ext-cryptopp/fhmqv.h

303 lines
12 KiB
C
Raw Normal View History

2016-07-13 22:32:18 +00:00
// fhmqv.h - written and placed in the public domain by Jeffrey Walton, Ray Clayton and Uri Blumenthal
// Shamelessly based upon Wei Dai's MQV source files
2016-07-13 19:47:58 +00:00
#ifndef CRYPTOPP_FHMQV_H
#define CRYPTOPP_FHMQV_H
2016-07-13 22:32:18 +00:00
//! \file fhmqv.h
//! \brief Classes for Fully Hashed Menezes-Qu-Vanstone key agreement in GF(p)
2016-09-09 09:19:29 +00:00
//! \since Crypto++ 5.6.4
2016-07-13 19:47:58 +00:00
#include "gfpcrypt.h"
#include "algebra.h"
#include "sha.h"
NAMESPACE_BEGIN(CryptoPP)
2016-07-13 22:32:18 +00:00
//! \brief Fully Hashed Menezes-Qu-Vanstone in GF(p)
//! \details This implementation follows Augustin P. Sarr and Philippe ElbazVincent, and JeanClaude Bajard's
//! <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
//! Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
2016-09-08 18:30:01 +00:00
//! \sa MQV, HMQV, FHMQV, and AuthenticatedKeyAgreementDomain
2016-09-09 09:19:29 +00:00
//! \since Crypto++ 5.6.4
template <class GROUP_PARAMETERS, class COFACTOR_OPTION = typename GROUP_PARAMETERS::DefaultCofactorOption, class HASH = SHA512>
2016-07-13 22:32:18 +00:00
class FHMQV_Domain : public AuthenticatedKeyAgreementDomain
2016-07-13 19:47:58 +00:00
{
public:
typedef GROUP_PARAMETERS GroupParameters;
typedef typename GroupParameters::Element Element;
typedef FHMQV_Domain<GROUP_PARAMETERS, COFACTOR_OPTION, HASH> Domain;
virtual ~FHMQV_Domain() {}
2016-07-13 19:47:58 +00:00
FHMQV_Domain(bool clientRole = true): m_role(clientRole ? RoleClient : RoleServer) {}
FHMQV_Domain(const GroupParameters &params, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer), m_groupParameters(params) {}
FHMQV_Domain(BufferedTransformation &bt, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.BERDecode(bt);}
template <class T1>
FHMQV_Domain(T1 v1, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.Initialize(v1);}
template <class T1, class T2>
FHMQV_Domain(T1 v1, T2 v2, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.Initialize(v1, v2);}
template <class T1, class T2, class T3>
FHMQV_Domain(T1 v1, T2 v2, T3 v3, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.Initialize(v1, v2, v3);}
template <class T1, class T2, class T3, class T4>
FHMQV_Domain(T1 v1, T2 v2, T3 v3, T4 v4, bool clientRole = true)
: m_role(clientRole ? RoleClient : RoleServer)
{m_groupParameters.Initialize(v1, v2, v3, v4);}
public:
const GroupParameters & GetGroupParameters() const {return m_groupParameters;}
GroupParameters & AccessGroupParameters(){return m_groupParameters;}
CryptoParameters & AccessCryptoParameters(){return AccessAbstractGroupParameters();}
//! return length of agreed value produced
unsigned int AgreedValueLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(false);}
//! return length of static private keys in this domain
unsigned int StaticPrivateKeyLength() const {return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}
//! return length of static public keys in this domain
unsigned int StaticPublicKeyLength() const{return GetAbstractGroupParameters().GetEncodedElementSize(true);}
//! generate static private key
/*! \pre size of privateKey == PrivateStaticKeyLength() */
void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
x.Encode(privateKey, StaticPrivateKeyLength());
}
//! generate static public key
/*! \pre size of publicKey == PublicStaticKeyLength() */
void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
CRYPTOPP_UNUSED(rng);
2016-07-13 19:47:58 +00:00
const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
Integer x(privateKey, StaticPrivateKeyLength());
Element y = params.ExponentiateBase(x);
params.EncodeElement(true, y, publicKey);
}
unsigned int EphemeralPrivateKeyLength() const {return StaticPrivateKeyLength() + StaticPublicKeyLength();}
unsigned int EphemeralPublicKeyLength() const{return StaticPublicKeyLength();}
//! return length of ephemeral private keys in this domain
void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
{
const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
Integer x(rng, Integer::One(), params.GetMaxExponent());
x.Encode(privateKey, StaticPrivateKeyLength());
Element y = params.ExponentiateBase(x);
params.EncodeElement(true, y, privateKey+StaticPrivateKeyLength());
}
//! return length of ephemeral public keys in this domain
void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
{
CRYPTOPP_UNUSED(rng);
2016-07-13 19:47:58 +00:00
memcpy(publicKey, privateKey+StaticPrivateKeyLength(), EphemeralPublicKeyLength());
}
//! derive agreed value from your private keys and couterparty's public keys, return false in case of failure
/*! \note The ephemeral public key will always be validated.
If you have previously validated the static public key, use validateStaticOtherPublicKey=false to save time.
\pre size of agreedValue == AgreedValueLength()
\pre length of staticPrivateKey == StaticPrivateKeyLength()
\pre length of ephemeralPrivateKey == EphemeralPrivateKeyLength()
\pre length of staticOtherPublicKey == StaticPublicKeyLength()
\pre length of ephemeralOtherPublicKey == EphemeralPublicKeyLength()
*/
bool Agree(byte *agreedValue,
const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
bool validateStaticOtherPublicKey=true) const
{
2017-03-01 11:10:06 +00:00
byte *XX = NULLPTR, *YY = NULLPTR, *AA = NULLPTR, *BB = NULLPTR;
2016-07-13 19:47:58 +00:00
size_t xxs = 0, yys = 0, aas = 0, bbs = 0;
// Depending on the role, this will hold either A's or B's static
// (long term) public key. AA or BB will then point into tt.
SecByteBlock tt(StaticPublicKeyLength());
try
{
const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
if(m_role == RoleServer)
{
Integer b(staticPrivateKey, StaticPrivateKeyLength());
Element B = params.ExponentiateBase(b);
params.EncodeElement(true, B, tt);
XX = const_cast<byte*>(ephemeralOtherPublicKey);
xxs = EphemeralPublicKeyLength();
YY = const_cast<byte*>(ephemeralPrivateKey) + StaticPrivateKeyLength();
yys = EphemeralPublicKeyLength();
AA = const_cast<byte*>(staticOtherPublicKey);
aas = StaticPublicKeyLength();
BB = tt.BytePtr();
bbs = tt.SizeInBytes();
}
else if(m_role == RoleClient)
{
Integer a(staticPrivateKey, StaticPrivateKeyLength());
Element A = params.ExponentiateBase(a);
params.EncodeElement(true, A, tt);
XX = const_cast<byte*>(ephemeralPrivateKey) + StaticPrivateKeyLength();
xxs = EphemeralPublicKeyLength();
YY = const_cast<byte*>(ephemeralOtherPublicKey);
yys = EphemeralPublicKeyLength();
AA = tt.BytePtr();
aas = tt.SizeInBytes();
BB = const_cast<byte*>(staticOtherPublicKey);
bbs = StaticPublicKeyLength();
}
else
{
CRYPTOPP_ASSERT(0);
2016-07-13 19:47:58 +00:00
return false;
}
// DecodeElement calls ValidateElement at level 1. Level 1 only calls
// VerifyPoint to ensure the element is in G*. If the other's PublicKey is
// requested to be validated, we manually call ValidateElement at level 3.
Element VV1 = params.DecodeElement(staticOtherPublicKey, false);
2017-03-01 11:10:06 +00:00
if(!params.ValidateElement(validateStaticOtherPublicKey ? 3 : 1, VV1, NULLPTR))
2016-07-13 19:47:58 +00:00
return false;
// DecodeElement calls ValidateElement at level 1. Level 1 only calls
// VerifyPoint to ensure the element is in G*. Crank it up.
Element VV2 = params.DecodeElement(ephemeralOtherPublicKey, false);
2017-03-01 11:10:06 +00:00
if(!params.ValidateElement(3, VV2, NULLPTR))
2016-07-13 19:47:58 +00:00
return false;
const Integer& q = params.GetSubgroupOrder();
const unsigned int len /*bytes*/ = (((q.BitCount()+1)/2 +7)/8);
Integer d, e;
SecByteBlock dd(len), ee(len);
2017-03-01 11:10:06 +00:00
Hash(NULLPTR, XX, xxs, YY, yys, AA, aas, BB, bbs, dd.BytePtr(), dd.SizeInBytes());
2016-07-13 19:47:58 +00:00
d.Decode(dd.BytePtr(), dd.SizeInBytes());
2017-03-01 11:10:06 +00:00
Hash(NULLPTR, YY, yys, XX, xxs, AA, aas, BB, bbs, ee.BytePtr(), ee.SizeInBytes());
2016-07-13 19:47:58 +00:00
e.Decode(ee.BytePtr(), ee.SizeInBytes());
Element sigma;
if(m_role == RoleServer)
{
Integer y(ephemeralPrivateKey, StaticPrivateKeyLength());
Integer b(staticPrivateKey, StaticPrivateKeyLength());
Integer s_B = (y + e * b) % q;
Element A = params.DecodeElement(AA, false);
Element X = params.DecodeElement(XX, false);
Element t1 = params.ExponentiateElement(A, d);
Element t2 = m_groupParameters.MultiplyElements(X, t1);
sigma = params.ExponentiateElement(t2, s_B);
}
else
{
Integer x(ephemeralPrivateKey, StaticPrivateKeyLength());
Integer a(staticPrivateKey, StaticPrivateKeyLength());
Integer s_A = (x + d * a) % q;
Element B = params.DecodeElement(BB, false);
Element Y = params.DecodeElement(YY, false);
Element t1 = params.ExponentiateElement(B, e);
Element t2 = m_groupParameters.MultiplyElements(Y, t1);
sigma = params.ExponentiateElement(t2, s_A);
}
Hash(&sigma, XX, xxs, YY, yys, AA, aas, BB, bbs, agreedValue, AgreedValueLength());
}
catch (DL_BadElement &)
{
return false;
}
return true;
}
2016-07-13 22:32:18 +00:00
protected:
inline void Hash(const Element* sigma,
const byte* e1, size_t e1len, const byte* e2, size_t e2len,
const byte* s1, size_t s1len, const byte* s2, size_t s2len,
byte* digest, size_t dlen) const
{
HASH hash;
size_t idx = 0, req = dlen;
size_t blk = STDMIN(dlen, (size_t)HASH::DIGESTSIZE);
2016-07-13 22:32:18 +00:00
if(sigma)
{
Integer x = GetAbstractGroupParameters().ConvertElementToInteger(*sigma);
SecByteBlock sbb(x.MinEncodedSize());
x.Encode(sbb.BytePtr(), sbb.SizeInBytes());
hash.Update(sbb.BytePtr(), sbb.SizeInBytes());
}
hash.Update(e1, e1len);
hash.Update(e2, e2len);
hash.Update(s1, s1len);
hash.Update(s2, s2len);
hash.TruncatedFinal(digest, blk);
req -= blk;
// All this to catch tail bytes for large curves and small hashes
while(req != 0)
{
hash.Update(&digest[idx], (size_t)HASH::DIGESTSIZE);
idx += (size_t)HASH::DIGESTSIZE;
blk = STDMIN(req, (size_t)HASH::DIGESTSIZE);
2016-07-13 22:32:18 +00:00
hash.TruncatedFinal(&digest[idx], blk);
req -= blk;
}
}
2016-07-13 19:47:58 +00:00
private:
// The paper uses Initiator and Recipient - make it classical.
enum KeyAgreementRole{ RoleServer = 1, RoleClient };
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return m_groupParameters;}
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const{return m_groupParameters;}
GroupParameters m_groupParameters;
2016-07-13 22:32:18 +00:00
KeyAgreementRole m_role;
2016-07-13 19:47:58 +00:00
};
2016-07-13 22:32:18 +00:00
//! \brief Fully Hashed Menezes-Qu-Vanstone in GF(p)
//! \details This implementation follows Augustin P. Sarr and Philippe ElbazVincent, and JeanClaude Bajard's
//! <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
//! Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
2016-09-08 18:30:01 +00:00
//! \sa FHMQV, MQV_Domain, HMQV_Domain, AuthenticatedKeyAgreementDomain
2016-09-09 09:19:29 +00:00
//! \since Crypto++ 5.6.4
typedef FHMQV_Domain<DL_GroupParameters_GFP_DefaultSafePrime> FHMQV;
2016-07-13 19:47:58 +00:00
NAMESPACE_END
#endif