FALSE;
|
|
if(!PATH_AddEntry(pPath, &pt, PT_MOVETO))
|
|
return FALSE;
|
|
}
|
|
|
|
for(i = 0; i < cbPoints; i++) {
|
|
pt = pts[i];
|
|
if(!LPtoDP(dc->hSelf, &pt, 1))
|
|
return FALSE;
|
|
PATH_AddEntry(pPath, &pt, PT_LINETO);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
BOOL PATH_Polygon(DC *dc, const POINT *pts, DWORD cbPoints)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT pt;
|
|
UINT i;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
for(i = 0; i < cbPoints; i++) {
|
|
pt = pts[i];
|
|
if(!LPtoDP(dc->hSelf, &pt, 1))
|
|
return FALSE;
|
|
PATH_AddEntry(pPath, &pt, (i == 0) ? PT_MOVETO :
|
|
((i == cbPoints-1) ? PT_LINETO | PT_CLOSEFIGURE :
|
|
PT_LINETO));
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL PATH_PolyPolygon( DC *dc, const POINT* pts, const INT* counts,
|
|
UINT polygons )
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT pt, startpt;
|
|
UINT poly, i;
|
|
INT point;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
for(i = 0, poly = 0; poly < polygons; poly++) {
|
|
for(point = 0; point < counts[poly]; point++, i++) {
|
|
pt = pts[i];
|
|
if(!LPtoDP(dc->hSelf, &pt, 1))
|
|
return FALSE;
|
|
if(point == 0) startpt = pt;
|
|
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
|
|
}
|
|
/* win98 adds an extra line to close the figure for some reason */
|
|
PATH_AddEntry(pPath, &startpt, PT_LINETO | PT_CLOSEFIGURE);
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
BOOL PATH_PolyPolyline( DC *dc, const POINT* pts, const DWORD* counts,
|
|
DWORD polylines )
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
POINT pt;
|
|
UINT poly, point, i;
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
for(i = 0, poly = 0; poly < polylines; poly++) {
|
|
for(point = 0; point < counts[poly]; point++, i++) {
|
|
pt = pts[i];
|
|
if(!LPtoDP(dc->hSelf, &pt, 1))
|
|
return FALSE;
|
|
PATH_AddEntry(pPath, &pt, (point == 0) ? PT_MOVETO : PT_LINETO);
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/***********************************************************************
|
|
* Internal functions
|
|
*/
|
|
|
|
/* PATH_CheckCorners
|
|
*
|
|
* Helper function for PATH_RoundRect() and PATH_Rectangle()
|
|
*/
|
|
static BOOL PATH_CheckCorners(DC *dc, POINT corners[], INT x1, INT y1, INT x2, INT y2)
|
|
{
|
|
INT temp;
|
|
|
|
/* Convert points to device coordinates */
|
|
corners[0].x=x1;
|
|
corners[0].y=y1;
|
|
corners[1].x=x2;
|
|
corners[1].y=y2;
|
|
if(!LPtoDP(dc->hSelf, corners, 2))
|
|
return FALSE;
|
|
|
|
/* Make sure first corner is top left and second corner is bottom right */
|
|
if(corners[0].x>corners[1].x)
|
|
{
|
|
temp=corners[0].x;
|
|
corners[0].x=corners[1].x;
|
|
corners[1].x=temp;
|
|
}
|
|
if(corners[0].y>corners[1].y)
|
|
{
|
|
temp=corners[0].y;
|
|
corners[0].y=corners[1].y;
|
|
corners[1].y=temp;
|
|
}
|
|
|
|
/* In GM_COMPATIBLE, don't include bottom and right edges */
|
|
if(dc->GraphicsMode==GM_COMPATIBLE)
|
|
{
|
|
corners[1].x--;
|
|
corners[1].y--;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_AddFlatBezier
|
|
*/
|
|
static BOOL PATH_AddFlatBezier(GdiPath *pPath, POINT *pt, BOOL closed)
|
|
{
|
|
POINT *pts;
|
|
INT no, i;
|
|
|
|
pts = GDI_Bezier( pt, 4, &no );
|
|
if(!pts) return FALSE;
|
|
|
|
for(i = 1; i < no; i++)
|
|
PATH_AddEntry(pPath, &pts[i],
|
|
(i == no-1 && closed) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO);
|
|
HeapFree( GetProcessHeap(), 0, pts );
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_FlattenPath
|
|
*
|
|
* Replaces Beziers with line segments
|
|
*
|
|
*/
|
|
static BOOL PATH_FlattenPath(GdiPath *pPath)
|
|
{
|
|
GdiPath newPath;
|
|
INT srcpt;
|
|
|
|
memset(&newPath, 0, sizeof(newPath));
|
|
newPath.state = PATH_Open;
|
|
for(srcpt = 0; srcpt < pPath->numEntriesUsed; srcpt++) {
|
|
switch(pPath->pFlags[srcpt] & ~PT_CLOSEFIGURE) {
|
|
case PT_MOVETO:
|
|
case PT_LINETO:
|
|
PATH_AddEntry(&newPath, &pPath->pPoints[srcpt],
|
|
pPath->pFlags[srcpt]);
|
|
break;
|
|
case PT_BEZIERTO:
|
|
PATH_AddFlatBezier(&newPath, &pPath->pPoints[srcpt-1],
|
|
pPath->pFlags[srcpt+2] & PT_CLOSEFIGURE);
|
|
srcpt += 2;
|
|
break;
|
|
}
|
|
}
|
|
newPath.state = PATH_Closed;
|
|
PATH_AssignGdiPath(pPath, &newPath);
|
|
PATH_DestroyGdiPath(&newPath);
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_PathToRegion
|
|
*
|
|
* Creates a region from the specified path using the specified polygon
|
|
* filling mode. The path is left unchanged. A handle to the region that
|
|
* was created is stored in *pHrgn. If successful, TRUE is returned; if an
|
|
* error occurs, SetLastError is called with the appropriate value and
|
|
* FALSE is returned.
|
|
*/
|
|
static BOOL PATH_PathToRegion(GdiPath *pPath, INT nPolyFillMode,
|
|
HRGN *pHrgn)
|
|
{
|
|
int numStrokes, iStroke, i;
|
|
INT *pNumPointsInStroke;
|
|
HRGN hrgn;
|
|
|
|
assert(pPath!=NULL);
|
|
assert(pHrgn!=NULL);
|
|
|
|
PATH_FlattenPath(pPath);
|
|
|
|
/* FIXME: What happens when number of points is zero? */
|
|
|
|
/* First pass: Find out how many strokes there are in the path */
|
|
/* FIXME: We could eliminate this with some bookkeeping in GdiPath */
|
|
numStrokes=0;
|
|
for(i=0; i<pPath->numEntriesUsed; i++)
|
|
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
|
|
numStrokes++;
|
|
|
|
/* Allocate memory for number-of-points-in-stroke array */
|
|
pNumPointsInStroke=HeapAlloc( GetProcessHeap(), 0, sizeof(int) * numStrokes );
|
|
if(!pNumPointsInStroke)
|
|
{
|
|
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Second pass: remember number of points in each polygon */
|
|
iStroke=-1; /* Will get incremented to 0 at beginning of first stroke */
|
|
for(i=0; i<pPath->numEntriesUsed; i++)
|
|
{
|
|
/* Is this the beginning of a new stroke? */
|
|
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
|
|
{
|
|
iStroke++;
|
|
pNumPointsInStroke[iStroke]=0;
|
|
}
|
|
|
|
pNumPointsInStroke[iStroke]++;
|
|
}
|
|
|
|
/* Create a region from the strokes */
|
|
hrgn=CreatePolyPolygonRgn(pPath->pPoints, pNumPointsInStroke,
|
|
numStrokes, nPolyFillMode);
|
|
|
|
/* Free memory for number-of-points-in-stroke array */
|
|
HeapFree( GetProcessHeap(), 0, pNumPointsInStroke );
|
|
|
|
if(hrgn==NULL)
|
|
{
|
|
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
|
|
return FALSE;
|
|
}
|
|
|
|
/* Success! */
|
|
*pHrgn=hrgn;
|
|
return TRUE;
|
|
}
|
|
|
|
static inline INT int_from_fixed(FIXED f)
|
|
{
|
|
return (f.fract >= 0x8000) ? (f.value + 1) : f.value;
|
|
}
|
|
|
|
/**********************************************************************
|
|
* PATH_BezierTo
|
|
*
|
|
* internally used by PATH_add_outline
|
|
*/
|
|
static void PATH_BezierTo(GdiPath *pPath, POINT *lppt, INT n)
|
|
{
|
|
if (n < 2) return;
|
|
|
|
if (n == 2)
|
|
{
|
|
PATH_AddEntry(pPath, &lppt[1], PT_LINETO);
|
|
}
|
|
else if (n == 3)
|
|
{
|
|
PATH_AddEntry(pPath, &lppt[0], PT_BEZIERTO);
|
|
PATH_AddEntry(pPath, &lppt[1], PT_BEZIERTO);
|
|
PATH_AddEntry(pPath, &lppt[2], PT_BEZIERTO);
|
|
}
|
|
else
|
|
{
|
|
POINT pt[3];
|
|
INT i = 0;
|
|
|
|
pt[2] = lppt[0];
|
|
n--;
|
|
|
|
while (n > 2)
|
|
{
|
|
pt[0] = pt[2];
|
|
pt[1] = lppt[i+1];
|
|
pt[2].x = (lppt[i+2].x + lppt[i+1].x) / 2;
|
|
pt[2].y = (lppt[i+2].y + lppt[i+1].y) / 2;
|
|
PATH_BezierTo(pPath, pt, 3);
|
|
n--;
|
|
i++;
|
|
}
|
|
|
|
pt[0] = pt[2];
|
|
pt[1] = lppt[i+1];
|
|
pt[2] = lppt[i+2];
|
|
PATH_BezierTo(pPath, pt, 3);
|
|
}
|
|
}
|
|
|
|
static BOOL PATH_add_outline(DC *dc, INT x, INT y, TTPOLYGONHEADER *header, DWORD size)
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
TTPOLYGONHEADER *start;
|
|
POINT pt;
|
|
|
|
start = header;
|
|
|
|
while ((char *)header < (char *)start + size)
|
|
{
|
|
TTPOLYCURVE *curve;
|
|
|
|
if (header->dwType != TT_POLYGON_TYPE)
|
|
{
|
|
FIXME("Unknown header type %d\n", header->dwType);
|
|
return FALSE;
|
|
}
|
|
|
|
pt.x = x + int_from_fixed(header->pfxStart.x);
|
|
pt.y = y - int_from_fixed(header->pfxStart.y);
|
|
LPtoDP(dc->hSelf, &pt, 1);
|
|
PATH_AddEntry(pPath, &pt, PT_MOVETO);
|
|
|
|
curve = (TTPOLYCURVE *)(header + 1);
|
|
|
|
while ((char *)curve < (char *)header + header->cb)
|
|
{
|
|
/*TRACE("curve->wType %d\n", curve->wType);*/
|
|
|
|
switch(curve->wType)
|
|
{
|
|
case TT_PRIM_LINE:
|
|
{
|
|
WORD i;
|
|
|
|
for (i = 0; i < curve->cpfx; i++)
|
|
{
|
|
pt.x = x + int_from_fixed(curve->apfx[i].x);
|
|
pt.y = y - int_from_fixed(curve->apfx[i].y);
|
|
LPtoDP(dc->hSelf, &pt, 1);
|
|
PATH_AddEntry(pPath, &pt, PT_LINETO);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TT_PRIM_QSPLINE:
|
|
case TT_PRIM_CSPLINE:
|
|
{
|
|
WORD i;
|
|
POINTFX ptfx;
|
|
POINT *pts = HeapAlloc(GetProcessHeap(), 0, (curve->cpfx + 1) * sizeof(POINT));
|
|
|
|
if (!pts) return FALSE;
|
|
|
|
ptfx = *(POINTFX *)((char *)curve - sizeof(POINTFX));
|
|
|
|
pts[0].x = x + int_from_fixed(ptfx.x);
|
|
pts[0].y = y - int_from_fixed(ptfx.y);
|
|
LPtoDP(dc->hSelf, &pts[0], 1);
|
|
|
|
for(i = 0; i < curve->cpfx; i++)
|
|
{
|
|
pts[i + 1].x = x + int_from_fixed(curve->apfx[i].x);
|
|
pts[i + 1].y = y - int_from_fixed(curve->apfx[i].y);
|
|
LPtoDP(dc->hSelf, &pts[i + 1], 1);
|
|
}
|
|
|
|
PATH_BezierTo(pPath, pts, curve->cpfx + 1);
|
|
|
|
HeapFree(GetProcessHeap(), 0, pts);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
FIXME("Unknown curve type %04x\n", curve->wType);
|
|
return FALSE;
|
|
}
|
|
|
|
curve = (TTPOLYCURVE *)&curve->apfx[curve->cpfx];
|
|
}
|
|
|
|
header = (TTPOLYGONHEADER *)((char *)header + header->cb);
|
|
}
|
|
|
|
return CloseFigure(dc->hSelf);
|
|
}
|
|
|
|
/**********************************************************************
|
|
* PATH_ExtTextOut
|
|
*/
|
|
BOOL PATH_ExtTextOut(DC *dc, INT x, INT y, UINT flags, const RECT *lprc,
|
|
LPCWSTR str, UINT count, const INT *dx)
|
|
{
|
|
unsigned int idx;
|
|
double cosEsc, sinEsc;
|
|
LOGFONTW lf;
|
|
POINT org;
|
|
HDC hdc = dc->hSelf;
|
|
INT offset = 0, xoff = 0, yoff = 0;
|
|
|
|
TRACE("%p, %d, %d, %08x, %s, %s, %d, %p)\n", hdc, x, y, flags,
|
|
wine_dbgstr_rect(lprc), debugstr_wn(str, count), count, dx);
|
|
|
|
if (!count) return TRUE;
|
|
|
|
GetObjectW(GetCurrentObject(hdc, OBJ_FONT), sizeof(lf), &lf);
|
|
|
|
if (lf.lfEscapement != 0)
|
|
{
|
|
cosEsc = cos(lf.lfEscapement * M_PI / 1800);
|
|
sinEsc = sin(lf.lfEscapement * M_PI / 1800);
|
|
} else
|
|
{
|
|
cosEsc = 1;
|
|
sinEsc = 0;
|
|
}
|
|
|
|
GetDCOrgEx(hdc, &org);
|
|
|
|
for (idx = 0; idx < count; idx++)
|
|
{
|
|
GLYPHMETRICS gm;
|
|
DWORD dwSize;
|
|
void *outline;
|
|
|
|
dwSize = GetGlyphOutlineW(hdc, str[idx], GGO_GLYPH_INDEX | GGO_NATIVE, &gm, 0, NULL, NULL);
|
|
if (!dwSize) return FALSE;
|
|
|
|
outline = HeapAlloc(GetProcessHeap(), 0, dwSize);
|
|
if (!outline) return FALSE;
|
|
|
|
GetGlyphOutlineW(hdc, str[idx], GGO_GLYPH_INDEX | GGO_NATIVE, &gm, dwSize, outline, NULL);
|
|
|
|
PATH_add_outline(dc, org.x + x + xoff, org.x + y + yoff, outline, dwSize);
|
|
|
|
HeapFree(GetProcessHeap(), 0, outline);
|
|
|
|
if (dx)
|
|
{
|
|
offset += dx[idx];
|
|
xoff = offset * cosEsc;
|
|
yoff = offset * -sinEsc;
|
|
}
|
|
else
|
|
{
|
|
xoff += gm.gmCellIncX;
|
|
yoff += gm.gmCellIncY;
|
|
}
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_EmptyPath
|
|
*
|
|
* Removes all entries from the path and sets the path state to PATH_Null.
|
|
*/
|
|
static void PATH_EmptyPath(GdiPath *pPath)
|
|
{
|
|
assert(pPath!=NULL);
|
|
|
|
pPath->state=PATH_Null;
|
|
pPath->numEntriesUsed=0;
|
|
}
|
|
|
|
/* PATH_AddEntry
|
|
*
|
|
* Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO
|
|
* or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if
|
|
* successful, FALSE otherwise (e.g. if not enough memory was available).
|
|
*/
|
|
BOOL PATH_AddEntry(GdiPath *pPath, const POINT *pPoint, BYTE flags)
|
|
{
|
|
assert(pPath!=NULL);
|
|
|
|
/* FIXME: If newStroke is true, perhaps we want to check that we're
|
|
* getting a PT_MOVETO
|
|
*/
|
|
TRACE("(%d,%d) - %d\n", pPoint->x, pPoint->y, flags);
|
|
|
|
/* Check that path is open */
|
|
if(pPath->state!=PATH_Open)
|
|
return FALSE;
|
|
|
|
/* Reserve enough memory for an extra path entry */
|
|
if(!PATH_ReserveEntries(pPath, pPath->numEntriesUsed+1))
|
|
return FALSE;
|
|
|
|
/* Store information in path entry */
|
|
pPath->pPoints[pPath->numEntriesUsed]=*pPoint;
|
|
pPath->pFlags[pPath->numEntriesUsed]=flags;
|
|
|
|
/* If this is PT_CLOSEFIGURE, we have to start a new stroke next time */
|
|
if((flags & PT_CLOSEFIGURE) == PT_CLOSEFIGURE)
|
|
pPath->newStroke=TRUE;
|
|
|
|
/* Increment entry count */
|
|
pPath->numEntriesUsed++;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_ReserveEntries
|
|
*
|
|
* Ensures that at least "numEntries" entries (for points and flags) have
|
|
* been allocated; allocates larger arrays and copies the existing entries
|
|
* to those arrays, if necessary. Returns TRUE if successful, else FALSE.
|
|
*/
|
|
static BOOL PATH_ReserveEntries(GdiPath *pPath, INT numEntries)
|
|
{
|
|
INT numEntriesToAllocate;
|
|
POINT *pPointsNew;
|
|
BYTE *pFlagsNew;
|
|
|
|
assert(pPath!=NULL);
|
|
assert(numEntries>=0);
|
|
|
|
/* Do we have to allocate more memory? */
|
|
if(numEntries > pPath->numEntriesAllocated)
|
|
{
|
|
/* Find number of entries to allocate. We let the size of the array
|
|
* grow exponentially, since that will guarantee linear time
|
|
* complexity. */
|
|
if(pPath->numEntriesAllocated)
|
|
{
|
|
numEntriesToAllocate=pPath->numEntriesAllocated;
|
|
while(numEntriesToAllocate<numEntries)
|
|
numEntriesToAllocate=numEntriesToAllocate*GROW_FACTOR_NUMER/
|
|
GROW_FACTOR_DENOM;
|
|
}
|
|
else
|
|
numEntriesToAllocate=numEntries;
|
|
|
|
/* Allocate new arrays */
|
|
pPointsNew=HeapAlloc( GetProcessHeap(), 0, numEntriesToAllocate * sizeof(POINT) );
|
|
if(!pPointsNew)
|
|
return FALSE;
|
|
pFlagsNew=HeapAlloc( GetProcessHeap(), 0, numEntriesToAllocate * sizeof(BYTE) );
|
|
if(!pFlagsNew)
|
|
{
|
|
HeapFree( GetProcessHeap(), 0, pPointsNew );
|
|
return FALSE;
|
|
}
|
|
|
|
/* Copy old arrays to new arrays and discard old arrays */
|
|
if(pPath->pPoints)
|
|
{
|
|
assert(pPath->pFlags);
|
|
|
|
memcpy(pPointsNew, pPath->pPoints,
|
|
sizeof(POINT)*pPath->numEntriesUsed);
|
|
memcpy(pFlagsNew, pPath->pFlags,
|
|
sizeof(BYTE)*pPath->numEntriesUsed);
|
|
|
|
HeapFree( GetProcessHeap(), 0, pPath->pPoints );
|
|
HeapFree( GetProcessHeap(), 0, pPath->pFlags );
|
|
}
|
|
pPath->pPoints=pPointsNew;
|
|
pPath->pFlags=pFlagsNew;
|
|
pPath->numEntriesAllocated=numEntriesToAllocate;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_DoArcPart
|
|
*
|
|
* Creates a Bezier spline that corresponds to part of an arc and appends the
|
|
* corresponding points to the path. The start and end angles are passed in
|
|
* "angleStart" and "angleEnd"; these angles should span a quarter circle
|
|
* at most. If "startEntryType" is non-zero, an entry of that type for the first
|
|
* control point is added to the path; otherwise, it is assumed that the current
|
|
* position is equal to the first control point.
|
|
*/
|
|
static BOOL PATH_DoArcPart(GdiPath *pPath, FLOAT_POINT corners[],
|
|
double angleStart, double angleEnd, BYTE startEntryType)
|
|
{
|
|
double halfAngle, a;
|
|
double xNorm[4], yNorm[4];
|
|
POINT point;
|
|
int i;
|
|
|
|
assert(fabs(angleEnd-angleStart)<=M_PI_2);
|
|
|
|
/* FIXME: Is there an easier way of computing this? */
|
|
|
|
/* Compute control points */
|
|
halfAngle=(angleEnd-angleStart)/2.0;
|
|
if(fabs(halfAngle)>1e-8)
|
|
{
|
|
a=4.0/3.0*(1-cos(halfAngle))/sin(halfAngle);
|
|
xNorm[0]=cos(angleStart);
|
|
yNorm[0]=sin(angleStart);
|
|
xNorm[1]=xNorm[0] - a*yNorm[0];
|
|
yNorm[1]=yNorm[0] + a*xNorm[0];
|
|
xNorm[3]=cos(angleEnd);
|
|
yNorm[3]=sin(angleEnd);
|
|
xNorm[2]=xNorm[3] + a*yNorm[3];
|
|
yNorm[2]=yNorm[3] - a*xNorm[3];
|
|
}
|
|
else
|
|
for(i=0; i<4; i++)
|
|
{
|
|
xNorm[i]=cos(angleStart);
|
|
yNorm[i]=sin(angleStart);
|
|
}
|
|
|
|
/* Add starting point to path if desired */
|
|
if(startEntryType)
|
|
{
|
|
PATH_ScaleNormalizedPoint(corners, xNorm[0], yNorm[0], &point);
|
|
if(!PATH_AddEntry(pPath, &point, startEntryType))
|
|
return FALSE;
|
|
}
|
|
|
|
/* Add remaining control points */
|
|
for(i=1; i<4; i++)
|
|
{
|
|
PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &point);
|
|
if(!PATH_AddEntry(pPath, &point, PT_BEZIERTO))
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* PATH_ScaleNormalizedPoint
|
|
*
|
|
* Scales a normalized point (x, y) with respect to the box whose corners are
|
|
* passed in "corners". The point is stored in "*pPoint". The normalized
|
|
* coordinates (-1.0, -1.0) correspond to corners[0], the coordinates
|
|
* (1.0, 1.0) correspond to corners[1].
|
|
*/
|
|
static void PATH_ScaleNormalizedPoint(FLOAT_POINT corners[], double x,
|
|
double y, POINT *pPoint)
|
|
{
|
|
pPoint->x=GDI_ROUND( (double)corners[0].x +
|
|
(double)(corners[1].x-corners[0].x)*0.5*(x+1.0) );
|
|
pPoint->y=GDI_ROUND( (double)corners[0].y +
|
|
(double)(corners[1].y-corners[0].y)*0.5*(y+1.0) );
|
|
}
|
|
|
|
/* PATH_NormalizePoint
|
|
*
|
|
* Normalizes a point with respect to the box whose corners are passed in
|
|
* "corners". The normalized coordinates are stored in "*pX" and "*pY".
|
|
*/
|
|
static void PATH_NormalizePoint(FLOAT_POINT corners[],
|
|
const FLOAT_POINT *pPoint,
|
|
double *pX, double *pY)
|
|
{
|
|
*pX=(double)(pPoint->x-corners[0].x)/(double)(corners[1].x-corners[0].x) *
|
|
2.0 - 1.0;
|
|
*pY=(double)(pPoint->y-corners[0].y)/(double)(corners[1].y-corners[0].y) *
|
|
2.0 - 1.0;
|
|
}
|
|
|
|
|
|
/*******************************************************************
|
|
* FlattenPath [GDI32.@]
|
|
*
|
|
*
|
|
*/
|
|
BOOL WINAPI FlattenPath(HDC hdc)
|
|
{
|
|
BOOL ret = FALSE;
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pFlattenPath) ret = dc->funcs->pFlattenPath(dc->physDev);
|
|
else
|
|
{
|
|
GdiPath *pPath = &dc->path;
|
|
if(pPath->state != PATH_Closed)
|
|
ret = PATH_FlattenPath(pPath);
|
|
}
|
|
GDI_ReleaseObj( hdc );
|
|
return ret;
|
|
}
|
|
|
|
|
|
static BOOL PATH_StrokePath(DC *dc, GdiPath *pPath)
|
|
{
|
|
INT i, nLinePts, nAlloc;
|
|
POINT *pLinePts;
|
|
POINT ptViewportOrg, ptWindowOrg;
|
|
SIZE szViewportExt, szWindowExt;
|
|
DWORD mapMode, graphicsMode;
|
|
XFORM xform;
|
|
BOOL ret = TRUE;
|
|
|
|
if(dc->funcs->pStrokePath)
|
|
return dc->funcs->pStrokePath(dc->physDev);
|
|
|
|
if(pPath->state != PATH_Closed)
|
|
return FALSE;
|
|
|
|
/* Save the mapping mode info */
|
|
mapMode=GetMapMode(dc->hSelf);
|
|
GetViewportExtEx(dc->hSelf, &szViewportExt);
|
|
GetViewportOrgEx(dc->hSelf, &ptViewportOrg);
|
|
GetWindowExtEx(dc->hSelf, &szWindowExt);
|
|
GetWindowOrgEx(dc->hSelf, &ptWindowOrg);
|
|
GetWorldTransform(dc->hSelf, &xform);
|
|
|
|
/* Set MM_TEXT */
|
|
SetMapMode(dc->hSelf, MM_TEXT);
|
|
SetViewportOrgEx(dc->hSelf, 0, 0, NULL);
|
|
SetWindowOrgEx(dc->hSelf, 0, 0, NULL);
|
|
graphicsMode=GetGraphicsMode(dc->hSelf);
|
|
SetGraphicsMode(dc->hSelf, GM_ADVANCED);
|
|
ModifyWorldTransform(dc->hSelf, &xform, MWT_IDENTITY);
|
|
SetGraphicsMode(dc->hSelf, graphicsMode);
|
|
|
|
/* Allocate enough memory for the worst case without beziers (one PT_MOVETO
|
|
* and the rest PT_LINETO with PT_CLOSEFIGURE at the end) plus some buffer
|
|
* space in case we get one to keep the number of reallocations small. */
|
|
nAlloc = pPath->numEntriesUsed + 1 + 300;
|
|
pLinePts = HeapAlloc(GetProcessHeap(), 0, nAlloc * sizeof(POINT));
|
|
nLinePts = 0;
|
|
|
|
for(i = 0; i < pPath->numEntriesUsed; i++) {
|
|
if((i == 0 || (pPath->pFlags[i-1] & PT_CLOSEFIGURE)) &&
|
|
(pPath->pFlags[i] != PT_MOVETO)) {
|
|
ERR("Expected PT_MOVETO %s, got path flag %d\n",
|
|
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
|
|
(INT)pPath->pFlags[i]);
|
|
ret = FALSE;
|
|
goto end;
|
|
}
|
|
switch(pPath->pFlags[i]) {
|
|
case PT_MOVETO:
|
|
TRACE("Got PT_MOVETO (%d, %d)\n",
|
|
pPath->pPoints[i].x, pPath->pPoints[i].y);
|
|
if(nLinePts >= 2)
|
|
Polyline(dc->hSelf, pLinePts, nLinePts);
|
|
nLinePts = 0;
|
|
pLinePts[nLinePts++] = pPath->pPoints[i];
|
|
break;
|
|
case PT_LINETO:
|
|
case (PT_LINETO | PT_CLOSEFIGURE):
|
|
TRACE("Got PT_LINETO (%d, %d)\n",
|
|
pPath->pPoints[i].x, pPath->pPoints[i].y);
|
|
pLinePts[nLinePts++] = pPath->pPoints[i];
|
|
break;
|
|
case PT_BEZIERTO:
|
|
TRACE("Got PT_BEZIERTO\n");
|
|
if(pPath->pFlags[i+1] != PT_BEZIERTO ||
|
|
(pPath->pFlags[i+2] & ~PT_CLOSEFIGURE) != PT_BEZIERTO) {
|
|
ERR("Path didn't contain 3 successive PT_BEZIERTOs\n");
|
|
ret = FALSE;
|
|
goto end;
|
|
} else {
|
|
INT nBzrPts, nMinAlloc;
|
|
POINT *pBzrPts = GDI_Bezier(&pPath->pPoints[i-1], 4, &nBzrPts);
|
|
/* Make sure we have allocated enough memory for the lines of
|
|
* this bezier and the rest of the path, assuming we won't get
|
|
* another one (since we won't reallocate again then). */
|
|
nMinAlloc = nLinePts + (pPath->numEntriesUsed - i) + nBzrPts;
|
|
if(nAlloc < nMinAlloc)
|
|
{
|
|
nAlloc = nMinAlloc * 2;
|
|
pLinePts = HeapReAlloc(GetProcessHeap(), 0, pLinePts,
|
|
nAlloc * sizeof(POINT));
|
|
}
|
|
memcpy(&pLinePts[nLinePts], &pBzrPts[1],
|
|
(nBzrPts - 1) * sizeof(POINT));
|
|
nLinePts += nBzrPts - 1;
|
|
HeapFree(GetProcessHeap(), 0, pBzrPts);
|
|
i += 2;
|
|
}
|
|
break;
|
|
default:
|
|
ERR("Got path flag %d\n", (INT)pPath->pFlags[i]);
|
|
ret = FALSE;
|
|
goto end;
|
|
}
|
|
if(pPath->pFlags[i] & PT_CLOSEFIGURE)
|
|
pLinePts[nLinePts++] = pLinePts[0];
|
|
}
|
|
if(nLinePts >= 2)
|
|
Polyline(dc->hSelf, pLinePts, nLinePts);
|
|
|
|
end:
|
|
HeapFree(GetProcessHeap(), 0, pLinePts);
|
|
|
|
/* Restore the old mapping mode */
|
|
SetMapMode(dc->hSelf, mapMode);
|
|
SetWindowExtEx(dc->hSelf, szWindowExt.cx, szWindowExt.cy, NULL);
|
|
SetWindowOrgEx(dc->hSelf, ptWindowOrg.x, ptWindowOrg.y, NULL);
|
|
SetViewportExtEx(dc->hSelf, szViewportExt.cx, szViewportExt.cy, NULL);
|
|
SetViewportOrgEx(dc->hSelf, ptViewportOrg.x, ptViewportOrg.y, NULL);
|
|
|
|
/* Go to GM_ADVANCED temporarily to restore the world transform */
|
|
graphicsMode=GetGraphicsMode(dc->hSelf);
|
|
SetGraphicsMode(dc->hSelf, GM_ADVANCED);
|
|
SetWorldTransform(dc->hSelf, &xform);
|
|
SetGraphicsMode(dc->hSelf, graphicsMode);
|
|
|
|
/* If we've moved the current point then get its new position
|
|
which will be in device (MM_TEXT) co-ords, convert it to
|
|
logical co-ords and re-set it. This basically updates
|
|
dc->CurPosX|Y so that their values are in the correct mapping
|
|
mode.
|
|
*/
|
|
if(i > 0) {
|
|
POINT pt;
|
|
GetCurrentPositionEx(dc->hSelf, &pt);
|
|
DPtoLP(dc->hSelf, &pt, 1);
|
|
MoveToEx(dc->hSelf, pt.x, pt.y, NULL);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define round(x) ((int)((x)>0?(x)+0.5:(x)-0.5))
|
|
|
|
static BOOL PATH_WidenPath(DC *dc)
|
|
{
|
|
INT i, j, numStrokes, nLinePts, penWidth, penWidthIn, penWidthOut, size, penStyle;
|
|
BOOL ret = FALSE;
|
|
GdiPath *pPath, *pNewPath, **pStrokes, *pUpPath, *pDownPath;
|
|
EXTLOGPEN *elp;
|
|
DWORD obj_type, joint, endcap, penType;
|
|
|
|
pPath = &dc->path;
|
|
|
|
if(pPath->state == PATH_Open) {
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
return FALSE;
|
|
}
|
|
|
|
PATH_FlattenPath(pPath);
|
|
|
|
size = GetObjectW( dc->hPen, 0, NULL );
|
|
if (!size) {
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
return FALSE;
|
|
}
|
|
|
|
elp = HeapAlloc( GetProcessHeap(), 0, size );
|
|
GetObjectW( dc->hPen, size, elp );
|
|
|
|
obj_type = GetObjectType(dc->hPen);
|
|
if(obj_type == OBJ_PEN) {
|
|
penStyle = ((LOGPEN*)elp)->lopnStyle;
|
|
}
|
|
else if(obj_type == OBJ_EXTPEN) {
|
|
penStyle = elp->elpPenStyle;
|
|
}
|
|
else {
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
HeapFree( GetProcessHeap(), 0, elp );
|
|
return FALSE;
|
|
}
|
|
|
|
penWidth = elp->elpWidth;
|
|
HeapFree( GetProcessHeap(), 0, elp );
|
|
|
|
endcap = (PS_ENDCAP_MASK & penStyle);
|
|
joint = (PS_JOIN_MASK & penStyle);
|
|
penType = (PS_TYPE_MASK & penStyle);
|
|
|
|
/* The function cannot apply to cosmetic pens */
|
|
if(obj_type == OBJ_EXTPEN && penType == PS_COSMETIC) {
|
|
SetLastError(ERROR_CAN_NOT_COMPLETE);
|
|
return FALSE;
|
|
}
|
|
|
|
/* pen width must be strictly higher than 1 */
|
|
if(penWidth == 1) {
|
|
return TRUE;
|
|
}
|
|
|
|
penWidthIn = penWidth / 2;
|
|
penWidthOut = penWidth / 2;
|
|
if(penWidthIn + penWidthOut < penWidth)
|
|
penWidthOut++;
|
|
|
|
numStrokes = 0;
|
|
nLinePts = 0;
|
|
|
|
pStrokes = HeapAlloc(GetProcessHeap(), 0, numStrokes * sizeof(GdiPath*));
|
|
pStrokes[0] = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath));
|
|
PATH_InitGdiPath(pStrokes[0]);
|
|
pStrokes[0]->pFlags = HeapAlloc(GetProcessHeap(), 0, pPath->numEntriesUsed * sizeof(INT));
|
|
pStrokes[0]->pPoints = HeapAlloc(GetProcessHeap(), 0, pPath->numEntriesUsed * sizeof(POINT));
|
|
pStrokes[0]->numEntriesUsed = 0;
|
|
|
|
for(i = 0, j = 0; i < pPath->numEntriesUsed; i++, j++) {
|
|
POINT point;
|
|
if((i == 0 || (pPath->pFlags[i-1] & PT_CLOSEFIGURE)) &&
|
|
(pPath->pFlags[i] != PT_MOVETO)) {
|
|
ERR("Expected PT_MOVETO %s, got path flag %c\n",
|
|
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
|
|
pPath->pFlags[i]);
|
|
return FALSE;
|
|
}
|
|
switch(pPath->pFlags[i]) {
|
|
case PT_MOVETO:
|
|
if(numStrokes > 0) {
|
|
pStrokes[numStrokes - 1]->state = PATH_Closed;
|
|
}
|
|
numStrokes++;
|
|
j = 0;
|
|
pStrokes = HeapReAlloc(GetProcessHeap(), 0, pStrokes, numStrokes * sizeof(GdiPath*));
|
|
pStrokes[numStrokes - 1] = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath));
|
|
PATH_InitGdiPath(pStrokes[numStrokes - 1]);
|
|
pStrokes[numStrokes - 1]->state = PATH_Open;
|
|
case PT_LINETO:
|
|
case (PT_LINETO | PT_CLOSEFIGURE):
|
|
point.x = pPath->pPoints[i].x;
|
|
point.y = pPath->pPoints[i].y;
|
|
PATH_AddEntry(pStrokes[numStrokes - 1], &point, pPath->pFlags[i]);
|
|
break;
|
|
case PT_BEZIERTO:
|
|
/* should never happen because of the FlattenPath call */
|
|
ERR("Should never happen\n");
|
|
break;
|
|
default:
|
|
ERR("Got path flag %c\n", pPath->pFlags[i]);
|
|
return FALSE;
|
|
}
|
|
}
|
|
|
|
pNewPath = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath));
|
|
PATH_InitGdiPath(pNewPath);
|
|
pNewPath->state = PATH_Open;
|
|
|
|
for(i = 0; i < numStrokes; i++) {
|
|
pUpPath = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath));
|
|
PATH_InitGdiPath(pUpPath);
|
|
pUpPath->state = PATH_Open;
|
|
pDownPath = HeapAlloc(GetProcessHeap(), 0, sizeof(GdiPath));
|
|
PATH_InitGdiPath(pDownPath);
|
|
pDownPath->state = PATH_Open;
|
|
|
|
for(j = 0; j < pStrokes[i]->numEntriesUsed; j++) {
|
|
/* Beginning or end of the path if not closed */
|
|
if((!(pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) && (j == 0 || j == pStrokes[i]->numEntriesUsed - 1) ) {
|
|
/* Compute segment angle */
|
|
FLOAT xo, yo, xa, ya;
|
|
POINT pt;
|
|
FLOAT theta, scalarProduct;
|
|
FLOAT_POINT corners[2];
|
|
if(j == 0) {
|
|
xo = pStrokes[i]->pPoints[j].x;
|
|
yo = pStrokes[i]->pPoints[j].y;
|
|
xa = pStrokes[i]->pPoints[1].x;
|
|
ya = pStrokes[i]->pPoints[1].y;
|
|
}
|
|
else {
|
|
xa = pStrokes[i]->pPoints[j - 1].x;
|
|
ya = pStrokes[i]->pPoints[j - 1].y;
|
|
xo = pStrokes[i]->pPoints[j].x;
|
|
yo = pStrokes[i]->pPoints[j].y;
|
|
}
|
|
scalarProduct = (xa - xo) /sqrt(pow((xa - xo), 2) + pow((ya - yo), 2));
|
|
theta = acos(scalarProduct);
|
|
if( (ya - yo) < 0) {
|
|
theta = -theta;
|
|
}
|
|
switch(endcap) {
|
|
case PS_ENDCAP_SQUARE :
|
|
pt.x = xo + round(sqrt(2) * penWidthOut * cos(M_PI_4 + theta));
|
|
pt.y = yo + round(sqrt(2) * penWidthOut * sin(M_PI_4 + theta));
|
|
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO) );
|
|
pt.x = xo + round(sqrt(2) * penWidthIn * cos(- M_PI_4 + theta));
|
|
pt.y = yo + round(sqrt(2) * penWidthIn * sin(- M_PI_4 + theta));
|
|
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
|
|
break;
|
|
case PS_ENDCAP_FLAT :
|
|
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
|
|
PATH_AddEntry(pUpPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
|
|
pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) );
|
|
pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) );
|
|
PATH_AddEntry(pUpPath, &pt, PT_LINETO);
|
|
break;
|
|
case PS_ENDCAP_ROUND :
|
|
default :
|
|
corners[0].x = xo - penWidthIn;
|
|
corners[0].y = yo - penWidthIn;
|
|
corners[1].x = xo + penWidthOut;
|
|
corners[1].y = yo + penWidthOut;
|
|
PATH_DoArcPart(pUpPath ,corners, theta + M_PI_2 , theta + 3 * M_PI_4, (j == 0 ? PT_MOVETO : FALSE));
|
|
PATH_DoArcPart(pUpPath ,corners, theta + 3 * M_PI_4 , theta + M_PI, FALSE);
|
|
PATH_DoArcPart(pUpPath ,corners, theta + M_PI, theta + 5 * M_PI_4, FALSE);
|
|
PATH_DoArcPart(pUpPath ,corners, theta + 5 * M_PI_4 , theta + 3 * M_PI_2, FALSE);
|
|
break;
|
|
}
|
|
}
|
|
/* Corpse of the path */
|
|
else {
|
|
/* Compute angle */
|
|
INT previous, next;
|
|
FLOAT xa, ya, xb, yb, xo, yo;
|
|
FLOAT alpha, theta;
|
|
FLOAT scalarProduct, oa, ob, miterWidth;
|
|
DWORD _joint = joint;
|
|
POINT pt;
|
|
GdiPath *pInsidePath, *pOutsidePath;
|
|
if(j > 0 && j < pStrokes[i]->numEntriesUsed - 1) {
|
|
previous = j - 1;
|
|
next = j + 1;
|
|
}
|
|
else if (j == 0) {
|
|
previous = pStrokes[i]->numEntriesUsed - 1;
|
|
next = j + 1;
|
|
}
|
|
else {
|
|
previous = j - 1;
|
|
next = 0;
|
|
}
|
|
xo = pStrokes[i]->pPoints[j].x;
|
|
yo = pStrokes[i]->pPoints[j].y;
|
|
xa = pStrokes[i]->pPoints[previous].x;
|
|
ya = pStrokes[i]->pPoints[previous].y;
|
|
xb = pStrokes[i]->pPoints[next].x;
|
|
yb = pStrokes[i]->pPoints[next].y;
|
|
oa = sqrt(pow((xa - xo), 2) + pow((ya - yo), 2));
|
|
ob = sqrt(pow((xb - xo), 2) + pow((yb - yo), 2));
|
|
scalarProduct = ((xa - xo) * (xb - xo) + (ya - yo) * (yb - yo))/ (oa * ob);
|
|
alpha = acos(scalarProduct);
|
|
if(( (xa - xo) * (yb - yo) - (ya - yo) * (xb - xo) ) < 0) {
|
|
alpha = -alpha;
|
|
}
|
|
scalarProduct = (xo - xa) / oa;
|
|
theta = acos(scalarProduct);
|
|
if( (yo - ya) < 0) {
|
|
theta = -theta;
|
|
}
|
|
if(_joint == PS_JOIN_MITER && dc->miterLimit < fabs(1 / sin(alpha/2))) {
|
|
_joint = PS_JOIN_BEVEL;
|
|
}
|
|
if(alpha > 0) {
|
|
pInsidePath = pUpPath;
|
|
pOutsidePath = pDownPath;
|
|
}
|
|
else if(alpha < 0) {
|
|
pInsidePath = pDownPath;
|
|
pOutsidePath = pUpPath;
|
|
}
|
|
else {
|
|
continue;
|
|
}
|
|
/* Inside angle points */
|
|
if(alpha > 0) {
|
|
pt.x = xo - round( penWidthIn * cos(theta + M_PI_2) );
|
|
pt.y = yo - round( penWidthIn * sin(theta + M_PI_2) );
|
|
}
|
|
else {
|
|
pt.x = xo + round( penWidthIn * cos(theta + M_PI_2) );
|
|
pt.y = yo + round( penWidthIn * sin(theta + M_PI_2) );
|
|
}
|
|
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
|
|
if(alpha > 0) {
|
|
pt.x = xo + round( penWidthIn * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo + round( penWidthIn * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
else {
|
|
pt.x = xo - round( penWidthIn * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo - round( penWidthIn * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
PATH_AddEntry(pInsidePath, &pt, PT_LINETO);
|
|
/* Outside angle point */
|
|
switch(_joint) {
|
|
case PS_JOIN_MITER :
|
|
miterWidth = fabs(penWidthOut / cos(M_PI_2 - fabs(alpha) / 2));
|
|
pt.x = xo + round( miterWidth * cos(theta + alpha / 2) );
|
|
pt.y = yo + round( miterWidth * sin(theta + alpha / 2) );
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
|
|
break;
|
|
case PS_JOIN_BEVEL :
|
|
if(alpha > 0) {
|
|
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
|
|
}
|
|
else {
|
|
pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) );
|
|
}
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
|
|
if(alpha > 0) {
|
|
pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
else {
|
|
pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_LINETO);
|
|
break;
|
|
case PS_JOIN_ROUND :
|
|
default :
|
|
if(alpha > 0) {
|
|
pt.x = xo + round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo + round( penWidthOut * sin(theta + M_PI_2) );
|
|
}
|
|
else {
|
|
pt.x = xo - round( penWidthOut * cos(theta + M_PI_2) );
|
|
pt.y = yo - round( penWidthOut * sin(theta + M_PI_2) );
|
|
}
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
|
|
pt.x = xo + round( penWidthOut * cos(theta + alpha / 2) );
|
|
pt.y = yo + round( penWidthOut * sin(theta + alpha / 2) );
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
|
|
if(alpha > 0) {
|
|
pt.x = xo - round( penWidthOut * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo - round( penWidthOut * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
else {
|
|
pt.x = xo + round( penWidthOut * cos(M_PI_2 + alpha + theta) );
|
|
pt.y = yo + round( penWidthOut * sin(M_PI_2 + alpha + theta) );
|
|
}
|
|
PATH_AddEntry(pOutsidePath, &pt, PT_BEZIERTO);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for(j = 0; j < pUpPath->numEntriesUsed; j++) {
|
|
POINT pt;
|
|
pt.x = pUpPath->pPoints[j].x;
|
|
pt.y = pUpPath->pPoints[j].y;
|
|
PATH_AddEntry(pNewPath, &pt, (j == 0 ? PT_MOVETO : PT_LINETO));
|
|
}
|
|
for(j = 0; j < pDownPath->numEntriesUsed; j++) {
|
|
POINT pt;
|
|
pt.x = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].x;
|
|
pt.y = pDownPath->pPoints[pDownPath->numEntriesUsed - j - 1].y;
|
|
PATH_AddEntry(pNewPath, &pt, ( (j == 0 && (pStrokes[i]->pFlags[pStrokes[i]->numEntriesUsed - 1] & PT_CLOSEFIGURE)) ? PT_MOVETO : PT_LINETO));
|
|
}
|
|
|
|
PATH_DestroyGdiPath(pStrokes[i]);
|
|
HeapFree(GetProcessHeap(), 0, pStrokes[i]);
|
|
PATH_DestroyGdiPath(pUpPath);
|
|
HeapFree(GetProcessHeap(), 0, pUpPath);
|
|
PATH_DestroyGdiPath(pDownPath);
|
|
HeapFree(GetProcessHeap(), 0, pDownPath);
|
|
}
|
|
HeapFree(GetProcessHeap(), 0, pStrokes);
|
|
|
|
pNewPath->state = PATH_Closed;
|
|
if (!(ret = PATH_AssignGdiPath(pPath, pNewPath)))
|
|
ERR("Assign path failed\n");
|
|
PATH_DestroyGdiPath(pNewPath);
|
|
HeapFree(GetProcessHeap(), 0, pNewPath);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*******************************************************************
|
|
* StrokeAndFillPath [GDI32.@]
|
|
*
|
|
*
|
|
*/
|
|
BOOL WINAPI StrokeAndFillPath(HDC hdc)
|
|
{
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
BOOL bRet = FALSE;
|
|
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pStrokeAndFillPath)
|
|
bRet = dc->funcs->pStrokeAndFillPath(dc->physDev);
|
|
else
|
|
{
|
|
bRet = PATH_FillPath(dc, &dc->path);
|
|
if(bRet) bRet = PATH_StrokePath(dc, &dc->path);
|
|
if(bRet) PATH_EmptyPath(&dc->path);
|
|
}
|
|
GDI_ReleaseObj( hdc );
|
|
return bRet;
|
|
}
|
|
|
|
|
|
/*******************************************************************
|
|
* StrokePath [GDI32.@]
|
|
*
|
|
*
|
|
*/
|
|
BOOL WINAPI StrokePath(HDC hdc)
|
|
{
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
GdiPath *pPath;
|
|
BOOL bRet = FALSE;
|
|
|
|
TRACE("(%p)\n", hdc);
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pStrokePath)
|
|
bRet = dc->funcs->pStrokePath(dc->physDev);
|
|
else
|
|
{
|
|
pPath = &dc->path;
|
|
bRet = PATH_StrokePath(dc, pPath);
|
|
PATH_EmptyPath(pPath);
|
|
}
|
|
GDI_ReleaseObj( hdc );
|
|
return bRet;
|
|
}
|
|
|
|
|
|
/*******************************************************************
|
|
* WidenPath [GDI32.@]
|
|
*
|
|
*
|
|
*/
|
|
BOOL WINAPI WidenPath(HDC hdc)
|
|
{
|
|
DC *dc = DC_GetDCPtr( hdc );
|
|
BOOL ret = FALSE;
|
|
|
|
if(!dc) return FALSE;
|
|
|
|
if(dc->funcs->pWidenPath)
|
|
ret = dc->funcs->pWidenPath(dc->physDev);
|
|
else
|
|
ret = PATH_WidenPath(dc);
|
|
GDI_ReleaseObj( hdc );
|
|
return ret;
|
|
}
|