ext-cryptopp/rw.cpp

301 lines
7.6 KiB
C++
Raw Normal View History

// rw.cpp - originally written and placed in the public domain by Wei Dai
2015-11-05 06:59:46 +00:00
#include "pch.h"
#include "rw.h"
#include "asn.h"
#include "integer.h"
#include "nbtheory.h"
#include "modarith.h"
#include "asn.h"
2015-11-05 06:59:46 +00:00
#ifndef CRYPTOPP_IMPORTS
#if defined(_OPENMP)
2018-07-14 17:26:49 +00:00
# define CRYPTOPP_RW_USE_OMP 1
#else
2018-07-14 17:26:49 +00:00
# define CRYPTOPP_RW_USE_OMP 0
#endif
2015-11-05 06:59:46 +00:00
NAMESPACE_BEGIN(CryptoPP)
void RWFunction::BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_n.BERDecode(seq);
seq.MessageEnd();
}
void RWFunction::DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
m_n.DEREncode(seq);
seq.MessageEnd();
}
Integer RWFunction::ApplyFunction(const Integer &in) const
{
DoQuickSanityCheck();
Integer out = in.Squared()%m_n;
const word r = 12;
// this code was written to handle both r = 6 and r = 12,
// but now only r = 12 is used in P1363
const word r2 = r/2;
const word r3a = (16 + 5 - r) % 16; // n%16 could be 5 or 13
const word r3b = (16 + 13 - r) % 16;
const word r4 = (8 + 5 - r/2) % 8; // n%8 == 5
switch (out % 16)
{
case r:
break;
case r2:
case r2+8:
out <<= 1;
break;
case r3a:
case r3b:
out.Negate();
out += m_n;
break;
case r4:
case r4+8:
out.Negate();
out += m_n;
out <<= 1;
break;
default:
out = Integer::Zero();
}
return out;
}
bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(level);
bool pass = true;
pass = pass && m_n > Integer::One() && m_n%8 == 5;
2017-01-29 09:58:56 +00:00
CRYPTOPP_ASSERT(pass);
2015-11-05 06:59:46 +00:00
return pass;
}
bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper(this, name, valueType, pValue).Assignable()
CRYPTOPP_GET_FUNCTION_ENTRY(Modulus)
;
}
void RWFunction::AssignFrom(const NameValuePairs &source)
{
AssignFromHelper(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(Modulus)
;
}
// *****************************************************************************
// private key operations:
// generate a random private key
void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg)
{
int modulusSize = 2048;
alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize);
if (modulusSize < 16)
throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small");
AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize);
m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8)));
m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8)));
m_n = m_p * m_q;
m_u = m_q.InverseMod(m_p);
Precompute();
}
void InvertibleRWFunction::Initialize(const Integer &n, const Integer &p, const Integer &q, const Integer &u)
{
m_n = n; m_p = p; m_q = q; m_u = u;
Precompute();
}
void InvertibleRWFunction::PrecomputeTweakedRoots() const
{
ModularArithmetic modp(m_p), modq(m_q);
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP)
{
#pragma omp section
m_pre_2_9p = modp.Exponentiate(2, (9 * m_p - 11)/8);
#pragma omp section
m_pre_2_3q = modq.Exponentiate(2, (3 * m_q - 5)/8);
#pragma omp section
m_pre_q_p = modp.Exponentiate(m_q, m_p - 2);
}
m_precompute = true;
}
void InvertibleRWFunction::LoadPrecomputation(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_pre_2_9p.BERDecode(seq);
m_pre_2_3q.BERDecode(seq);
m_pre_q_p.BERDecode(seq);
seq.MessageEnd();
m_precompute = true;
}
void InvertibleRWFunction::SavePrecomputation(BufferedTransformation &bt) const
{
if(!m_precompute)
Precompute();
DERSequenceEncoder seq(bt);
m_pre_2_9p.DEREncode(seq);
m_pre_2_3q.DEREncode(seq);
m_pre_q_p.DEREncode(seq);
seq.MessageEnd();
2015-11-05 06:59:46 +00:00
}
void InvertibleRWFunction::BERDecode(BufferedTransformation &bt)
{
BERSequenceDecoder seq(bt);
m_n.BERDecode(seq);
m_p.BERDecode(seq);
m_q.BERDecode(seq);
m_u.BERDecode(seq);
seq.MessageEnd();
m_precompute = false;
2015-11-05 06:59:46 +00:00
}
void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const
{
DERSequenceEncoder seq(bt);
m_n.DEREncode(seq);
m_p.DEREncode(seq);
m_q.DEREncode(seq);
m_u.DEREncode(seq);
seq.MessageEnd();
}
// DJB's "RSA signatures and Rabin-Williams signatures..." (http://cr.yp.to/sigs/rwsota-20080131.pdf).
2015-11-05 06:59:46 +00:00
Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const
{
DoQuickSanityCheck();
if(!m_precompute)
Precompute();
ModularArithmetic modn(m_n), modp(m_p), modq(m_q);
2015-11-05 06:59:46 +00:00
Integer r, rInv;
do
{
// Do this in a loop for people using small numbers for testing
2015-11-05 06:59:46 +00:00
r.Randomize(rng, Integer::One(), m_n - Integer::One());
// Fix for CVE-2015-2141. Thanks to Evgeny Sidorov for reporting.
// Squaring to satisfy Jacobi requirements suggested by Jean-Pierre Munch.
2015-11-05 06:59:46 +00:00
r = modn.Square(r);
rInv = modn.MultiplicativeInverse(r);
} while (rInv.IsZero());
2015-11-05 06:59:46 +00:00
Integer re = modn.Square(r);
re = modn.Multiply(re, x); // blind
2015-11-05 06:59:46 +00:00
const Integer &h = re, &p = m_p, &q = m_q;
Integer e, f;
const Integer U = modq.Exponentiate(h, (q+1)/8);
if(((modq.Exponentiate(U, 4) - h) % q).IsZero())
e = Integer::One();
else
e = -1;
const Integer eh = e*h, V = modp.Exponentiate(eh, (p-3)/8);
if(((modp.Multiply(modp.Exponentiate(V, 4), modp.Exponentiate(eh, 2)) - eh) % p).IsZero())
f = Integer::One();
else
f = 2;
2015-11-05 06:59:46 +00:00
Integer W, X;
#pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP)
{
#pragma omp section
{
W = (f.IsUnit() ? U : modq.Multiply(m_pre_2_3q, U));
}
#pragma omp section
2015-11-05 06:59:46 +00:00
{
const Integer t = modp.Multiply(modp.Exponentiate(V, 3), eh);
X = (f.IsUnit() ? t : modp.Multiply(m_pre_2_9p, t));
2015-11-05 06:59:46 +00:00
}
}
const Integer Y = W + q * modp.Multiply(m_pre_q_p, (X - W));
// Signature
Integer s = modn.Multiply(modn.Square(Y), rInv);
CRYPTOPP_ASSERT((e * f * s.Squared()) % m_n == x);
2015-11-05 06:59:46 +00:00
// IEEE P1363, Section 8.2.8 IFSP-RW, p.44
s = STDMIN(s, m_n - s);
if (ApplyFunction(s) != x) // check
2015-11-05 06:59:46 +00:00
throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation");
return s;
2015-11-05 06:59:46 +00:00
}
bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const
{
bool pass = RWFunction::Validate(rng, level);
2017-01-29 09:58:56 +00:00
CRYPTOPP_ASSERT(pass);
2015-11-05 06:59:46 +00:00
pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n;
2017-01-29 09:58:56 +00:00
CRYPTOPP_ASSERT(pass);
2015-11-05 06:59:46 +00:00
pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n;
2017-01-29 09:58:56 +00:00
CRYPTOPP_ASSERT(pass);
2015-11-05 06:59:46 +00:00
pass = pass && m_u.IsPositive() && m_u < m_p;
2017-01-29 09:58:56 +00:00
CRYPTOPP_ASSERT(pass);
2015-11-05 06:59:46 +00:00
if (level >= 1)
{
pass = pass && m_p * m_q == m_n;
2017-01-29 09:58:56 +00:00
CRYPTOPP_ASSERT(pass);
2015-11-05 06:59:46 +00:00
pass = pass && m_u * m_q % m_p == 1;
2017-01-29 09:58:56 +00:00
CRYPTOPP_ASSERT(pass);
2015-11-05 06:59:46 +00:00
}
if (level >= 2)
2017-01-29 09:58:56 +00:00
{
2015-11-05 06:59:46 +00:00
pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2);
2017-01-29 09:58:56 +00:00
CRYPTOPP_ASSERT(pass);
}
2015-11-05 06:59:46 +00:00
return pass;
}
bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
{
return GetValueHelper<RWFunction>(this, name, valueType, pValue).Assignable()
CRYPTOPP_GET_FUNCTION_ENTRY(Prime1)
CRYPTOPP_GET_FUNCTION_ENTRY(Prime2)
CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
;
}
void InvertibleRWFunction::AssignFrom(const NameValuePairs &source)
{
AssignFromHelper<RWFunction>(this, source)
CRYPTOPP_SET_FUNCTION_ENTRY(Prime1)
CRYPTOPP_SET_FUNCTION_ENTRY(Prime2)
CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1)
;
m_precompute = false;
2015-11-05 06:59:46 +00:00
}
NAMESPACE_END
#endif