ext-cryptopp/aria.cpp

337 lines
10 KiB
C++
Raw Normal View History

// aria.cpp - written and placed in the public domain by Jeffrey Walton
#include "pch.h"
#include "config.h"
#include "aria.h"
#include "misc.h"
#include "cpu.h"
#if CRYPTOPP_SSE2_INTRIN_AVAILABLE
# define CRYPTOPP_ENABLE_ARIA_SSE2_INTRINSICS 1
#endif
#if CRYPTOPP_SSSE3_AVAILABLE
# define CRYPTOPP_ENABLE_ARIA_SSSE3_INTRINSICS 1
#endif
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(ARIATab)
extern const word32 S1[256];
extern const word32 S2[256];
extern const word32 X1[256];
extern const word32 X2[256];
extern const word32 KRK[3][4];
NAMESPACE_END
NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
using CryptoPP::ARIATab::S1;
using CryptoPP::ARIATab::S2;
using CryptoPP::ARIATab::X1;
using CryptoPP::ARIATab::X2;
using CryptoPP::ARIATab::KRK;
typedef BlockGetAndPut<word32, BigEndian, false, false> BigEndianBlock;
2017-04-29 01:35:55 +00:00
typedef BlockGetAndPut<word32, NativeByteOrder, true, true> NativeEndianBlock;
inline byte ARIA_BRF(const word32 x, const int y) {
return GETBYTE(x, y);
}
// Key XOR Layer
#define ARIA_KXL { \
2017-04-29 01:35:55 +00:00
NativeEndianBlock::Put(rk, t)(t[0])(t[1])(t[2])(t[3]); \
}
// S-Box Layer 1 + M
#define SBL1_M(T0,T1,T2,T3) { \
T0=S1[ARIA_BRF(T0,3)]^S2[ARIA_BRF(T0,2)]^X1[ARIA_BRF(T0,1)]^X2[ARIA_BRF(T0,0)]; \
T1=S1[ARIA_BRF(T1,3)]^S2[ARIA_BRF(T1,2)]^X1[ARIA_BRF(T1,1)]^X2[ARIA_BRF(T1,0)]; \
T2=S1[ARIA_BRF(T2,3)]^S2[ARIA_BRF(T2,2)]^X1[ARIA_BRF(T2,1)]^X2[ARIA_BRF(T2,0)]; \
T3=S1[ARIA_BRF(T3,3)]^S2[ARIA_BRF(T3,2)]^X1[ARIA_BRF(T3,1)]^X2[ARIA_BRF(T3,0)]; \
}
// S-Box Layer 2 + M
#define SBL2_M(T0,T1,T2,T3) { \
T0=X1[ARIA_BRF(T0,3)]^X2[ARIA_BRF(T0,2)]^S1[ARIA_BRF(T0,1)]^S2[ARIA_BRF(T0,0)]; \
T1=X1[ARIA_BRF(T1,3)]^X2[ARIA_BRF(T1,2)]^S1[ARIA_BRF(T1,1)]^S2[ARIA_BRF(T1,0)]; \
T2=X1[ARIA_BRF(T2,3)]^X2[ARIA_BRF(T2,2)]^S1[ARIA_BRF(T2,1)]^S2[ARIA_BRF(T2,0)]; \
T3=X1[ARIA_BRF(T3,3)]^X2[ARIA_BRF(T3,2)]^S1[ARIA_BRF(T3,1)]^S2[ARIA_BRF(T3,0)]; \
}
#define ARIA_P(T0,T1,T2,T3) { \
(T1) = (((T1)<< 8)&0xff00ff00) ^ (((T1)>> 8)&0x00ff00ff); \
(T2) = rotrConstant<16>(T2); \
(T3) = ByteReverse((T3)); \
}
#define ARIA_M(X,Y) { \
Y=(X)<<8 ^ (X)>>8 ^ (X)<<16 ^ (X)>>16 ^ (X)<<24 ^ (X)>>24; \
}
#define ARIA_MM(T0,T1,T2,T3) { \
(T1)^=(T2); (T2)^=(T3); (T0)^=(T1); \
(T3)^=(T1); (T2)^=(T0); (T1)^=(T2); \
}
#define ARIA_FO {SBL1_M(t[0],t[1],t[2],t[3]) ARIA_MM(t[0],t[1],t[2],t[3]) ARIA_P(t[0],t[1],t[2],t[3]) ARIA_MM(t[0],t[1],t[2],t[3])}
#define ARIA_FE {SBL2_M(t[0],t[1],t[2],t[3]) ARIA_MM(t[0],t[1],t[2],t[3]) ARIA_P(t[2],t[3],t[0],t[1]) ARIA_MM(t[0],t[1],t[2],t[3])}
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
extern void ARIA_UncheckedSetKey_Schedule_NEON(byte* rk, word32* ws, unsigned int keylen);
extern void ARIA_ProcessAndXorBlock_Xor_NEON(const byte* xorBlock, byte* outblock);
#endif
#if (CRYPTOPP_SSSE3_AVAILABLE)
extern void ARIA_ProcessAndXorBlock_Xor_SSSE3(const byte* xorBlock, byte* outBlock, const byte *rk, word32 *t);
#endif
// n-bit right shift of Y XORed to X
template <unsigned int N>
inline void ARIA_GSRK(const word32 X[4], const word32 Y[4], byte RK[16])
{
// MSVC is not generating a "rotate immediate". Constify to help it along.
static const unsigned int Q = 4-(N/32);
static const unsigned int R = N % 32;
reinterpret_cast<word32*>(RK)[0] = (X[0]) ^ ((Y[(Q )%4])>>R) ^ ((Y[(Q+3)%4])<<(32-R));
reinterpret_cast<word32*>(RK)[1] = (X[1]) ^ ((Y[(Q+1)%4])>>R) ^ ((Y[(Q )%4])<<(32-R));
reinterpret_cast<word32*>(RK)[2] = (X[2]) ^ ((Y[(Q+2)%4])>>R) ^ ((Y[(Q+1)%4])<<(32-R));
reinterpret_cast<word32*>(RK)[3] = (X[3]) ^ ((Y[(Q+3)%4])>>R) ^ ((Y[(Q+2)%4])<<(32-R));
}
void ARIA::Base::UncheckedSetKey(const byte *key, unsigned int keylen, const NameValuePairs &params)
{
CRYPTOPP_UNUSED(params);
const byte *mk = key;
byte *rk = m_rk.data();
int Q, q, R, r;
switch (keylen)
{
case 16:
R = r = m_rounds = 12;
Q = q = 0;
break;
case 32:
R = r = m_rounds = 16;
Q = q = 2;
break;
case 24:
R = r = m_rounds = 14;
Q = q = 1;
break;
default:
Q = q = R = r = m_rounds = 0;
CRYPTOPP_ASSERT(0);
}
// w0 has room for 32 bytes. w1-w3 each has room for 16 bytes. t and u are 16 byte temp areas.
word32 *w0 = m_w.data(), *w1 = m_w.data()+8, *w2 = m_w.data()+12, *w3 = m_w.data()+16, *t = m_w.data()+20;
BigEndianBlock::Get(mk)(w0[0])(w0[1])(w0[2])(w0[3]);
t[0]=w0[0]^KRK[q][0]; t[1]=w0[1]^KRK[q][1];
t[2]=w0[2]^KRK[q][2]; t[3]=w0[3]^KRK[q][3];
ARIA_FO;
if (keylen == 32)
{
BigEndianBlock::Get(mk+16)(w1[0])(w1[1])(w1[2])(w1[3]);
}
else if (keylen == 24)
{
BigEndianBlock::Get(mk+16)(w1[0])(w1[1]);
w1[2] = w1[3] = 0;
}
else
{
w1[0]=w1[1]=w1[2]=w1[3]=0;
}
w1[0]^=t[0]; w1[1]^=t[1]; w1[2]^=t[2]; w1[3]^=t[3];
::memcpy(t, w1, 16);
q = (q==2) ? 0 : (q+1);
t[0]^=KRK[q][0]; t[1]^=KRK[q][1]; t[2]^=KRK[q][2]; t[3]^=KRK[q][3];
ARIA_FE;
t[0]^=w0[0]; t[1]^=w0[1]; t[2]^=w0[2]; t[3]^=w0[3];
::memcpy(w2, t, 16);
q = (q==2) ? 0 : (q+1);
t[0]^=KRK[q][0]; t[1]^=KRK[q][1]; t[2]^=KRK[q][2]; t[3]^=KRK[q][3];
ARIA_FO;
w3[0]=t[0]^w1[0]; w3[1]=t[1]^w1[1]; w3[2]=t[2]^w1[2]; w3[3]=t[3]^w1[3];
#if CRYPTOPP_ARM_NEON_AVAILABLE
if (HasNEON())
{
ARIA_UncheckedSetKey_Schedule_NEON(rk, m_w, keylen);
}
else
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
{
ARIA_GSRK<19>(w0, w1, rk + 0);
ARIA_GSRK<19>(w1, w2, rk + 16);
ARIA_GSRK<19>(w2, w3, rk + 32);
ARIA_GSRK<19>(w3, w0, rk + 48);
ARIA_GSRK<31>(w0, w1, rk + 64);
ARIA_GSRK<31>(w1, w2, rk + 80);
ARIA_GSRK<31>(w2, w3, rk + 96);
ARIA_GSRK<31>(w3, w0, rk + 112);
ARIA_GSRK<67>(w0, w1, rk + 128);
ARIA_GSRK<67>(w1, w2, rk + 144);
ARIA_GSRK<67>(w2, w3, rk + 160);
ARIA_GSRK<67>(w3, w0, rk + 176);
ARIA_GSRK<97>(w0, w1, rk + 192);
if (keylen > 16)
{
ARIA_GSRK<97>(w1, w2, rk + 208);
ARIA_GSRK<97>(w2, w3, rk + 224);
if (keylen > 24)
{
ARIA_GSRK< 97>(w3, w0, rk + 240);
ARIA_GSRK<109>(w0, w1, rk + 256);
}
}
}
// Decryption operation
if (!IsForwardTransformation())
{
word32 *a, *z, *s;
rk = m_rk.data();
r = R; q = Q;
a=reinterpret_cast<word32*>(rk); s=m_w.data()+24; z=a+r*4;
::memcpy(t, a, 16); ::memcpy(a, z, 16); ::memcpy(z, t, 16);
a+=4; z-=4;
for (; a<z; a+=4, z-=4)
{
ARIA_M(a[0],t[0]); ARIA_M(a[1],t[1]); ARIA_M(a[2],t[2]); ARIA_M(a[3],t[3]);
ARIA_MM(t[0],t[1],t[2],t[3]); ARIA_P(t[0],t[1],t[2],t[3]); ARIA_MM(t[0],t[1],t[2],t[3]);
::memcpy(s, t, 16);
ARIA_M(z[0],t[0]); ARIA_M(z[1],t[1]); ARIA_M(z[2],t[2]); ARIA_M(z[3],t[3]);
ARIA_MM(t[0],t[1],t[2],t[3]); ARIA_P(t[0],t[1],t[2],t[3]); ARIA_MM(t[0],t[1],t[2],t[3]);
::memcpy(a, t, 16); ::memcpy(z, s, 16);
}
ARIA_M(a[0],t[0]); ARIA_M(a[1],t[1]); ARIA_M(a[2],t[2]); ARIA_M(a[3],t[3]);
ARIA_MM(t[0],t[1],t[2],t[3]); ARIA_P(t[0],t[1],t[2],t[3]); ARIA_MM(t[0],t[1],t[2],t[3]);
::memcpy(z, t, 16);
}
}
void ARIA::Base::ProcessAndXorBlock(const byte *inBlock, const byte *xorBlock, byte *outBlock) const
{
const byte *rk = reinterpret_cast<const byte*>(m_rk.data());
word32 *t = const_cast<word32*>(m_w.data()+20);
// Timing attack countermeasure. See comments in Rijndael for more details.
// We used Yun's 32-bit implementation, so we use words rather than bytes.
const int cacheLineSize = GetCacheLineSize();
unsigned int i;
volatile word32 _u = 0;
word32 u = _u;
for (i=0; i<COUNTOF(S1); i+=cacheLineSize/(sizeof(S1[0])))
u |= *(S1+i);
t[0] |= u;
BigEndianBlock::Get(inBlock)(t[0])(t[1])(t[2])(t[3]);
if (m_rounds > 12) {
ARIA_KXL; rk+= 16; ARIA_FO;
ARIA_KXL; rk+= 16; ARIA_FE;
}
if (m_rounds > 14) {
ARIA_KXL; rk+= 16; ARIA_FO;
ARIA_KXL; rk+= 16; ARIA_FE;
}
ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16; ARIA_FE;
ARIA_KXL; rk+= 16; ARIA_FO; ARIA_KXL; rk+= 16;
#ifdef CRYPTOPP_LITTLE_ENDIAN
# if CRYPTOPP_ENABLE_ARIA_SSSE3_INTRINSICS
if (HasSSSE3())
{
ARIA_ProcessAndXorBlock_Xor_SSSE3(xorBlock, outBlock, rk, t);
return;
}
else
# endif // CRYPTOPP_ENABLE_ARIA_SSSE3_INTRINSICS
{
outBlock[ 0] = (byte)(X1[ARIA_BRF(t[0],3)] ) ^ rk[ 3];
outBlock[ 1] = (byte)(X2[ARIA_BRF(t[0],2)]>>8) ^ rk[ 2];
outBlock[ 2] = (byte)(S1[ARIA_BRF(t[0],1)] ) ^ rk[ 1];
outBlock[ 3] = (byte)(S2[ARIA_BRF(t[0],0)] ) ^ rk[ 0];
outBlock[ 4] = (byte)(X1[ARIA_BRF(t[1],3)] ) ^ rk[ 7];
outBlock[ 5] = (byte)(X2[ARIA_BRF(t[1],2)]>>8) ^ rk[ 6];
outBlock[ 6] = (byte)(S1[ARIA_BRF(t[1],1)] ) ^ rk[ 5];
outBlock[ 7] = (byte)(S2[ARIA_BRF(t[1],0)] ) ^ rk[ 4];
outBlock[ 8] = (byte)(X1[ARIA_BRF(t[2],3)] ) ^ rk[11];
outBlock[ 9] = (byte)(X2[ARIA_BRF(t[2],2)]>>8) ^ rk[10];
outBlock[10] = (byte)(S1[ARIA_BRF(t[2],1)] ) ^ rk[ 9];
outBlock[11] = (byte)(S2[ARIA_BRF(t[2],0)] ) ^ rk[ 8];
outBlock[12] = (byte)(X1[ARIA_BRF(t[3],3)] ) ^ rk[15];
outBlock[13] = (byte)(X2[ARIA_BRF(t[3],2)]>>8) ^ rk[14];
outBlock[14] = (byte)(S1[ARIA_BRF(t[3],1)] ) ^ rk[13];
outBlock[15] = (byte)(S2[ARIA_BRF(t[3],0)] ) ^ rk[12];
}
#else
outBlock[ 0] = (byte)(X1[ARIA_BRF(t[0],3)] );
outBlock[ 1] = (byte)(X2[ARIA_BRF(t[0],2)]>>8);
outBlock[ 2] = (byte)(S1[ARIA_BRF(t[0],1)] );
outBlock[ 3] = (byte)(S2[ARIA_BRF(t[0],0)] );
outBlock[ 4] = (byte)(X1[ARIA_BRF(t[1],3)] );
outBlock[ 5] = (byte)(X2[ARIA_BRF(t[1],2)]>>8);
outBlock[ 6] = (byte)(S1[ARIA_BRF(t[1],1)] );
outBlock[ 7] = (byte)(S2[ARIA_BRF(t[1],0)] );
outBlock[ 8] = (byte)(X1[ARIA_BRF(t[2],3)] );
outBlock[ 9] = (byte)(X2[ARIA_BRF(t[2],2)]>>8);
outBlock[10] = (byte)(S1[ARIA_BRF(t[2],1)] );
outBlock[11] = (byte)(S2[ARIA_BRF(t[2],0)] );
outBlock[12] = (byte)(X1[ARIA_BRF(t[3],3)] );
outBlock[13] = (byte)(X2[ARIA_BRF(t[3],2)]>>8);
outBlock[14] = (byte)(S1[ARIA_BRF(t[3],1)] );
outBlock[15] = (byte)(S2[ARIA_BRF(t[3],0)] );
t = reinterpret_cast<word32*>(outBlock);
2017-04-16 17:23:27 +00:00
BigEndianBlock::Put(rk, t)(t[0])(t[1])(t[2])(t[3]);
#endif
#if CRYPTOPP_ARM_NEON_AVAILABLE
if (HasNEON())
{
if (xorBlock != NULLPTR)
ARIA_ProcessAndXorBlock_Xor_NEON(xorBlock, outBlock);
}
else
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
{
if (xorBlock != NULLPTR)
for (unsigned int n=0; n<ARIA::BLOCKSIZE; ++n)
outBlock[n] ^= xorBlock[n];
}
}
NAMESPACE_END