ext-cryptopp/adv-simd.h

1924 lines
77 KiB
C
Raw Normal View History

// adv-simd.h - written and placed in the public domain by Jeffrey Walton
//
// The SIMD based implementations for ciphers that use SSE, NEON and Power7
// have a commom pattern. Namely, they have a specialized implementation of
// AdvancedProcessBlocks which processes multiple block using hardware
// acceleration. After several implementations we noticed a lot of copy and
// paste occuring. adv-simd.h provides a template to avoid the copy and paste.
//
// There are 9 templates provided in this file. The number following the
// function name is the block size of the cipher. The name following that
// is the acceleration and arrangement. For example 4x1_SSE means Intel SSE
// using two encrypt (or decrypt) functions: one that operates on 4 blocks,
// and one that operates on 1 block.
//
// * AdvancedProcessBlocks64_2x1_SSE
// * AdvancedProcessBlocks64_4x1_SSE
// * AdvancedProcessBlocks128_4x1_SSE
// * AdvancedProcessBlocks64_6x2_SSE
// * AdvancedProcessBlocks128_6x2_SSE
// * AdvancedProcessBlocks64_6x2_NEON
// * AdvancedProcessBlocks128_4x1_NEON
// * AdvancedProcessBlocks128_6x2_NEON
// * AdvancedProcessBlocks64_6x2_ALTIVEC
// * AdvancedProcessBlocks128_6x2_ALTIVEC
//
// If an arrangement ends in 2, like 6x2, then the template will handle the
// single block case by padding with 0's and using the two block function.
// This happens at most one time when processing multiple blocks. The extra
// processing of a zero block is trivial and worth the tradeoff.
//
// The MAYBE_CONST macro present on x86 is a SunCC workaround. Some versions
// of SunCC lose/drop the const-ness in the F1 and F4 functions. It eventually
// results in a failed link due to the const/non-const mismatch.
#ifndef CRYPTOPP_ADVANCED_SIMD_TEMPLATES
#define CRYPTOPP_ADVANCED_SIMD_TEMPLATES
#include "config.h"
#include "misc.h"
#include "stdcpp.h"
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_SSE2_INTRIN_AVAILABLE)
# include <immintrin.h>
# include <xmmintrin.h>
#endif
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
# include "ppc-simd.h"
#endif
// ************************ All block ciphers *********************** //
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::BlockTransformation;
CRYPTOPP_CONSTANT(BT_XorInput = BlockTransformation::BT_XorInput)
CRYPTOPP_CONSTANT(BT_AllowParallel = BlockTransformation::BT_AllowParallel)
CRYPTOPP_CONSTANT(BT_InBlockIsCounter = BlockTransformation::BT_InBlockIsCounter)
CRYPTOPP_CONSTANT(BT_ReverseDirection = BlockTransformation::BT_ReverseDirection)
CRYPTOPP_CONSTANT(BT_DontIncrementInOutPointers = BlockTransformation::BT_DontIncrementInOutPointers)
ANONYMOUS_NAMESPACE_END
// *************************** ARM NEON ************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
NAMESPACE_BEGIN(CryptoPP)
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 64-bit blocks
/// \tparam F6 function to process 6 64-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks64_6x2_NEON processes 6 and 2 NEON SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks64_6x2_NEON(F2 func2, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
#else
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4_1b[] = {0, 0, 0, 1};
const word32 s_one32x4_2b[] = {0, 2, 0, 2};
#endif
const ptrdiff_t blockSize = 8;
const ptrdiff_t neonBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : neonBlockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? neonBlockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : neonBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - neonBlockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - neonBlockSize;
outBlocks += static_cast<ptrdiff_t>(length) - neonBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*neonBlockSize)
{
uint32x4_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t ctr = vld1_u8(inBlocks);
block0 = vaddq_u32(vld1q_u32(s_one32x4_1b),
vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const uint32x4_t be2 = vld1q_u32(s_one32x4_2b);
block1 = vaddq_u32(be2, block0);
block2 = vaddq_u32(be2, block1);
block3 = vaddq_u32(be2, block2);
block4 = vaddq_u32(be2, block3);
block5 = vaddq_u32(be2, block4);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(be2, block5))));
}
else
{
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block2 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block3 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block4 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block5 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block2));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block3));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block4));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block5));
outBlocks += outIncrement;
length -= 6*neonBlockSize;
}
while (length >= 2*neonBlockSize)
{
uint32x4_t block0, block1;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t ctr = vld1_u8(inBlocks);
block0 = vaddq_u32(vld1q_u32(s_one32x4_1b),
vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const uint32x4_t be2 = vld1q_u32(s_one32x4_2b);
block1 = vaddq_u32(be2, block0);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(be2, block1))));
}
else
{
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
outBlocks += outIncrement;
length -= 2*neonBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
uint32x4_t block, zero = vld1q_u32(s_zero32x4);
const uint8x8_t v = vld1_u8(inBlocks);
block = vreinterpretq_u32_u8(vcombine_u8(v,v));
if (xorInput)
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
vst1_u8(const_cast<byte*>(outBlocks),
vget_low_u8(vreinterpretq_u8_u32(block)));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 6 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x1_NEON processes 6 and 2 NEON SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F6 must use the
/// same word type.
template <typename F1, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x1_NEON(F1 func1, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
#else
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4[] = {0, 0, 0, 1};
#endif
const ptrdiff_t blockSize = 16;
// const ptrdiff_t neonBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, be);
block2 = vaddq_u64(block1, be);
block3 = vaddq_u64(block2, be);
block4 = vaddq_u64(block3, be);
block5 = vaddq_u64(block4, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, be)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
outBlocks += outIncrement;
length -= 6*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block;
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 4 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F4 function to process 4 128-bit blocks
/// \tparam W word type of the subkey table
2018-06-23 16:27:25 +00:00
/// \tparam V vector type of the NEON datatype
/// \details AdvancedProcessBlocks128_4x1_NEON processes 4 and 1 NEON SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. V is the vector type and it is
/// usually uint32x4_t or uint64x2_t. F1, F4, W and V must use the same word and
2018-06-23 16:27:25 +00:00
/// vector type. The V parameter is used to avoid template argument
/// deduction/substitution failures.
template <typename F1, typename F4, typename W, typename V>
inline size_t AdvancedProcessBlocks128_4x1_NEON(F1 func1, F4 func4,
const V& unused, const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_UNUSED(unused);
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
#else
const word32 s_one32x4[] = {0, 0, 0, 1};
#endif
const ptrdiff_t blockSize = 16;
// const ptrdiff_t neonBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, be);
block2 = vaddq_u64(block1, be);
block3 = vaddq_u64(block2, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block3, be)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func4((V&)block0, (V&)block1, (V&)block2, (V&)block3, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks += outIncrement;
length -= 4*blockSize;
}
2018-07-01 05:23:35 +00:00
}
while (length >= blockSize)
{
uint64x2_t block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1( (V&)block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 128-bit blocks
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x2_NEON processes 6 and 2 NEON SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x2_NEON(F2 func2, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
#else
const word32 s_one32x4[] = {0, 0, 0, 1};
#endif
const ptrdiff_t blockSize = 16;
// const ptrdiff_t neonBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, be);
block2 = vaddq_u64(block1, be);
block3 = vaddq_u64(block2, be);
block4 = vaddq_u64(block3, be);
block5 = vaddq_u64(block4, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, be)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
outBlocks += outIncrement;
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
uint64x2_t block0, block1;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one32x4));
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block1, be)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks += outIncrement;
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block, zero = {0,0};
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (xorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// *************************** Intel SSE ************************** //
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
// Hack for SunCC, http://github.com/weidai11/cryptopp/issues/224
#if (__SUNPRO_CC >= 0x5130)
# define MAYBE_CONST
# define MAYBE_UNCONST_CAST(T, x) const_cast<MAYBE_CONST T>(x)
#else
# define MAYBE_CONST const
# define MAYBE_UNCONST_CAST(T, x) (x)
#endif
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#ifndef M128_CAST
# define M128_CAST(x) ((__m128i *)(void *)(x))
#endif
#ifndef CONST_M128_CAST
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
#endif
NAMESPACE_BEGIN(CryptoPP)
template <typename F1, typename F2, typename W>
2018-07-01 05:23:35 +00:00
inline size_t AdvancedProcessBlocks64_2x1_SSE(F1 func1, F2 func2,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
2018-07-01 05:23:35 +00:00
// Avoid casting byte* to double*. Clang and GCC do not agree.
double temp[2];
const ptrdiff_t blockSize = 8;
const ptrdiff_t xmmBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? xmmBlockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
outBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 2*xmmBlockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
2018-07-01 05:23:35 +00:00
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b),
_mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
2018-07-01 05:23:35 +00:00
// Store the next counter. The const_cast is UB.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(be2, block1)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
2018-07-01 05:23:35 +00:00
std::memcpy(temp, inBlocks, blockSize);
__m128i block = _mm_castpd_si128(_mm_load_sd(temp));
if (xorInput)
{
2018-07-01 05:23:35 +00:00
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block, _mm_castpd_si128(_mm_load_sd(temp)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
2018-07-01 05:23:35 +00:00
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block, _mm_castpd_si128(_mm_load_sd(temp)));
}
2018-07-01 05:23:35 +00:00
_mm_store_sd(temp, _mm_castsi128_pd(block));
std::memcpy(outBlocks, temp, blockSize);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 64-bit blocks
/// \tparam F6 function to process 6 64-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks64_6x2_SSE processes 6 and 2 SSE SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
2018-07-01 05:23:35 +00:00
inline size_t AdvancedProcessBlocks64_6x2_SSE(F2 func2, F6 func6,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
2018-07-01 05:23:35 +00:00
// Avoid casting byte* to double*. Clang and GCC do not agree.
double temp[2];
const ptrdiff_t blockSize = 8;
const ptrdiff_t xmmBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? xmmBlockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
outBlocks += static_cast<ptrdiff_t>(length) - xmmBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*xmmBlockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
2018-07-01 05:23:35 +00:00
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b),
_mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
block2 = _mm_add_epi32(be2, block1);
block3 = _mm_add_epi32(be2, block2);
block4 = _mm_add_epi32(be2, block3);
block5 = _mm_add_epi32(be2, block4);
2018-07-01 05:23:35 +00:00
// Store the next counter. The const_cast is UB.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi32(be2, block5)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks += outIncrement;
length -= 6*xmmBlockSize;
}
while (length >= 2*xmmBlockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
2018-07-01 05:23:35 +00:00
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b),
_mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
2018-07-01 05:23:35 +00:00
// Store the next counter. The const_cast is UB.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(be2, block1)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
2018-07-01 05:23:35 +00:00
std::memcpy(temp, inBlocks, blockSize);
block = _mm_castpd_si128(_mm_load_sd(temp));
if (xorInput)
{
2018-07-01 05:23:35 +00:00
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block,
_mm_castpd_si128(_mm_load_sd(temp)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
2018-07-01 05:23:35 +00:00
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block,
_mm_castpd_si128(_mm_load_sd(temp)));
}
2018-07-01 05:23:35 +00:00
_mm_store_sd(temp, _mm_castsi128_pd(block));
std::memcpy(outBlocks, temp, blockSize);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
/// \brief AdvancedProcessBlocks for 2 and 6 blocks
/// \tparam F2 function to process 2 128-bit blocks
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x2_SSE processes 6 and 2 SSE SIMD words
/// at a time. For a single block the template uses F2 with a zero block.
/// \details The subkey type is usually word32 or word64. F2 and F6 must use the
/// same word type.
template <typename F2, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x2_SSE(F2 func2, F6 func6,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
const ptrdiff_t blockSize = 16;
// const ptrdiff_t xmmBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
block4 = _mm_add_epi32(block3, be1);
block5 = _mm_add_epi32(block4, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, be1));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks += outIncrement;
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, be1));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (xorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
/// \brief AdvancedProcessBlocks for 1 and 4 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F4 function to process 4 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_4x1_SSE processes 4 and 1 SSE SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F4 must use the
/// same word type.
template <typename F1, typename F4, typename W>
inline size_t AdvancedProcessBlocks128_4x1_SSE(F1 func1, F4 func4,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
const ptrdiff_t blockSize = 16;
// const ptrdiff_t xmmBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4*blockSize)
{
__m128i block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, be1));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func4(block0, block1, block2, block3, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
length -= 4*blockSize;
}
}
while (length >= blockSize)
{
__m128i block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (xorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
2018-07-01 05:23:35 +00:00
template <typename F1, typename F2, typename W>
inline size_t AdvancedProcessBlocks64_4x1_SSE(F1 func1, F2 func2,
MAYBE_CONST W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_1b[] = { 0, 0, 0, 1 << 24 };
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_2b[] = { 0, 2 << 24, 0, 2 << 24 };
// Avoid casting byte* to double*. Clang and GCC do not agree.
double temp[2];
const ptrdiff_t blockSize = 8;
const ptrdiff_t xmmBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter | BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? xmmBlockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length)-xmmBlockSize;
xorBlocks += static_cast<ptrdiff_t>(length)-xmmBlockSize;
outBlocks += static_cast<ptrdiff_t>(length)-xmmBlockSize;
inIncrement = 0 - inIncrement;
xorIncrement = 0 - xorIncrement;
outIncrement = 0 - outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 4 * xmmBlockSize)
{
__m128i block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b),
_mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
block2 = _mm_add_epi32(be2, block1);
block3 = _mm_add_epi32(be2, block2);
// Store the next counter. The const_cast is UB.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(be2, block3)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, block2, block3, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
length -= 4 * xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
std::memcpy(temp, inBlocks, blockSize);
__m128i block = _mm_castpd_si128(_mm_load_sd(temp));
if (xorInput)
{
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block, _mm_castpd_si128(_mm_load_sd(temp)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func1(block, subKeys, static_cast<unsigned int>(rounds));
if (xorOutput)
{
std::memcpy(temp, xorBlocks, blockSize);
block = _mm_xor_si128(block, _mm_castpd_si128(_mm_load_sd(temp)));
}
_mm_store_sd(temp, _mm_castsi128_pd(block));
std::memcpy(outBlocks, temp, blockSize);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_SSSE3_AVAILABLE
// *********************** Altivec/Power 4 ********************** //
#if defined(CRYPTOPP_ALTIVEC_AVAILABLE)
NAMESPACE_BEGIN(CryptoPP)
/// \brief AdvancedProcessBlocks for 1 and 6 blocks
/// \tparam F1 function to process 1 128-bit block
/// \tparam F6 function to process 6 128-bit blocks
/// \tparam W word type of the subkey table
/// \details AdvancedProcessBlocks128_6x1_ALTIVEC processes 6 and 1 Altivec SIMD words
/// at a time.
/// \details The subkey type is usually word32 or word64. F1 and F6 must use the
/// same word type.
template <typename F1, typename F6, typename W>
inline size_t AdvancedProcessBlocks128_6x1_ALTIVEC(F1 func1, F6 func6,
const W *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const uint32x4_p s_one = {1,0,0,0};
#else
const uint32x4_p s_one = {0,0,0,1};
#endif
const ptrdiff_t blockSize = 16;
2018-01-06 02:27:27 +00:00
// const ptrdiff_t vexBlockSize = 16;
ptrdiff_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
ptrdiff_t xorIncrement = (xorBlocks != NULLPTR) ? blockSize : 0;
ptrdiff_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
// Clang and Coverity are generating findings using xorBlocks as a flag.
const bool xorInput = (xorBlocks != NULLPTR) && (flags & BT_XorInput);
const bool xorOutput = (xorBlocks != NULLPTR) && !(flags & BT_XorInput);
if (flags & BT_ReverseDirection)
{
inBlocks += static_cast<ptrdiff_t>(length) - blockSize;
xorBlocks += static_cast<ptrdiff_t>(length) - blockSize;
outBlocks += static_cast<ptrdiff_t>(length) - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint32x4_p block0, block1, block2, block3, block4, block5, temp;
if (flags & BT_InBlockIsCounter)
{
block0 = VectorLoad(inBlocks);
block1 = VectorAdd(block0, s_one);
block2 = VectorAdd(block1, s_one);
block3 = VectorAdd(block2, s_one);
block4 = VectorAdd(block3, s_one);
block5 = VectorAdd(block4, s_one);
temp = VectorAdd(block5, s_one);
VectorStore(temp, const_cast<byte*>(inBlocks));
}
else
{
block0 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block1 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block2 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block3 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block4 = VectorLoad(inBlocks);
inBlocks += inIncrement;
block5 = VectorLoad(inBlocks);
inBlocks += inIncrement;
}
if (xorInput)
{
block0 = VectorXor(block0, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block1 = VectorXor(block1, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block2 = VectorXor(block2, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block3 = VectorXor(block3, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block4 = VectorXor(block4, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block5 = VectorXor(block5, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, rounds);
if (xorOutput)
{
block0 = VectorXor(block0, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block1 = VectorXor(block1, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block2 = VectorXor(block2, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block3 = VectorXor(block3, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block4 = VectorXor(block4, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
block5 = VectorXor(block5, VectorLoad(xorBlocks));
xorBlocks += xorIncrement;
}
VectorStore(block0, outBlocks);
outBlocks += outIncrement;
VectorStore(block1, outBlocks);
outBlocks += outIncrement;
VectorStore(block2, outBlocks);
outBlocks += outIncrement;
VectorStore(block3, outBlocks);
outBlocks += outIncrement;
VectorStore(block4, outBlocks);
outBlocks += outIncrement;
VectorStore(block5, outBlocks);
outBlocks += outIncrement;
length -= 6*blockSize;
}
}
while (length >= blockSize)
{
uint32x4_p block = VectorLoad(inBlocks);
if (xorInput)
block = VectorXor(block, VectorLoad(xorBlocks));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func1(block, subKeys, rounds);
if (xorOutput)
block = VectorXor(block, VectorLoad(xorBlocks));
VectorStore(block, outBlocks);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
NAMESPACE_END // CryptoPP
#endif // CRYPTOPP_ALTIVEC_AVAILABLE
#endif // CRYPTOPP_ADVANCED_SIMD_TEMPLATES