ext-cryptopp/hc128.cpp

280 lines
10 KiB
C++
Raw Normal View History

2018-07-05 04:29:07 +00:00
// hc128.cpp - written and placed in the public domain by Jeffrey Walton
// based on public domain code by Hongjun Wu.
//
// The reference materials and source files are available at
// The eSTREAM Project, http://www.ecrypt.eu.org/stream/e2-hc128.html.
#include "pch.h"
#include "config.h"
#include "hc128.h"
#include "secblock.h"
#include "misc.h"
/*h1 function*/
2018-07-06 04:35:01 +00:00
#define h1(x, y) { \
2018-07-05 10:07:47 +00:00
byte a,c; \
a = (byte) (x); \
c = (byte) ((x) >> 16); \
2018-07-05 04:29:07 +00:00
y = (m_T[512+a])+(m_T[512+256+c]); \
}
/*h2 function*/
2018-07-06 04:35:01 +00:00
#define h2(x, y) { \
2018-07-05 10:07:47 +00:00
byte a,c; \
a = (byte) (x); \
c = (byte) ((x) >> 16); \
2018-07-05 04:29:07 +00:00
y = (m_T[a])+(m_T[256+c]); \
}
/*one step of HC-128, update P and generate 32 bits keystream*/
#define step_P(u,v,a,b,c,d,n){ \
word32 tem0,tem1,tem2,tem3; \
h1(m_X[(d)],tem3); \
tem0 = rotrConstant<23>(m_T[(v)]); \
tem1 = rotrConstant<10>(m_X[(c)]); \
tem2 = rotrConstant<8>(m_X[(b)]); \
(m_T[(u)]) += tem2+(tem0 ^ tem1); \
(m_X[(a)]) = (m_T[(u)]); \
(n) = tem3 ^ (m_T[(u)]); \
}
/*one step of HC-128, update Q and generate 32 bits keystream*/
#define step_Q(u,v,a,b,c,d,n){ \
word32 tem0,tem1,tem2,tem3; \
h2(m_Y[(d)],tem3); \
tem0 = rotrConstant<(32-23)>(m_T[(v)]); \
tem1 = rotrConstant<(32-10)>(m_Y[(c)]); \
tem2 = rotrConstant<(32-8)>(m_Y[(b)]); \
(m_T[(u)]) += tem2 + (tem0 ^ tem1); \
(m_Y[(a)]) = (m_T[(u)]); \
(n) = tem3 ^ (m_T[(u)]) ; \
}
/*update table P*/
2018-07-06 04:35:01 +00:00
#define update_P(u,v,a,b,c,d){ \
word32 tem0,tem1,tem2,tem3; \
tem0 = rotrConstant<23>(m_T[(v)]); \
tem1 = rotrConstant<10>(m_X[(c)]); \
tem2 = rotrConstant<8>(m_X[(b)]); \
h1(m_X[(d)],tem3); \
(m_T[(u)]) = ((m_T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
(m_X[(a)]) = (m_T[(u)]); \
2018-07-05 04:29:07 +00:00
}
/*update table Q*/
2018-07-06 04:35:01 +00:00
#define update_Q(u,v,a,b,c,d){ \
word32 tem0,tem1,tem2,tem3; \
tem0 = rotrConstant<(32-23)>(m_T[(v)]); \
tem1 = rotrConstant<(32-10)>(m_Y[(c)]); \
tem2 = rotrConstant<(32-8)>(m_Y[(b)]); \
h2(m_Y[(d)],tem3); \
2018-07-05 04:29:07 +00:00
(m_T[(u)]) = ((m_T[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
2018-07-06 04:35:01 +00:00
(m_Y[(a)]) = (m_T[(u)]); \
2018-07-05 04:29:07 +00:00
}
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::word32;
using CryptoPP::rotrConstant;
inline word32 f1(word32 x)
{
return rotrConstant<7>(x) ^ rotrConstant<18>(x) ^ ((x) >> 3);
}
inline word32 f2(word32 x)
{
return rotrConstant<17>(x) ^ rotrConstant<19>(x) ^ ((x) >> 10);
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
/*16 steps of HC-128, generate 512 bits keystream*/
void HC128Policy::GenerateKeystream(word32 keystream[16])
{
unsigned int cc = m_ctr & 0x1ff;
unsigned int dd = (cc + 16) & 0x1ff;
if (m_ctr < 512)
{
m_ctr = (m_ctr + 16) & 0x3ff;
step_P(cc + 0, cc + 1, 0, 6, 13, 4, keystream[0]);
step_P(cc + 1, cc + 2, 1, 7, 14, 5, keystream[1]);
step_P(cc + 2, cc + 3, 2, 8, 15, 6, keystream[2]);
step_P(cc + 3, cc + 4, 3, 9, 0, 7, keystream[3]);
step_P(cc + 4, cc + 5, 4, 10, 1, 8, keystream[4]);
step_P(cc + 5, cc + 6, 5, 11, 2, 9, keystream[5]);
step_P(cc + 6, cc + 7, 6, 12, 3, 10, keystream[6]);
step_P(cc + 7, cc + 8, 7, 13, 4, 11, keystream[7]);
step_P(cc + 8, cc + 9, 8, 14, 5, 12, keystream[8]);
step_P(cc + 9, cc + 10, 9, 15, 6, 13, keystream[9]);
step_P(cc + 10, cc + 11, 10, 0, 7, 14, keystream[10]);
step_P(cc + 11, cc + 12, 11, 1, 8, 15, keystream[11]);
step_P(cc + 12, cc + 13, 12, 2, 9, 0, keystream[12]);
step_P(cc + 13, cc + 14, 13, 3, 10, 1, keystream[13]);
step_P(cc + 14, cc + 15, 14, 4, 11, 2, keystream[14]);
step_P(cc + 15, dd + 0, 15, 5, 12, 3, keystream[15]);
}
else
{
m_ctr = (m_ctr + 16) & 0x3ff;
step_Q(512 + cc + 0, 512 + cc + 1, 0, 6, 13, 4, keystream[0]);
step_Q(512 + cc + 1, 512 + cc + 2, 1, 7, 14, 5, keystream[1]);
step_Q(512 + cc + 2, 512 + cc + 3, 2, 8, 15, 6, keystream[2]);
step_Q(512 + cc + 3, 512 + cc + 4, 3, 9, 0, 7, keystream[3]);
step_Q(512 + cc + 4, 512 + cc + 5, 4, 10, 1, 8, keystream[4]);
step_Q(512 + cc + 5, 512 + cc + 6, 5, 11, 2, 9, keystream[5]);
step_Q(512 + cc + 6, 512 + cc + 7, 6, 12, 3, 10, keystream[6]);
step_Q(512 + cc + 7, 512 + cc + 8, 7, 13, 4, 11, keystream[7]);
step_Q(512 + cc + 8, 512 + cc + 9, 8, 14, 5, 12, keystream[8]);
step_Q(512 + cc + 9, 512 + cc + 10, 9, 15, 6, 13, keystream[9]);
step_Q(512 + cc + 10, 512 + cc + 11, 10, 0, 7, 14, keystream[10]);
step_Q(512 + cc + 11, 512 + cc + 12, 11, 1, 8, 15, keystream[11]);
step_Q(512 + cc + 12, 512 + cc + 13, 12, 2, 9, 0, keystream[12]);
step_Q(512 + cc + 13, 512 + cc + 14, 13, 3, 10, 1, keystream[13]);
step_Q(512 + cc + 14, 512 + cc + 15, 14, 4, 11, 2, keystream[14]);
step_Q(512 + cc + 15, 512 + dd + 0, 15, 5, 12, 3, keystream[15]);
}
}
/*16 steps of HC-128, without generating keystream, */
/*but use the outputs to update P and Q*/
void HC128Policy::SetupUpdate() /*each time 16 steps*/
{
unsigned int cc = m_ctr & 0x1ff;
unsigned int dd = (cc + 16) & 0x1ff;
if (m_ctr < 512)
{
m_ctr = (m_ctr + 16) & 0x3ff;
update_P(cc + 0, cc + 1, 0, 6, 13, 4);
update_P(cc + 1, cc + 2, 1, 7, 14, 5);
update_P(cc + 2, cc + 3, 2, 8, 15, 6);
update_P(cc + 3, cc + 4, 3, 9, 0, 7);
update_P(cc + 4, cc + 5, 4, 10, 1, 8);
update_P(cc + 5, cc + 6, 5, 11, 2, 9);
update_P(cc + 6, cc + 7, 6, 12, 3, 10);
update_P(cc + 7, cc + 8, 7, 13, 4, 11);
update_P(cc + 8, cc + 9, 8, 14, 5, 12);
update_P(cc + 9, cc + 10, 9, 15, 6, 13);
update_P(cc + 10, cc + 11, 10, 0, 7, 14);
update_P(cc + 11, cc + 12, 11, 1, 8, 15);
update_P(cc + 12, cc + 13, 12, 2, 9, 0);
update_P(cc + 13, cc + 14, 13, 3, 10, 1);
update_P(cc + 14, cc + 15, 14, 4, 11, 2);
update_P(cc + 15, dd + 0, 15, 5, 12, 3);
}
else
{
m_ctr = (m_ctr + 16) & 0x3ff;
update_Q(512 + cc + 0, 512 + cc + 1, 0, 6, 13, 4);
update_Q(512 + cc + 1, 512 + cc + 2, 1, 7, 14, 5);
update_Q(512 + cc + 2, 512 + cc + 3, 2, 8, 15, 6);
update_Q(512 + cc + 3, 512 + cc + 4, 3, 9, 0, 7);
update_Q(512 + cc + 4, 512 + cc + 5, 4, 10, 1, 8);
update_Q(512 + cc + 5, 512 + cc + 6, 5, 11, 2, 9);
update_Q(512 + cc + 6, 512 + cc + 7, 6, 12, 3, 10);
update_Q(512 + cc + 7, 512 + cc + 8, 7, 13, 4, 11);
update_Q(512 + cc + 8, 512 + cc + 9, 8, 14, 5, 12);
update_Q(512 + cc + 9, 512 + cc + 10, 9, 15, 6, 13);
update_Q(512 + cc + 10, 512 + cc + 11, 10, 0, 7, 14);
update_Q(512 + cc + 11, 512 + cc + 12, 11, 1, 8, 15);
update_Q(512 + cc + 12, 512 + cc + 13, 12, 2, 9, 0);
update_Q(512 + cc + 13, 512 + cc + 14, 13, 3, 10, 1);
update_Q(512 + cc + 14, 512 + cc + 15, 14, 4, 11, 2);
update_Q(512 + cc + 15, 512 + dd + 0, 15, 5, 12, 3);
}
}
void HC128Policy::CipherSetKey(const NameValuePairs &params, const byte *userKey, size_t keylen)
{
CRYPTOPP_UNUSED(params);
2018-07-06 04:11:10 +00:00
GetUserKey(LITTLE_ENDIAN_ORDER, m_key.begin(), 4, userKey, keylen);
2018-07-05 04:29:07 +00:00
for (unsigned int i = 4; i < 8; i++)
m_key[i] = m_key[i - 4];
}
void HC128Policy::OperateKeystream(KeystreamOperation operation, byte *output, const byte *input, size_t iterationCount)
{
while (iterationCount--)
2018-07-05 04:29:07 +00:00
{
word32 keystream[16];
GenerateKeystream(keystream);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 0, keystream[0]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 4, keystream[1]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 8, keystream[2]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 12, keystream[3]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 16, keystream[4]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 20, keystream[5]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 24, keystream[6]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 28, keystream[7]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 32, keystream[8]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 36, keystream[9]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 40, keystream[10]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 44, keystream[11]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 48, keystream[12]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 52, keystream[13]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 56, keystream[14]);
PutWord(false, LITTLE_ENDIAN_ORDER, output + 60, keystream[15]);
2018-07-05 11:13:04 +00:00
// If AdditiveCipherTemplate does not have an accumulated keystream
2018-07-06 04:35:01 +00:00
// then it will ask OperateKeystream to generate one. Optionally it
// will ask for an XOR of the input with the keystream while
// writing the result to the output buffer. In all cases the
// keystream is written to the output buffer. The optional part is
// adding the input buffer and keystream.
if ((operation & EnumToInt(INPUT_NULL)) != EnumToInt(INPUT_NULL))
{
xorbuf(output, input, BYTES_PER_ITERATION);
input += BYTES_PER_ITERATION;
}
2018-07-05 04:29:07 +00:00
output += BYTES_PER_ITERATION;
2018-07-05 04:29:07 +00:00
}
}
void HC128Policy::CipherResynchronize(byte *keystreamBuffer, const byte *iv, size_t length)
{
CRYPTOPP_UNUSED(keystreamBuffer);
2018-07-06 04:11:10 +00:00
GetUserKey(LITTLE_ENDIAN_ORDER, m_iv.begin(), 4, iv, length);
2018-07-05 04:29:07 +00:00
for (unsigned int i = 4; i < 8; i++)
m_iv[i] = m_iv[i - 4];
/* expand the key and IV into the table T */
/* (expand the key and IV into the table P and Q) */
for (unsigned int i = 0; i < 8; i++)
m_T[i] = m_key[i];
for (unsigned int i = 8; i < 16; i++)
m_T[i] = m_iv[i - 8];
for (unsigned int i = 16; i < (256 + 16); i++)
m_T[i] = f2(m_T[i - 2]) + m_T[i - 7] + f1(m_T[i - 15]) + m_T[i - 16] + i;
for (unsigned int i = 0; i < 16; i++)
m_T[i] = m_T[256 + i];
for (unsigned int i = 16; i < 1024; i++)
m_T[i] = f2(m_T[i - 2]) + m_T[i - 7] + f1(m_T[i - 15]) + m_T[i - 16] + 256 + i;
/* initialize counter1024, X and Y */
m_ctr = 0;
for (unsigned int i = 0; i < 16; i++)
m_X[i] = m_T[512 - 16 + i];
for (unsigned int i = 0; i < 16; i++)
m_Y[i] = m_T[512 + 512 - 16 + i];
/* run the cipher 1024 steps before generating the output */
for (unsigned int i = 0; i < 64; i++)
SetupUpdate();
}
NAMESPACE_END