2017-01-27 12:05:45 +00:00
|
|
|
// nbtheory.h - originally written and placed in the public domain by Wei Dai
|
2015-11-05 06:59:46 +00:00
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \file nbtheory.h
|
|
|
|
/// \brief Classes and functions for number theoretic operations
|
2015-11-23 00:17:15 +00:00
|
|
|
|
2015-11-05 06:59:46 +00:00
|
|
|
#ifndef CRYPTOPP_NBTHEORY_H
|
|
|
|
#define CRYPTOPP_NBTHEORY_H
|
|
|
|
|
|
|
|
#include "cryptlib.h"
|
|
|
|
#include "integer.h"
|
|
|
|
#include "algparam.h"
|
|
|
|
|
|
|
|
NAMESPACE_BEGIN(CryptoPP)
|
|
|
|
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \brief The Small Prime table
|
|
|
|
/// \details GetPrimeTable obtains pointer to small prime table and provides the size of the table.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size);
|
|
|
|
|
|
|
|
// ************ primality testing ****************
|
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Generates a provable prime
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \param rng a RandomNumberGenerator to produce random material
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \param bits the number of bits in the prime number
|
|
|
|
/// \returns Integer() meeting Maurer's tests for primality
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
|
2015-11-23 00:17:15 +00:00
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Generates a provable prime
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \param rng a RandomNumberGenerator to produce random material
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \param bits the number of bits in the prime number
|
|
|
|
/// \returns Integer() meeting Mihailescu's tests for primality
|
|
|
|
/// \details Mihailescu's methods performs a search using algorithmic progressions.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
|
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Tests whether a number is a small prime
|
|
|
|
/// \param p a candidate prime to test
|
|
|
|
/// \returns true if p is a small prime, false otherwise
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \details Internally, the library maintains a table of the first 32719 prime numbers
|
|
|
|
/// in sorted order. IsSmallPrime searches the table and returns true if p is
|
2017-11-29 15:54:33 +00:00
|
|
|
/// in the table.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p);
|
|
|
|
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \brief Tests whether a number is divisible by a small prime
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \returns true if p is divisible by some prime less than bound.
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \details TrialDivision() returns <tt>true</tt> if <tt>p</tt> is divisible by some prime less
|
|
|
|
/// than <tt>bound</tt>. <tt>bound</tt> should not be greater than the largest entry in the
|
|
|
|
/// prime table, which is 32719.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound);
|
|
|
|
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \brief Tests whether a number is divisible by a small prime
|
|
|
|
/// \returns true if p is NOT divisible by small primes.
|
|
|
|
/// \details SmallDivisorsTest() returns <tt>true</tt> if <tt>p</tt> is NOT divisible by some
|
|
|
|
/// prime less than 32719.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p);
|
|
|
|
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \brief Determine if a number is probably prime
|
|
|
|
/// \param n the number to test
|
|
|
|
/// \param b the base to exponentiate
|
|
|
|
/// \returns true if the number n is probably prime, false otherwise.
|
|
|
|
/// \details IsFermatProbablePrime raises <tt>b</tt> to the <tt>n-1</tt> power and checks if
|
|
|
|
/// the result is congruent to 1 modulo <tt>n</tt>.
|
|
|
|
/// \details These is no reason to use IsFermatProbablePrime, use IsStrongProbablePrime or
|
|
|
|
/// IsStrongLucasProbablePrime instead.
|
|
|
|
/// \sa IsStrongProbablePrime, IsStrongLucasProbablePrime
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b);
|
2018-03-26 19:41:31 +00:00
|
|
|
|
|
|
|
/// \brief Determine if a number is probably prime
|
|
|
|
/// \param n the number to test
|
|
|
|
/// \returns true if the number n is probably prime, false otherwise.
|
|
|
|
/// \details These is no reason to use IsLucasProbablePrime, use IsStrongProbablePrime or
|
|
|
|
/// IsStrongLucasProbablePrime instead.
|
|
|
|
/// \sa IsStrongProbablePrime, IsStrongLucasProbablePrime
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n);
|
|
|
|
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \brief Determine if a number is probably prime
|
|
|
|
/// \param n the number to test
|
|
|
|
/// \param b the base to exponentiate
|
|
|
|
/// \returns true if the number n is probably prime, false otherwise.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b);
|
2018-03-26 19:41:31 +00:00
|
|
|
|
|
|
|
/// \brief Determine if a number is probably prime
|
|
|
|
/// \param n the number to test
|
|
|
|
/// \returns true if the number n is probably prime, false otherwise.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n);
|
|
|
|
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \brief Determine if a number is probably prime
|
|
|
|
/// \param rng a RandomNumberGenerator to produce random material
|
|
|
|
/// \param n the number to test
|
|
|
|
/// \param rounds the number of tests to perform
|
|
|
|
/// \details This is the Rabin-Miller primality test, i.e. repeating the strong probable prime
|
|
|
|
/// test for several rounds with random bases
|
|
|
|
/// \sa <A HREF="https://crypto.stackexchange.com/q/17707/10496">Trial divisions before
|
|
|
|
/// Miller-Rabin checks?</A> on Crypto Stack Exchange
|
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds);
|
2015-11-05 06:59:46 +00:00
|
|
|
|
2018-03-26 20:54:39 +00:00
|
|
|
/// \brief Verifies a number is probably prime
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \param p a candidate prime to test
|
|
|
|
/// \returns true if p is a probable prime, false otherwise
|
|
|
|
/// \details IsPrime() is suitable for testing candidate primes when creating them. Internally,
|
|
|
|
/// IsPrime() utilizes SmallDivisorsTest(), IsStrongProbablePrime() and IsStrongLucasProbablePrime().
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p);
|
|
|
|
|
2018-03-26 20:54:39 +00:00
|
|
|
/// \brief Verifies a number is probably prime
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \param rng a RandomNumberGenerator for randomized testing
|
|
|
|
/// \param p a candidate prime to test
|
|
|
|
/// \param level the level of thoroughness of testing
|
|
|
|
/// \returns true if p is a strong probable prime, false otherwise
|
|
|
|
/// \details VerifyPrime() is suitable for testing candidate primes created by others. Internally,
|
|
|
|
/// VerifyPrime() utilizes IsPrime() and one-round RabinMillerTest(). If the candiate passes and
|
|
|
|
/// level is greater than 1, then 10 round RabinMillerTest() primality testing is performed.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1);
|
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Application callback to signal suitability of a cabdidate prime
|
2015-11-05 06:59:46 +00:00
|
|
|
class CRYPTOPP_DLL PrimeSelector
|
|
|
|
{
|
|
|
|
public:
|
2019-10-06 00:55:15 +00:00
|
|
|
virtual ~PrimeSelector() {}
|
2015-11-05 06:59:46 +00:00
|
|
|
const PrimeSelector *GetSelectorPointer() const {return this;}
|
|
|
|
virtual bool IsAcceptable(const Integer &candidate) const =0;
|
|
|
|
};
|
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Finds a random prime of special form
|
|
|
|
/// \param p an Integer reference to receive the prime
|
|
|
|
/// \param max the maximum value
|
|
|
|
/// \param equiv the equivalence class based on the parameter mod
|
|
|
|
/// \param mod the modulus used to reduce the equivalence class
|
|
|
|
/// \param pSelector pointer to a PrimeSelector function for the application to signal suitability
|
|
|
|
/// \returns true if and only if FirstPrime() finds a prime and returns the prime through p. If FirstPrime()
|
|
|
|
/// returns false, then no such prime exists and the value of p is undefined
|
|
|
|
/// \details FirstPrime() uses a fast sieve to find the first probable prime
|
|
|
|
/// in <tt>{x | p<=x<=max and x%mod==equiv}</tt>
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector);
|
|
|
|
|
|
|
|
CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max);
|
|
|
|
|
|
|
|
CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength);
|
|
|
|
|
|
|
|
// ********** other number theoretic functions ************
|
|
|
|
|
2018-03-26 20:54:39 +00:00
|
|
|
/// \brief Calculate the greatest common divisor
|
|
|
|
/// \param a the first term
|
|
|
|
/// \param b the second term
|
|
|
|
/// \returns the greatest common divisor if one exists, 0 otherwise.
|
2015-11-05 06:59:46 +00:00
|
|
|
inline Integer GCD(const Integer &a, const Integer &b)
|
|
|
|
{return Integer::Gcd(a,b);}
|
2018-03-26 20:54:39 +00:00
|
|
|
|
|
|
|
/// \brief Determine relative primality
|
|
|
|
/// \param a the first term
|
|
|
|
/// \param b the second term
|
|
|
|
/// \returns true if <tt>a</tt> and <tt>b</tt> are relatively prime, false otherwise.
|
2015-11-05 06:59:46 +00:00
|
|
|
inline bool RelativelyPrime(const Integer &a, const Integer &b)
|
|
|
|
{return Integer::Gcd(a,b) == Integer::One();}
|
2018-03-26 20:54:39 +00:00
|
|
|
|
|
|
|
/// \brief Calculate the least common multiple
|
|
|
|
/// \param a the first term
|
|
|
|
/// \param b the second term
|
|
|
|
/// \returns the least common multiple of <tt>a</tt> and <tt>b</tt>.
|
2015-11-05 06:59:46 +00:00
|
|
|
inline Integer LCM(const Integer &a, const Integer &b)
|
|
|
|
{return a/Integer::Gcd(a,b)*b;}
|
2018-03-26 20:54:39 +00:00
|
|
|
|
|
|
|
/// \brief Calculate multiplicative inverse
|
|
|
|
/// \param a the number to test
|
|
|
|
/// \param b the modulus
|
|
|
|
/// \returns an Integer <tt>(a ^ -1) % n</tt> or 0 if none exists.
|
|
|
|
/// \details EuclideanMultiplicativeInverse returns the multiplicative inverse of the Integer
|
|
|
|
/// <tt>*a</tt> modulo the Integer <tt>b</tt>. If no Integer exists then Integer 0 is returned.
|
2015-11-05 06:59:46 +00:00
|
|
|
inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
|
|
|
|
{return a.InverseMod(b);}
|
|
|
|
|
2018-03-26 21:41:06 +00:00
|
|
|
|
|
|
|
/// \brief Chinese Remainder Theorem
|
|
|
|
/// \param xp the first number, mod p
|
|
|
|
/// \param p the first prime modulus
|
|
|
|
/// \param xq the second number, mod q
|
|
|
|
/// \param q the second prime modulus
|
|
|
|
/// \param u inverse of p mod q
|
|
|
|
/// \returns the CRT value of the parameters
|
|
|
|
/// \details CRT uses the Chinese Remainder Theorem to calculate <tt>x</tt> given
|
|
|
|
/// <tt>x mod p</tt> and <tt>x mod q</tt>, and <tt>u</tt> the inverse of <tt>p mod q</tt>.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u);
|
|
|
|
|
2018-03-26 21:41:06 +00:00
|
|
|
/// \brief Calculate the Jacobi symbol
|
|
|
|
/// \param a the first term
|
|
|
|
/// \param b the second term
|
|
|
|
/// \returns the the Jacobi symbol.
|
|
|
|
/// \details Jacobi symbols are calculated using the following rules:
|
|
|
|
/// -# if <tt>b</tt> is prime, then <tt>Jacobi(a, b)</tt>, then return 0
|
|
|
|
/// -# if <tt>a%b</tt>==0 AND <tt>a</tt> is quadratic residue <tt>mod b</tt>, then return 1
|
|
|
|
/// -# return -1 otherwise
|
|
|
|
/// \details Refer to a number theory book for what Jacobi symbol means when <tt>b</tt> is not prime.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b);
|
|
|
|
|
2018-03-26 21:41:06 +00:00
|
|
|
/// \brief Calculate the Lucas value
|
|
|
|
/// \returns the Lucas value
|
|
|
|
/// \details Lucas() calculates the Lucas function <tt>V_e(p, 1) mod n</tt>.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n);
|
2018-03-26 21:41:06 +00:00
|
|
|
|
|
|
|
/// \brief Calculate the inverse Lucas value
|
|
|
|
/// \returns the inverse Lucas value
|
|
|
|
/// \details InverseLucas() calculates <tt>x</tt> such that <tt>m==Lucas(e, x, p*q)</tt>,
|
|
|
|
/// <tt>p q</tt> primes, <tt>u</tt> is inverse of <tt>p mod q</tt>.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u);
|
|
|
|
|
2018-03-26 19:41:31 +00:00
|
|
|
/// \brief Modular multiplication
|
|
|
|
/// \param x the first term
|
|
|
|
/// \param y the second term
|
|
|
|
/// \param m the modulus
|
|
|
|
/// \returns an Integer <tt>(x * y) % m</tt>.
|
|
|
|
inline Integer ModularMultiplication(const Integer &x, const Integer &y, const Integer &m)
|
|
|
|
{return a_times_b_mod_c(x, y, m);}
|
|
|
|
|
|
|
|
/// \brief Modular exponentiation
|
|
|
|
/// \param x the base
|
|
|
|
/// \param e the exponent
|
|
|
|
/// \param m the modulus
|
|
|
|
/// \returns an Integer <tt>(a ^ b) % m</tt>.
|
|
|
|
inline Integer ModularExponentiation(const Integer &x, const Integer &e, const Integer &m)
|
|
|
|
{return a_exp_b_mod_c(x, e, m);}
|
|
|
|
|
|
|
|
/// \brief Extract a modular square root
|
|
|
|
/// \param a the number to extract square root
|
|
|
|
/// \param p the prime modulus
|
|
|
|
/// \returns the modular square root if it exists
|
|
|
|
/// \details ModularSquareRoot returns <tt>x</tt> such that <tt>x*x%p == a</tt>, <tt>p</tt> prime
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p);
|
2018-03-26 19:41:31 +00:00
|
|
|
|
|
|
|
/// \brief Extract a modular root
|
|
|
|
/// \returns a modular root if it exists
|
|
|
|
/// \details ModularRoot returns <tt>x</tt> such that <tt>a==ModularExponentiation(x, e, p*q)</tt>,
|
|
|
|
/// <tt>p</tt> <tt>q</tt> primes, and <tt>e</tt> relatively prime to <tt>(p-1)*(q-1)</tt>,
|
|
|
|
/// <tt>dp=d%(p-1)</tt>, <tt>dq=d%(q-1)</tt>, (d is inverse of <tt>e mod (p-1)*(q-1)</tt>)
|
|
|
|
/// and <tt>u=inverse of p mod q</tt>.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u);
|
|
|
|
|
2018-03-26 20:54:39 +00:00
|
|
|
/// \brief Solve a Modular Quadratic Equation
|
|
|
|
/// \param r1 the first residue
|
|
|
|
/// \param r2 the second residue
|
|
|
|
/// \param a the first coefficient
|
|
|
|
/// \param b the second coefficient
|
|
|
|
/// \param c the third constant
|
|
|
|
/// \param p the prime modulus
|
|
|
|
/// \returns true if solutions exist
|
|
|
|
/// \details SolveModularQuadraticEquation() finds <tt>r1</tt> and <tt>r2</tt> such that <tt>ax^2 +
|
|
|
|
/// bx + c == 0 (mod p)</tt> for x in <tt>{r1, r2}</tt>, <tt>p</tt> prime.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p);
|
|
|
|
|
2018-03-26 20:54:39 +00:00
|
|
|
/// \brief Estimate work factor
|
|
|
|
/// \param bitlength the size of the number, in bits
|
|
|
|
/// \returns the estimated work factor, in operations
|
|
|
|
/// \details DiscreteLogWorkFactor returns log base 2 of estimated number of operations to
|
|
|
|
/// calculate discrete log or factor a number.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength);
|
2018-03-26 20:54:39 +00:00
|
|
|
|
|
|
|
/// \brief Estimate work factor
|
|
|
|
/// \param bitlength the size of the number, in bits
|
|
|
|
/// \returns the estimated work factor, in operations
|
|
|
|
/// \details FactoringWorkFactor returns log base 2 of estimated number of operations to
|
|
|
|
/// calculate discrete log or factor a number.
|
2015-11-05 06:59:46 +00:00
|
|
|
CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength);
|
|
|
|
|
|
|
|
// ********************************************************
|
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Generator of prime numbers of special forms
|
2015-11-05 06:59:46 +00:00
|
|
|
class CRYPTOPP_DLL PrimeAndGenerator
|
|
|
|
{
|
|
|
|
public:
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Construct a PrimeAndGenerator
|
2015-11-05 06:59:46 +00:00
|
|
|
PrimeAndGenerator() {}
|
2016-12-06 16:09:31 +00:00
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Construct a PrimeAndGenerator
|
|
|
|
/// \param delta +1 or -1
|
|
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
|
|
/// \param pbits the number of bits in the prime p
|
|
|
|
/// \details PrimeAndGenerator() generates a random prime p of the form <tt>2*q+delta</tt>, where delta is 1 or -1 and q is
|
|
|
|
/// also prime. Internally the constructor calls <tt>Generate(delta, rng, pbits, pbits-1)</tt>.
|
|
|
|
/// \pre <tt>pbits > 5</tt>
|
|
|
|
/// \warning This PrimeAndGenerator() is slow because primes of this form are harder to find.
|
2015-11-05 06:59:46 +00:00
|
|
|
PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits)
|
|
|
|
{Generate(delta, rng, pbits, pbits-1);}
|
2016-12-06 16:09:31 +00:00
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Construct a PrimeAndGenerator
|
|
|
|
/// \param delta +1 or -1
|
|
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
|
|
/// \param pbits the number of bits in the prime p
|
|
|
|
/// \param qbits the number of bits in the prime q
|
|
|
|
/// \details PrimeAndGenerator() generates a random prime p of the form <tt>2*r*q+delta</tt>, where q is also prime.
|
|
|
|
/// Internally the constructor calls <tt>Generate(delta, rng, pbits, qbits)</tt>.
|
|
|
|
/// \pre <tt>qbits > 4 && pbits > qbits</tt>
|
2015-11-05 06:59:46 +00:00
|
|
|
PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits)
|
|
|
|
{Generate(delta, rng, pbits, qbits);}
|
2016-09-10 08:57:48 +00:00
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Generate a Prime and Generator
|
|
|
|
/// \param delta +1 or -1
|
|
|
|
/// \param rng a RandomNumberGenerator derived class
|
|
|
|
/// \param pbits the number of bits in the prime p
|
|
|
|
/// \param qbits the number of bits in the prime q
|
|
|
|
/// \details Generate() generates a random prime p of the form <tt>2*r*q+delta</tt>, where q is also prime.
|
2015-11-05 06:59:46 +00:00
|
|
|
void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits);
|
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Retrieve first prime
|
|
|
|
/// \returns Prime() returns the prime p.
|
2015-11-05 06:59:46 +00:00
|
|
|
const Integer& Prime() const {return p;}
|
2016-12-06 16:09:31 +00:00
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Retrieve second prime
|
|
|
|
/// \returns SubPrime() returns the prime q.
|
2015-11-05 06:59:46 +00:00
|
|
|
const Integer& SubPrime() const {return q;}
|
2016-12-04 21:48:27 +00:00
|
|
|
|
2017-11-29 15:54:33 +00:00
|
|
|
/// \brief Retrieve the generator
|
|
|
|
/// \returns Generator() returns the the generator g.
|
2015-11-05 06:59:46 +00:00
|
|
|
const Integer& Generator() const {return g;}
|
|
|
|
|
|
|
|
private:
|
|
|
|
Integer p, q, g;
|
|
|
|
};
|
|
|
|
|
|
|
|
NAMESPACE_END
|
|
|
|
|
|
|
|
#endif
|