ext-cryptopp/simon-simd.cpp

1096 lines
41 KiB
C++
Raw Normal View History

// simon-simd.cpp - written and placed in the public domain by Jeffrey Walton
//
// This source file uses intrinsics and built-ins to gain access to
// SSSE3, ARM NEON and ARMv8a, and Power7 Altivec instructions. A separate
// source file is needed because additional CXXFLAGS are required to enable
// the appropriate instructions sets in some build configurations.
#include "pch.h"
#include "config.h"
#include "simon.h"
#include "misc.h"
#include "adv-simd.h"
// Uncomment for benchmarking C++ against SSE or NEON.
// Do so in both simon.cpp and simon-simd.cpp.
// #undef CRYPTOPP_SSSE3_AVAILABLE
// #undef CRYPTOPP_SSE41_AVAILABLE
// #undef CRYPTOPP_ARM_NEON_AVAILABLE
#if (CRYPTOPP_SSSE3_AVAILABLE)
# include <pmmintrin.h>
# include <tmmintrin.h>
#endif
#if (CRYPTOPP_SSE41_AVAILABLE)
# include <smmintrin.h>
#endif
#if defined(__AVX512F__) && defined(__AVX512VL__)
# define CRYPTOPP_AVX512_ROTATE 1
# include <immintrin.h>
#endif
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
# include <arm_neon.h>
#endif
// Can't use CRYPTOPP_ARM_XXX_AVAILABLE because too many
// compilers don't follow ACLE conventions for the include.
#if defined(CRYPTOPP_ARM_ACLE_AVAILABLE)
# include <stdint.h>
# include <arm_acle.h>
#endif
// https://www.spinics.net/lists/gcchelp/msg47735.html and
// https://www.spinics.net/lists/gcchelp/msg47749.html
#if (CRYPTOPP_GCC_VERSION >= 40900)
# define GCC_NO_UBSAN __attribute__ ((no_sanitize_undefined))
#else
# define GCC_NO_UBSAN
#endif
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word32;
using CryptoPP::word64;
using CryptoPP::rotlFixed;
using CryptoPP::rotrFixed;
using CryptoPP::vec_swap; // SunCC
// *************************** ARM NEON ************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
template <class T>
inline T UnpackHigh32(const T& a, const T& b)
{
const uint32x2_t x(vget_high_u32((uint32x4_t)a));
const uint32x2_t y(vget_high_u32((uint32x4_t)b));
const uint32x2x2_t r = vzip_u32(x, y);
return (T)vcombine_u32(r.val[0], r.val[1]);
}
template <class T>
inline T UnpackLow32(const T& a, const T& b)
{
const uint32x2_t x(vget_low_u32((uint32x4_t)a));
const uint32x2_t y(vget_low_u32((uint32x4_t)b));
const uint32x2x2_t r = vzip_u32(x, y);
return (T)vcombine_u32(r.val[0], r.val[1]);
}
template <unsigned int R>
inline uint32x4_t RotateLeft32(const uint32x4_t& val)
{
const uint32x4_t a(vshlq_n_u32(val, R));
const uint32x4_t b(vshrq_n_u32(val, 32 - R));
return vorrq_u32(a, b);
}
template <unsigned int R>
inline uint32x4_t RotateRight32(const uint32x4_t& val)
{
const uint32x4_t a(vshlq_n_u32(val, 32 - R));
const uint32x4_t b(vshrq_n_u32(val, R));
return vorrq_u32(a, b);
}
#if defined(__aarch32__) || defined(__aarch64__)
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint32x4_t RotateLeft32<8>(const uint32x4_t& val)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
const uint8_t maskb[16] = { 14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3 };
const uint8x16_t mask = vld1q_u8(maskb);
#else
const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 };
const uint8x16_t mask = vld1q_u8(maskb);
#endif
return vreinterpretq_u32_u8(
vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint32x4_t RotateRight32<8>(const uint32x4_t& val)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
const uint8_t maskb[16] = { 12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1 };
const uint8x16_t mask = vld1q_u8(maskb);
#else
const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,14,12 };
const uint8x16_t mask = vld1q_u8(maskb);
#endif
return vreinterpretq_u32_u8(
vqtbl1q_u8(vreinterpretq_u8_u32(val), mask));
}
#endif
inline uint32x4_t SIMON64_f(const uint32x4_t& val)
{
return veorq_u32(RotateLeft32<2>(val),
vandq_u32(RotateLeft32<1>(val), RotateLeft32<8>(val)));
}
inline void SIMON64_Enc_Block(uint32x4_t &block1, uint32x4_t &block0,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following. If only a single block is available then
// a Zero block is provided to promote vectorizations.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_t x1 = vuzpq_u32(block0, block1).val[1];
uint32x4_t y1 = vuzpq_u32(block0, block1).val[0];
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2);
}
if (rounds & 1)
{
const uint32x4_t rk = vld1q_dup_u32(subkeys+rounds-1);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk);
std::swap(x1, y1);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = UnpackLow32(y1, x1);
block1 = UnpackHigh32(y1, x1);
}
inline void SIMON64_Dec_Block(uint32x4_t &block0, uint32x4_t &block1,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following. If only a single block is available then
// a Zero block is provided to promote vectorizations.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_t x1 = vuzpq_u32(block0, block1).val[1];
uint32x4_t y1 = vuzpq_u32(block0, block1).val[0];
if (rounds & 1)
{
std::swap(x1, y1);
const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1);
y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i+1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = UnpackLow32(y1, x1);
block1 = UnpackHigh32(y1, x1);
}
inline void SIMON64_Enc_6_Blocks(uint32x4_t &block0, uint32x4_t &block1,
uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following. If only a single block is available then
// a Zero block is provided to promote vectorizations.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_t x1 = vuzpq_u32(block0, block1).val[1];
uint32x4_t y1 = vuzpq_u32(block0, block1).val[0];
uint32x4_t x2 = vuzpq_u32(block2, block3).val[1];
uint32x4_t y2 = vuzpq_u32(block2, block3).val[0];
uint32x4_t x3 = vuzpq_u32(block4, block5).val[1];
uint32x4_t y3 = vuzpq_u32(block4, block5).val[0];
for (int i = 0; i < static_cast<int>(rounds & ~1) - 1; i += 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1);
y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk1);
y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2);
x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk2);
x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk2);
}
if (rounds & 1)
{
const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk);
y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk);
y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk);
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = UnpackLow32(y1, x1);
block1 = UnpackHigh32(y1, x1);
block2 = UnpackLow32(y2, x2);
block3 = UnpackHigh32(y2, x2);
block4 = UnpackLow32(y3, x3);
block5 = UnpackHigh32(y3, x3);
}
inline void SIMON64_Dec_6_Blocks(uint32x4_t &block0, uint32x4_t &block1,
uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following. If only a single block is available then
// a Zero block is provided to promote vectorizations.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
uint32x4_t x1 = vuzpq_u32(block0, block1).val[1];
uint32x4_t y1 = vuzpq_u32(block0, block1).val[0];
uint32x4_t x2 = vuzpq_u32(block2, block3).val[1];
uint32x4_t y2 = vuzpq_u32(block2, block3).val[0];
uint32x4_t x3 = vuzpq_u32(block4, block5).val[1];
uint32x4_t y3 = vuzpq_u32(block4, block5).val[0];
if (rounds & 1)
{
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1);
y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1));
y2 = veorq_u32(veorq_u32(y2, rk), SIMON64_f(x2));
y3 = veorq_u32(veorq_u32(y3, rk), SIMON64_f(x3));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const uint32x4_t rk1 = vld1q_dup_u32(subkeys + i + 1);
x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1);
x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk1);
x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk1);
const uint32x4_t rk2 = vld1q_dup_u32(subkeys + i);
y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2);
y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk2);
y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk2);
}
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = UnpackLow32(y1, x1);
block1 = UnpackHigh32(y1, x1);
block2 = UnpackLow32(y2, x2);
block3 = UnpackHigh32(y2, x2);
block4 = UnpackLow32(y3, x3);
block5 = UnpackHigh32(y3, x3);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
template <class T>
inline T UnpackHigh64(const T& a, const T& b)
{
const uint64x1_t x(vget_high_u64((uint64x2_t)a));
const uint64x1_t y(vget_high_u64((uint64x2_t)b));
return (T)vcombine_u64(x, y);
}
template <class T>
inline T UnpackLow64(const T& a, const T& b)
{
const uint64x1_t x(vget_low_u64((uint64x2_t)a));
const uint64x1_t y(vget_low_u64((uint64x2_t)b));
return (T)vcombine_u64(x, y);
}
template <unsigned int R>
inline uint64x2_t RotateLeft64(const uint64x2_t& val)
{
const uint64x2_t a(vshlq_n_u64(val, R));
const uint64x2_t b(vshrq_n_u64(val, 64 - R));
return vorrq_u64(a, b);
}
template <unsigned int R>
inline uint64x2_t RotateRight64(const uint64x2_t& val)
{
const uint64x2_t a(vshlq_n_u64(val, 64 - R));
const uint64x2_t b(vshrq_n_u64(val, R));
return vorrq_u64(a, b);
}
#if defined(__aarch32__) || defined(__aarch64__)
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint64x2_t RotateLeft64<8>(const uint64x2_t& val)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
const uint8_t maskb[16] = { 14,13,12,11, 10,9,8,15, 6,5,4,3, 2,1,0,7 };
const uint8x16_t mask = vld1q_u8(maskb);
#else
const uint8_t maskb[16] = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 };
const uint8x16_t mask = vld1q_u8(maskb);
#endif
return vreinterpretq_u64_u8(
vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline uint64x2_t RotateRight64<8>(const uint64x2_t& val)
{
#if defined(CRYPTOPP_BIG_ENDIAN)
const uint8_t maskb[16] = { 8,15,14,13, 12,11,10,9, 0,7,6,5, 4,3,2,1 };
const uint8x16_t mask = vld1q_u8(maskb);
#else
const uint8_t maskb[16] = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 };
const uint8x16_t mask = vld1q_u8(maskb);
#endif
return vreinterpretq_u64_u8(
vqtbl1q_u8(vreinterpretq_u8_u64(val), mask));
}
#endif
inline uint64x2_t SIMON128_f(const uint64x2_t& val)
{
return veorq_u64(RotateLeft64<2>(val),
vandq_u64(RotateLeft64<1>(val), RotateLeft64<8>(val)));
}
inline void SIMON128_Enc_Block(uint64x2_t &block0, uint64x2_t &block1,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint64x2_t x1 = UnpackHigh64(block0, block1);
uint64x2_t y1 = UnpackLow64(block0, block1);
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
}
if (rounds & 1)
{
const uint64x2_t rk = vld1q_dup_u64(subkeys+rounds-1);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
std::swap(x1, y1);
}
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = UnpackLow64(y1, x1);
block1 = UnpackHigh64(y1, x1);
}
inline void SIMON128_Enc_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint64x2_t x1 = UnpackHigh64(block0, block1);
uint64x2_t y1 = UnpackLow64(block0, block1);
uint64x2_t x2 = UnpackHigh64(block2, block3);
uint64x2_t y2 = UnpackLow64(block2, block3);
uint64x2_t x3 = UnpackHigh64(block4, block5);
uint64x2_t y3 = UnpackLow64(block4, block5);
for (int i = 0; i < static_cast<int>(rounds & ~1) - 1; i += 2)
{
const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1);
y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk1);
y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk1);
const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1);
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2);
x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk2);
x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk2);
}
if (rounds & 1)
{
const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk);
y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk);
y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk);
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
}
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = UnpackLow64(y1, x1);
block1 = UnpackHigh64(y1, x1);
block2 = UnpackLow64(y2, x2);
block3 = UnpackHigh64(y2, x2);
block4 = UnpackLow64(y3, x3);
block5 = UnpackHigh64(y3, x3);
}
inline void SIMON128_Dec_Block(uint64x2_t &block0, uint64x2_t &block1,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint64x2_t x1 = UnpackHigh64(block0, block1);
uint64x2_t y1 = UnpackLow64(block0, block1);
if (rounds & 1)
{
std::swap(x1, y1);
const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i+1);
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
}
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = UnpackLow64(y1, x1);
block1 = UnpackHigh64(y1, x1);
}
inline void SIMON128_Dec_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
uint64x2_t x1 = UnpackHigh64(block0, block1);
uint64x2_t y1 = UnpackLow64(block0, block1);
uint64x2_t x2 = UnpackHigh64(block2, block3);
uint64x2_t y2 = UnpackLow64(block2, block3);
uint64x2_t x3 = UnpackHigh64(block4, block5);
uint64x2_t y3 = UnpackLow64(block4, block5);
if (rounds & 1)
{
std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3);
const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1);
y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1));
y2 = veorq_u64(veorq_u64(y2, rk), SIMON128_f(x2));
y3 = veorq_u64(veorq_u64(y3, rk), SIMON128_f(x3));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const uint64x2_t rk1 = vld1q_dup_u64(subkeys + i + 1);
x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1);
x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk1);
x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk1);
const uint64x2_t rk2 = vld1q_dup_u64(subkeys + i);
y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2);
y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk2);
y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk2);
}
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = UnpackLow64(y1, x1);
block1 = UnpackHigh64(y1, x1);
block2 = UnpackLow64(y2, x2);
block3 = UnpackHigh64(y2, x2);
block4 = UnpackLow64(y3, x3);
block5 = UnpackHigh64(y3, x3);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// ***************************** IA-32 ***************************** //
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#ifndef M128_CAST
# define M128_CAST(x) ((__m128i *)(void *)(x))
#endif
#ifndef CONST_M128_CAST
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
#endif
// GCC double casts, https://www.spinics.net/lists/gcchelp/msg47735.html
#ifndef DOUBLE_CAST
# define DOUBLE_CAST(x) ((double *)(void *)(x))
#endif
#ifndef CONST_DOUBLE_CAST
# define CONST_DOUBLE_CAST(x) ((const double *)(const void *)(x))
#endif
inline void Swap128(__m128i& a,__m128i& b)
{
#if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120)
// __m128i is an unsigned long long[2], and support for swapping it was not added until C++11.
// SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11.
vec_swap(a, b);
#else
std::swap(a, b);
#endif
}
#if defined(CRYPTOPP_AVX512_ROTATE)
template <unsigned int R>
inline __m128i RotateLeft64(const __m128i& val)
{
return _mm_rol_epi64(val, R);
}
template <unsigned int R>
inline __m128i RotateRight64(const __m128i& val)
{
return _mm_ror_epi64(val, R);
}
#else
template <unsigned int R>
inline __m128i RotateLeft64(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi64(val, R), _mm_srli_epi64(val, 64-R));
}
template <unsigned int R>
inline __m128i RotateRight64(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi64(val, 64-R), _mm_srli_epi64(val, R));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateLeft64<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(14,13,12,11, 10,9,8,15, 6,5,4,3, 2,1,0,7);
return _mm_shuffle_epi8(val, mask);
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateRight64<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(8,15,14,13, 12,11,10,9, 0,7,6,5, 4,3,2,1);
return _mm_shuffle_epi8(val, mask);
}
#endif // CRYPTOPP_AVX512_ROTATE
inline __m128i SIMON128_f(const __m128i& v)
{
return _mm_xor_si128(RotateLeft64<2>(v),
_mm_and_si128(RotateLeft64<1>(v), RotateLeft64<8>(v)));
}
inline void GCC_NO_UBSAN SIMON128_Enc_Block(__m128i &block0, __m128i &block1,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
__m128i x1 = _mm_unpackhi_epi64(block0, block1);
2018-02-19 04:44:23 +00:00
__m128i y1 = _mm_unpacklo_epi64(block0, block1);
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
const __m128i rk1 = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
const __m128i rk2 = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i+1)));
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+rounds-1)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
Swap128(x1, y1);
}
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = _mm_unpacklo_epi64(y1, x1);
block1 = _mm_unpackhi_epi64(y1, x1);
}
inline void GCC_NO_UBSAN SIMON128_Enc_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
__m128i x1 = _mm_unpackhi_epi64(block0, block1);
2018-02-19 04:44:23 +00:00
__m128i y1 = _mm_unpacklo_epi64(block0, block1);
__m128i x2 = _mm_unpackhi_epi64(block2, block3);
2018-02-19 04:44:23 +00:00
__m128i y2 = _mm_unpacklo_epi64(block2, block3);
__m128i x3 = _mm_unpackhi_epi64(block4, block5);
2018-02-19 04:44:23 +00:00
__m128i y3 = _mm_unpacklo_epi64(block4, block5);
for (int i = 0; i < static_cast<int>(rounds & ~1) - 1; i += 2)
{
const __m128i rk1 = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk1);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk1);
const __m128i rk2 = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i + 1)));
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk2);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk);
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
}
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = _mm_unpacklo_epi64(y1, x1);
block1 = _mm_unpackhi_epi64(y1, x1);
block2 = _mm_unpacklo_epi64(y2, x2);
block3 = _mm_unpackhi_epi64(y2, x2);
block4 = _mm_unpacklo_epi64(y3, x3);
block5 = _mm_unpackhi_epi64(y3, x3);
}
inline void GCC_NO_UBSAN SIMON128_Dec_Block(__m128i &block0, __m128i &block1,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
__m128i x1 = _mm_unpackhi_epi64(block0, block1);
2018-02-19 04:44:23 +00:00
__m128i y1 = _mm_unpacklo_epi64(block0, block1);
if (rounds & 1)
{
const __m128i rk = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1)));
Swap128(x1, y1);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const __m128i rk1 = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i+1)));
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
const __m128i rk2 = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
}
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = _mm_unpacklo_epi64(y1, x1);
block1 = _mm_unpackhi_epi64(y1, x1);
}
inline void GCC_NO_UBSAN SIMON128_Dec_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word64 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following.
// [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ...
__m128i x1 = _mm_unpackhi_epi64(block0, block1);
2018-02-19 04:44:23 +00:00
__m128i y1 = _mm_unpacklo_epi64(block0, block1);
__m128i x2 = _mm_unpackhi_epi64(block2, block3);
2018-02-19 04:44:23 +00:00
__m128i y2 = _mm_unpacklo_epi64(block2, block3);
__m128i x3 = _mm_unpackhi_epi64(block4, block5);
2018-02-19 04:44:23 +00:00
__m128i y3 = _mm_unpacklo_epi64(block4, block5);
if (rounds & 1)
{
const __m128i rk = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1)));
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1));
y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON128_f(x2));
y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON128_f(x3));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const __m128i rk1 = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i + 1)));
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk1);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk1);
const __m128i rk2 = _mm_castpd_si128(
_mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i)));
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk2);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk2);
}
// [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ...
block0 = _mm_unpacklo_epi64(y1, x1);
block1 = _mm_unpackhi_epi64(y1, x1);
block2 = _mm_unpacklo_epi64(y2, x2);
block3 = _mm_unpackhi_epi64(y2, x2);
block4 = _mm_unpacklo_epi64(y3, x3);
block5 = _mm_unpackhi_epi64(y3, x3);
}
#endif // CRYPTOPP_SSSE3_AVAILABLE
#if defined(CRYPTOPP_SSE41_AVAILABLE)
template <unsigned int R>
inline __m128i RotateLeft32(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R));
}
template <unsigned int R>
inline __m128i RotateRight32(const __m128i& val)
{
return _mm_or_si128(
_mm_slli_epi32(val, 32-R), _mm_srli_epi32(val, R));
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateLeft32<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3);
return _mm_shuffle_epi8(val, mask);
}
// Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks.
template <>
inline __m128i RotateRight32<8>(const __m128i& val)
{
const __m128i mask = _mm_set_epi8(12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1);
return _mm_shuffle_epi8(val, mask);
}
inline __m128i SIMON64_f(const __m128i& v)
{
return _mm_xor_si128(RotateLeft32<2>(v),
_mm_and_si128(RotateLeft32<1>(v), RotateLeft32<8>(v)));
}
inline void GCC_NO_UBSAN SIMON64_Enc_Block(__m128i &block0, __m128i &block1,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following. Thanks to Peter Cordes for help with the
// SSE permutes below.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
2018-02-19 04:44:23 +00:00
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk);
Swap128(x1, y1);
}
// The is roughly the SSE equivalent to ARM vzp32
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(y1, x1);
block1 = _mm_unpackhi_epi32(y1, x1);
}
inline void GCC_NO_UBSAN SIMON64_Dec_Block(__m128i &block0, __m128i &block1,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following. Thanks to Peter Cordes for help with the
// SSE permutes below.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
2018-02-19 04:44:23 +00:00
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
if (rounds & 1)
{
Swap128(x1, y1);
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2);
}
// The is roughly the SSE equivalent to ARM vzp32
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(y1, x1);
block1 = _mm_unpackhi_epi32(y1, x1);
}
inline void GCC_NO_UBSAN SIMON64_Enc_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following. Thanks to Peter Cordes for help with the
// SSE permutes below.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
2018-02-19 04:44:23 +00:00
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
const __m128 t2 = _mm_castsi128_ps(block2);
const __m128 t3 = _mm_castsi128_ps(block3);
2018-02-19 04:44:23 +00:00
__m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1)));
__m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0)));
const __m128 t4 = _mm_castsi128_ps(block4);
const __m128 t5 = _mm_castsi128_ps(block5);
2018-02-19 04:44:23 +00:00
__m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1)));
__m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0)));
for (int i = 0; i < static_cast<int>(rounds & ~1)-1; i += 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk1);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk2);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk2);
}
if (rounds & 1)
{
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk);
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
}
// The is roughly the SSE equivalent to ARM vzp32
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(y1, x1);
block1 = _mm_unpackhi_epi32(y1, x1);
block2 = _mm_unpacklo_epi32(y2, x2);
block3 = _mm_unpackhi_epi32(y2, x2);
block4 = _mm_unpacklo_epi32(y3, x3);
block5 = _mm_unpackhi_epi32(y3, x3);
}
inline void GCC_NO_UBSAN SIMON64_Dec_6_Blocks(__m128i &block0, __m128i &block1,
__m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5,
const word32 *subkeys, unsigned int rounds)
{
// Rearrange the data for vectorization. The incoming data was read into
// a little-endian word array. Depending on the number of blocks it needs to
// be permuted to the following. Thanks to Peter Cordes for help with the
// SSE permutes below.
// [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ...
const __m128 t0 = _mm_castsi128_ps(block0);
const __m128 t1 = _mm_castsi128_ps(block1);
2018-02-19 04:44:23 +00:00
__m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1)));
__m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0)));
const __m128 t2 = _mm_castsi128_ps(block2);
const __m128 t3 = _mm_castsi128_ps(block3);
2018-02-19 04:44:23 +00:00
__m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1)));
__m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0)));
const __m128 t4 = _mm_castsi128_ps(block4);
const __m128 t5 = _mm_castsi128_ps(block5);
2018-02-19 04:44:23 +00:00
__m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1)));
__m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0)));
if (rounds & 1)
{
Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3);
const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1));
y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON64_f(x2));
y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON64_f(x3));
rounds--;
}
for (int i = static_cast<int>(rounds-2); i >= 0; i -= 2)
{
const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]);
x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1);
x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk1);
x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk1);
const __m128i rk2 = _mm_set1_epi32(subkeys[i]);
y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2);
y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk2);
y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk2);
}
// The is roughly the SSE equivalent to ARM vzp32
// [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4]
block0 = _mm_unpacklo_epi32(y1, x1);
block1 = _mm_unpackhi_epi32(y1, x1);
block2 = _mm_unpacklo_epi32(y2, x2);
block3 = _mm_unpackhi_epi32(y2, x2);
block4 = _mm_unpacklo_epi32(y3, x3);
block5 = _mm_unpackhi_epi32(y3, x3);
}
#endif // CRYPTOPP_SSE41_AVAILABLE
ANONYMOUS_NAMESPACE_END
///////////////////////////////////////////////////////////////////////
NAMESPACE_BEGIN(CryptoPP)
// *************************** ARM NEON **************************** //
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
size_t SIMON64_Enc_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_NEON(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON64_Dec_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_NEON(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
size_t SIMON128_Enc_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON128_Dec_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// ***************************** IA-32 ***************************** //
#if defined(CRYPTOPP_SSE41_AVAILABLE)
size_t SIMON64_Enc_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_SSE(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON64_Dec_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks64_6x2_SSE(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
size_t SIMON128_Enc_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON128_Dec_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_SSSE3_AVAILABLE
NAMESPACE_END