ext-cryptopp/donna_64.cpp

536 lines
17 KiB
C++
Raw Normal View History

// donna_64.cpp - written and placed in public domain by Jeffrey Walton
// This is a port of Adam Langley's curve25519-donna
// located at https://github.com/agl/curve25519-donna
/* Copyright 2008, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* curve25519-donna: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
*
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation. */
#include "pch.h"
#include "config.h"
#include "donna.h"
#include "stdcpp.h"
#include "cpu.h"
// This macro is not in a header like config.h because
// we don't want it exposed to user code. We also need
// a standard header like <stdint.h> or <stdef.h>.
// Langley uses uint128_t in the 64-bit code paths so
// we further restrict 64-bit code.
#if (UINTPTR_MAX == 0xffffffff) || !defined(CRYPTOPP_WORD128_AVAILABLE)
# define CRYPTOPP_32BIT 1
#else
# define CRYPTOPP_64BIT 1
#endif
// Squash MS LNK4221 and libtool warnings
extern const char DONNA64_FNAME[] = __FILE__;
#if defined(CRYPTOPP_64BIT)
ANONYMOUS_NAMESPACE_BEGIN
using std::memcpy;
using CryptoPP::byte;
using CryptoPP::word32;
using CryptoPP::word64;
using CryptoPP::sword32;
using CryptoPP::sword64;
using CryptoPP::word128;
typedef word64 limb;
typedef limb felem[5];
// This is a special gcc mode for 128-bit integers. It's implemented on 64-bit
// platforms only as far as I know.
//typedef unsigned uint128_t __attribute__((mode(TI)));
/* Sum two numbers: output += in */
inline void fsum(limb *output, const limb *in)
{
output[0] += in[0];
output[1] += in[1];
output[2] += in[2];
output[3] += in[3];
output[4] += in[4];
}
/* Find the difference of two numbers: output = in - output
* (note the order of the arguments!)
*
* Assumes that out[i] < 2**52
* On return, out[i] < 2**55
*/
inline void fdifference_backwards(felem out, const felem in)
{
/* 152 is 19 << 3 */
const limb two54m152 = (((limb)1) << 54) - 152;
const limb two54m8 = (((limb)1) << 54) - 8;
out[0] = in[0] + two54m152 - out[0];
out[1] = in[1] + two54m8 - out[1];
out[2] = in[2] + two54m8 - out[2];
out[3] = in[3] + two54m8 - out[3];
out[4] = in[4] + two54m8 - out[4];
}
/* Multiply a number by a scalar: output = in * scalar */
inline void fscalar_product(felem output, const felem in, const limb scalar)
{
word128 a;
a = ((word128) in[0]) * scalar;
output[0] = ((limb)a) & 0x7ffffffffffff;
a = ((word128) in[1]) * scalar + ((limb) (a >> 51));
output[1] = ((limb)a) & 0x7ffffffffffff;
a = ((word128) in[2]) * scalar + ((limb) (a >> 51));
output[2] = ((limb)a) & 0x7ffffffffffff;
a = ((word128) in[3]) * scalar + ((limb) (a >> 51));
output[3] = ((limb)a) & 0x7ffffffffffff;
a = ((word128) in[4]) * scalar + ((limb) (a >> 51));
output[4] = ((limb)a) & 0x7ffffffffffff;
output[0] += (a >> 51) * 19;
}
/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*
* Assumes that in[i] < 2**55 and likewise for in2.
* On return, output[i] < 2**52
*/
inline void fmul(felem output, const felem in2, const felem in)
{
word128 t[5];
limb r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
s0 = in2[0];
s1 = in2[1];
s2 = in2[2];
s3 = in2[3];
s4 = in2[4];
t[0] = ((word128) r0) * s0;
t[1] = ((word128) r0) * s1 + ((word128) r1) * s0;
t[2] = ((word128) r0) * s2 + ((word128) r2) * s0 + ((word128) r1) * s1;
t[3] = ((word128) r0) * s3 + ((word128) r3) * s0 + ((word128) r1) * s2 + ((word128) r2) * s1;
t[4] = ((word128) r0) * s4 + ((word128) r4) * s0 + ((word128) r3) * s1 + ((word128) r1) * s3 + ((word128) r2) * s2;
r4 *= 19;
r1 *= 19;
r2 *= 19;
r3 *= 19;
t[0] += ((word128) r4) * s1 + ((word128) r1) * s4 + ((word128) r2) * s3 + ((word128) r3) * s2;
t[1] += ((word128) r4) * s2 + ((word128) r2) * s4 + ((word128) r3) * s3;
t[2] += ((word128) r4) * s3 + ((word128) r3) * s4;
t[3] += ((word128) r4) * s4;
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}
inline void fsquare_times(felem output, const felem in, limb count)
{
word128 t[5];
limb r0,r1,r2,r3,r4,c;
limb d0,d1,d2,d4,d419;
r0 = in[0];
r1 = in[1];
r2 = in[2];
r3 = in[3];
r4 = in[4];
do {
d0 = r0 * 2;
d1 = r1 * 2;
d2 = r2 * 2 * 19;
d419 = r4 * 19;
d4 = d419 * 2;
t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 ));
t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19));
t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 ));
t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 ));
t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 ));
r0 = (limb)t[0] & 0x7ffffffffffff; c = (limb)(t[0] >> 51);
t[1] += c; r1 = (limb)t[1] & 0x7ffffffffffff; c = (limb)(t[1] >> 51);
t[2] += c; r2 = (limb)t[2] & 0x7ffffffffffff; c = (limb)(t[2] >> 51);
t[3] += c; r3 = (limb)t[3] & 0x7ffffffffffff; c = (limb)(t[3] >> 51);
t[4] += c; r4 = (limb)t[4] & 0x7ffffffffffff; c = (limb)(t[4] >> 51);
r0 += c * 19; c = r0 >> 51; r0 = r0 & 0x7ffffffffffff;
r1 += c; c = r1 >> 51; r1 = r1 & 0x7ffffffffffff;
r2 += c;
} while(--count);
output[0] = r0;
output[1] = r1;
output[2] = r2;
output[3] = r3;
output[4] = r4;
}
/* Load a little-endian 64-bit number */
limb load_limb(const byte *in)
{
return
((limb)in[0]) |
(((limb)in[1]) << 8) |
(((limb)in[2]) << 16) |
(((limb)in[3]) << 24) |
(((limb)in[4]) << 32) |
(((limb)in[5]) << 40) |
(((limb)in[6]) << 48) |
(((limb)in[7]) << 56);
}
void store_limb(byte *out, limb in)
{
out[0] = in & 0xff;
out[1] = (in >> 8) & 0xff;
out[2] = (in >> 16) & 0xff;
out[3] = (in >> 24) & 0xff;
out[4] = (in >> 32) & 0xff;
out[5] = (in >> 40) & 0xff;
out[6] = (in >> 48) & 0xff;
out[7] = (in >> 56) & 0xff;
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
void fexpand(limb *output, const byte *in)
{
output[0] = load_limb(in) & 0x7ffffffffffff;
output[1] = (load_limb(in+6) >> 3) & 0x7ffffffffffff;
output[2] = (load_limb(in+12) >> 6) & 0x7ffffffffffff;
output[3] = (load_limb(in+19) >> 1) & 0x7ffffffffffff;
output[4] = (load_limb(in+24) >> 12) & 0x7ffffffffffff;
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array
*/
void fcontract(byte *output, const felem input)
{
word128 t[5];
t[0] = input[0];
t[1] = input[1];
t[2] = input[2];
t[3] = input[3];
t[4] = input[4];
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
/* now t is between 0 and 2^255-1, properly carried. */
/* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */
t[0] += 19;
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
t[0] += 19 * (t[4] >> 51); t[4] &= 0x7ffffffffffff;
/* now between 19 and 2^255-1 in both cases, and offset by 19. */
t[0] += 0x8000000000000 - 19;
t[1] += 0x8000000000000 - 1;
t[2] += 0x8000000000000 - 1;
t[3] += 0x8000000000000 - 1;
t[4] += 0x8000000000000 - 1;
/* now between 2^255 and 2^256-20, and offset by 2^255. */
t[1] += t[0] >> 51; t[0] &= 0x7ffffffffffff;
t[2] += t[1] >> 51; t[1] &= 0x7ffffffffffff;
t[3] += t[2] >> 51; t[2] &= 0x7ffffffffffff;
t[4] += t[3] >> 51; t[3] &= 0x7ffffffffffff;
t[4] &= 0x7ffffffffffff;
store_limb(output, t[0] | (t[1] << 51));
store_limb(output+8, (t[1] >> 13) | (t[2] << 38));
store_limb(output+16, (t[2] >> 26) | (t[3] << 25));
store_limb(output+24, (t[3] >> 39) | (t[4] << 12));
}
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form
* x3 z3: long form
* x z: short form, destroyed
* xprime zprime: short form, destroyed
* qmqp: short form, preserved
*/
void fmonty(limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */
limb *xprime, limb *zprime, /* input Q' */
const limb *qmqp /* input Q - Q' */)
{
limb origx[5], origxprime[5], zzz[5], xx[5], zz[5];
limb xxprime[5], zzprime[5], zzzprime[5];
memcpy(origx, x, 5 * sizeof(limb));
fsum(x, z);
fdifference_backwards(z, origx); // does x - z
memcpy(origxprime, xprime, sizeof(limb) * 5);
fsum(xprime, zprime);
fdifference_backwards(zprime, origxprime);
fmul(xxprime, xprime, z);
fmul(zzprime, x, zprime);
memcpy(origxprime, xxprime, sizeof(limb) * 5);
fsum(xxprime, zzprime);
fdifference_backwards(zzprime, origxprime);
fsquare_times(x3, xxprime, 1);
fsquare_times(zzzprime, zzprime, 1);
fmul(z3, zzzprime, qmqp);
fsquare_times(xx, x, 1);
fsquare_times(zz, z, 1);
fmul(x2, xx, zz);
fdifference_backwards(zz, xx); // does zz = xx - zz
fscalar_product(zzz, zz, 121665);
fsum(zzz, xx);
fmul(z2, zz, zzz);
}
// -----------------------------------------------------------------------------
// Maybe swap the contents of two limb arrays (@a and @b), each @len elements
// long. Perform the swap iff @swap is non-zero.
//
// This function performs the swap without leaking any side-channel
// information.
// -----------------------------------------------------------------------------
void swap_conditional(limb a[5], limb b[5], limb iswap)
{
const limb swap = -iswap;
for (unsigned int i = 0; i < 5; ++i) {
const limb x = swap & (a[i] ^ b[i]);
a[i] ^= x;
b[i] ^= x;
}
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form)
*/
void cmult(limb *resultx, limb *resultz, const byte *n, const limb *q)
{
limb a[5] = {0}, b[5] = {1}, c[5] = {1}, d[5] = {0};
limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
limb e[5] = {0}, f[5] = {1}, g[5] = {0}, h[5] = {1};
limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
memcpy(nqpqx, q, sizeof(limb) * 5);
for (unsigned int i = 0; i < 32; ++i) {
byte b = n[31 - i];
for (unsigned int j = 0; j < 8; ++j) {
const limb bit = b >> 7;
swap_conditional(nqx, nqpqx, bit);
swap_conditional(nqz, nqpqz, bit);
fmonty(nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q);
swap_conditional(nqx2, nqpqx2, bit);
swap_conditional(nqz2, nqpqz2, bit);
t = nqx;
nqx = nqx2;
nqx2 = t;
t = nqz;
nqz = nqz2;
nqz2 = t;
t = nqpqx;
nqpqx = nqpqx2;
nqpqx2 = t;
t = nqpqz;
nqpqz = nqpqz2;
nqpqz2 = t;
b <<= 1;
}
}
memcpy(resultx, nqx, sizeof(limb) * 5);
memcpy(resultz, nqz, sizeof(limb) * 5);
}
// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code, tightened a little
// -----------------------------------------------------------------------------
void crecip(felem out, const felem z)
{
felem a,t0,b,c;
/* 2 */ fsquare_times(a, z, 1); // a = 2
/* 8 */ fsquare_times(t0, a, 2);
/* 9 */ fmul(b, t0, z); // b = 9
/* 11 */ fmul(a, b, a); // a = 11
/* 22 */ fsquare_times(t0, a, 1);
/* 2^5 - 2^0 = 31 */ fmul(b, t0, b);
/* 2^10 - 2^5 */ fsquare_times(t0, b, 5);
/* 2^10 - 2^0 */ fmul(b, t0, b);
/* 2^20 - 2^10 */ fsquare_times(t0, b, 10);
/* 2^20 - 2^0 */ fmul(c, t0, b);
/* 2^40 - 2^20 */ fsquare_times(t0, c, 20);
/* 2^40 - 2^0 */ fmul(t0, t0, c);
/* 2^50 - 2^10 */ fsquare_times(t0, t0, 10);
/* 2^50 - 2^0 */ fmul(b, t0, b);
/* 2^100 - 2^50 */ fsquare_times(t0, b, 50);
/* 2^100 - 2^0 */ fmul(c, t0, b);
/* 2^200 - 2^100 */ fsquare_times(t0, c, 100);
/* 2^200 - 2^0 */ fmul(t0, t0, c);
/* 2^250 - 2^50 */ fsquare_times(t0, t0, 50);
/* 2^250 - 2^0 */ fmul(t0, t0, b);
/* 2^255 - 2^5 */ fsquare_times(t0, t0, 5);
/* 2^255 - 21 */ fmul(out, t0, a);
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Donna)
int curve25519_CXX(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32])
{
limb bp[5], x[5], z[5], zmone[5];
byte e[32];
for (unsigned int i = 0; i < 32; ++i)
e[i] = secretKey[i];
// I'd like to remove this copy/clamp but I don't
// know if an attacker can cause an information
// leak if multiply is misused.
e[0] &= 248; e[31] &= 127; e[31] |= 64;
fexpand(bp, othersKey);
cmult(x, z, e, bp);
crecip(zmone, z);
fmul(z, x, zmone);
fcontract(sharedKey, z);
return 0;
}
int curve25519(byte publicKey[32], const byte secretKey[32])
{
const byte basePoint[32] = {9};
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return curve25519_SSE2(publicKey, secretKey, basePoint);
else
#endif
return curve25519_CXX(publicKey, secretKey, basePoint);
}
int curve25519(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32])
{
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
if (HasSSE2())
return curve25519_SSE2(sharedKey, secretKey, othersKey);
else
#endif
return curve25519_CXX(sharedKey, secretKey, othersKey);
}
NAMESPACE_END // Donna
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_64BIT