Add LSH-256 and LSH-512 hash functions (GH #1025, PR #1026)

Add South Korea's LSH-256 and LSH-512 families of hash functions.
This commit is contained in:
Jeffrey Walton 2021-04-16 03:23:15 -04:00 committed by GitHub
parent bb3776e0ee
commit 11eee26d76
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
16 changed files with 2298 additions and 7 deletions

View File

@ -204,6 +204,9 @@ lubyrack.h
lea.cpp lea.cpp
lea_simd.cpp lea_simd.cpp
lea.h lea.h
lsh256.cpp
lsh512.cpp
lsh.h
luc.cpp luc.cpp
luc.h luc.h
mars.cpp mars.cpp
@ -525,6 +528,10 @@ TestVectors/hmac.txt
TestVectors/kalyna.txt TestVectors/kalyna.txt
TestVectors/keccak.txt TestVectors/keccak.txt
TestVectors/lea.txt TestVectors/lea.txt
TestVectors/lsh.txt
TestVectors/lsh256.txt
TestVectors/lsh512.txt
TestVectors/lsh512_256.txt
TestVectors/mars.txt TestVectors/mars.txt
TestVectors/nr.txt TestVectors/nr.txt
TestVectors/panama.txt TestVectors/panama.txt

View File

@ -28,9 +28,9 @@ Currently the library contains the following algorithms:
Poly1305, Poly1305 (IETF), SipHash, Two-Track-MAC, Poly1305, Poly1305 (IETF), SipHash, Two-Track-MAC,
VMAC VMAC
BLAKE2s, BLAKE2b, Keccack (F1600), SHA-1, BLAKE2s, BLAKE2b, Keccack (F1600), LSH (256/512),
hash functions SHA-2 (224/256/384/512), SHA-3 (224/256/384/512), hash functions SHA-1, SHA-2 (224/256/384/512), SHA-3 (224/256),
SHAKE (128/256), SipHash, SM3, Tiger, SHA-3 (384/512), SHAKE (128/256), SipHash, SM3, Tiger,
RIPEMD (128/160/256/320), WHIRLPOOL RIPEMD (128/160/256/320), WHIRLPOOL
RSA, DSA, Deterministic DSA, ElGamal, RSA, DSA, Deterministic DSA, ElGamal,
@ -76,8 +76,8 @@ Other features include:
* A high level interface for most of the above, using a filter/pipeline * A high level interface for most of the above, using a filter/pipeline
metaphor metaphor
* benchmarks and validation testing * benchmarks and validation testing
* x86, x64 (x86-64), x32 (ILP32), ARM-32, Aarch32, Aarch64 and Power8 in-core code * x86, x64 (x86-64), x32 (ILP32), ARM-32, Aarch32, Aarch64 and Power8
for the commonly used algorithms in-core code for the commonly used algorithms
+ run-time CPU feature detection and code selection + run-time CPU feature detection and code selection
+ supports GCC-style and MSVC-style inline assembly, and MASM for x64 + supports GCC-style and MSVC-style inline assembly, and MASM for x64
+ x86, x64 (x86-64), x32 provides MMX, SSE2, and SSE4 implementations + x86, x64 (x86-64), x32 provides MMX, SSE2, and SSE4 implementations

View File

@ -27,6 +27,8 @@ Test: TestVectors/hmac.txt
Test: TestVectors/kalyna.txt Test: TestVectors/kalyna.txt
Test: TestVectors/keccak.txt Test: TestVectors/keccak.txt
Test: TestVectors/lea.txt Test: TestVectors/lea.txt
Test: TestVectors/lsh256.txt
Test: TestVectors/lsh512.txt
Test: TestVectors/mars.txt Test: TestVectors/mars.txt
Test: TestVectors/nr.txt Test: TestVectors/nr.txt
Test: TestVectors/panama.txt Test: TestVectors/panama.txt
@ -61,4 +63,3 @@ Test: TestVectors/vmac.txt
Test: TestVectors/wake.txt Test: TestVectors/wake.txt
Test: TestVectors/whrlpool.txt Test: TestVectors/whrlpool.txt
Test: TestVectors/xts.txt Test: TestVectors/xts.txt

5
TestVectors/lsh.txt Normal file
View File

@ -0,0 +1,5 @@
AlgorithmType: FileList
Name: LSH test vectors
Test: TestVectors/lsh256.txt
Test: TestVectors/lsh512.txt
Test: TestVectors/lsh512_256.txt

12
TestVectors/lsh256.txt Normal file
View File

@ -0,0 +1,12 @@
AlgorithmType: MessageDigest
Name: LSH-224
Source: https://en.wikipedia.org/wiki/LSH_(hash_function)
Message: "abc"
Digest: F7 C5 3B A4 03 4E 70 8E 74 FB A4 2E 55 99 7C A5 12 6B B7 62 36 88 F8 53 42 F7 37 32
Test: Verify
#
Name: LSH-256
Source: https://en.wikipedia.org/wiki/LSH_(hash_function)
Message: "abc"
Digest: 5F BF 36 5D AE A5 44 6A 70 53 C5 2B 57 40 4D 77 A0 7A 5F 48 A1 F7 C1 96 3A 08 98 BA 1B 71 47 41
Test: Verify

12
TestVectors/lsh512.txt Normal file
View File

@ -0,0 +1,12 @@
AlgorithmType: MessageDigest
Name: LSH-384
Source: https://en.wikipedia.org/wiki/LSH_(hash_function)
Message: "abc"
Digest: 5F 34 4E FA A0 E4 3C CD 2E 5E 19 4D 60 39 79 4B 4F B4 31 F1 0F B4 B6 5F D4 5E 9D A4 EC DE 0F 27 B6 6E 8D BD FA 47 25 2E 0D 0B 74 1B FD 91 F9 FE
Test: Verify
#
Name: LSH-512
Source: https://en.wikipedia.org/wiki/LSH_(hash_function)
Message: "abc"
Digest: A3 D9 3C FE 60 DC 1A AC DD 3B D4 BE F0 A6 98 53 81 A3 96 C7 D4 9D 9F D1 77 79 56 97 C3 53 52 08 B5 C5 72 24 BE F2 10 84 D4 20 83 E9 5A 4B D8 EB 33 E8 69 81 2B 65 03 1C 42 88 19 A1 E7 CE 59 6D
Test: Verify

View File

@ -0,0 +1,6 @@
AlgorithmType: MessageDigest
Name: LSH-512-256
Source: https://en.wikipedia.org/wiki/LSH_(hash_function)
Message: "abc"
Digest: CD 89 23 10 53 26 02 33 2B 61 3F 1E C1 1A 69 62 FC A6 1E A0 9E CF FC D4 BC F7 58 58 D8 02 ED EC
Test: Verify

View File

@ -509,6 +509,8 @@ void BenchmarkUnkeyedAlgorithms(double t, double hertz)
BenchMarkByNameKeyLess<HashTransformation>("SM3"); BenchMarkByNameKeyLess<HashTransformation>("SM3");
BenchMarkByNameKeyLess<HashTransformation>("BLAKE2s"); BenchMarkByNameKeyLess<HashTransformation>("BLAKE2s");
BenchMarkByNameKeyLess<HashTransformation>("BLAKE2b"); BenchMarkByNameKeyLess<HashTransformation>("BLAKE2b");
BenchMarkByNameKeyLess<HashTransformation>("LSH-256");
BenchMarkByNameKeyLess<HashTransformation>("LSH-512");
} }
std::cout << "\n</TABLE>" << std::endl; std::cout << "\n</TABLE>" << std::endl;

189
lsh.h Normal file
View File

@ -0,0 +1,189 @@
// lsh.h - written and placed in the public domain by Jeffrey Walton
// Based on the specification and source code provided by
// Korea Internet & Security Agency (KISA) website. Also
// see https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do
// and https://seed.kisa.or.kr/kisa/Board/22/detailView.do.
/// \file lsh.h
/// \brief Classes for the LSH hash functions
/// \since Crypto++ 8.6
/// \sa <A HREF="https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do">LSH</A>
/// on the Korea Internet & Security Agency (KISA) website.
#ifndef CRYPTOPP_LSH_H
#define CRYPTOPP_LSH_H
#include "cryptlib.h"
#include "secblock.h"
NAMESPACE_BEGIN(CryptoPP)
/// \brief LSH-224 and LSH-256 hash base class
/// \details LSH256_Base is the base class for both LSH-224 and LSH-256
/// \since Crypto++ 8.6
class LSH256_Base : public HashTransformation
{
public:
virtual ~LSH256_Base() {}
unsigned int BlockSize() const { return m_blockSize; }
unsigned int DigestSize() const { return m_digestSize; }
unsigned int OptimalDataAlignment() const { return GetAlignmentOf<word32>(); }
void Restart();
void Update(const byte *input, size_t length);
void TruncatedFinal(byte *hash, size_t size);
std::string AlgorithmProvider() const;
protected:
LSH256_Base(unsigned int algType, unsigned int digestSize, unsigned int blockSize)
: m_algType(algType), m_digestSize(digestSize), m_blockSize(blockSize) {}
protected:
// Working state is:
// * cv_l = 8 32-bit words
// * cv_r = 8 32-bit words
// * submsg_e_l = 8 32-bit words
// * submsg_e_r = 8 32-bit words
// * submsg_o_l = 8 32-bit words
// * submsg_o_r = 8 32-bit words
// * last_block = 32 32-bit words (128 bytes)
FixedSizeSecBlock<word32, 80> m_state;
word32 m_algType, m_remainingBitLength;
word32 m_digestSize, m_blockSize;
};
/// \brief LSH-224 hash function
/// \sa <A HREF="https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do">LSH</A>
/// on the Korea Internet & Security Agency (KISA) website.
/// \since Crypto++ 8.6
class LSH224 : public LSH256_Base
{
public:
CRYPTOPP_CONSTANT(DIGESTSIZE = 28);
CRYPTOPP_CONSTANT(BLOCKSIZE = 64);
static std::string StaticAlgorithmName() { return "LSH-224"; }
/// \brief Construct a LSH-224
/// \details LSH_TYPE_224 is the magic value 0x000001C defined in lsh.cpp.
LSH224() : LSH256_Base(0x000001C, DIGESTSIZE, BLOCKSIZE) { Restart(); }
std::string AlgorithmName() const { return StaticAlgorithmName(); }
};
/// \brief LSH-256 hash function
/// \sa <A HREF="https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do">LSH</A>
/// on the Korea Internet & Security Agency (KISA) website.
/// \since Crypto++ 8.6
class LSH256 : public LSH256_Base
{
public:
CRYPTOPP_CONSTANT(DIGESTSIZE = 32);
CRYPTOPP_CONSTANT(BLOCKSIZE = 64);
static std::string StaticAlgorithmName() { return "LSH-256"; }
/// \brief Construct a LSH-256
/// \details LSH_TYPE_256 is the magic value 0x0000020 defined in lsh.cpp.
LSH256() : LSH256_Base(0x0000020, DIGESTSIZE, BLOCKSIZE) { Restart(); }
std::string AlgorithmName() const { return StaticAlgorithmName(); }
};
/// \brief LSH-384 and LSH-512 hash base class
/// \details LSH512_Base is the base class for both LSH-384 and LSH-512
/// \since Crypto++ 8.6
class LSH512_Base : public HashTransformation
{
public:
virtual ~LSH512_Base() {}
unsigned int BlockSize() const { return m_blockSize; }
unsigned int DigestSize() const { return m_digestSize; }
unsigned int OptimalDataAlignment() const { return GetAlignmentOf<word64>(); }
void Restart();
void Update(const byte *input, size_t length);
void TruncatedFinal(byte *hash, size_t size);
std::string AlgorithmProvider() const;
protected:
LSH512_Base(unsigned int algType, unsigned int digestSize, unsigned int blockSize)
: m_algType(algType), m_digestSize(digestSize), m_blockSize(blockSize) {}
protected:
// Working state is:
// * cv_l = 8 64-bit words
// * cv_r = 8 64-bit words
// * submsg_e_l = 8 64-bit words
// * submsg_e_r = 8 64-bit words
// * submsg_o_l = 8 64-bit words
// * submsg_o_r = 8 64-bit words
// * last_block = 32 64-bit words (256 bytes)
FixedSizeSecBlock<word64, 80> m_state;
word32 m_algType, m_remainingBitLength;
word32 m_digestSize, m_blockSize;
};
/// \brief LSH-384 hash function
/// \sa <A HREF="https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do">LSH</A>
/// on the Korea Internet & Security Agency (KISA) website.
/// \since Crypto++ 8.6
class LSH384 : public LSH512_Base
{
public:
CRYPTOPP_CONSTANT(DIGESTSIZE = 48);
CRYPTOPP_CONSTANT(BLOCKSIZE = 128);
static std::string StaticAlgorithmName() { return "LSH-384"; }
/// \brief Construct a LSH-384
/// \details LSH_TYPE_384 is the magic value 0x0010030 defined in lsh.cpp.
LSH384() : LSH512_Base(0x0010030, DIGESTSIZE, BLOCKSIZE) { Restart(); }
std::string AlgorithmName() const { return StaticAlgorithmName(); }
};
/// \brief LSH-512 hash function
/// \sa <A HREF="https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do">LSH</A>
/// on the Korea Internet & Security Agency (KISA) website.
/// \since Crypto++ 8.6
class LSH512 : public LSH512_Base
{
public:
CRYPTOPP_CONSTANT(DIGESTSIZE = 64);
CRYPTOPP_CONSTANT(BLOCKSIZE = 128);
static std::string StaticAlgorithmName() { return "LSH-512"; }
/// \brief Construct a LSH-512
/// \details LSH_TYPE_512 is the magic value 0x0010040 defined in lsh.cpp.
LSH512() : LSH512_Base(0x0010040, DIGESTSIZE, BLOCKSIZE) { Restart(); }
std::string AlgorithmName() const { return StaticAlgorithmName(); }
};
/// \brief LSH-512-256 hash function
/// \sa <A HREF="https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do">LSH</A>
/// on the Korea Internet & Security Agency (KISA) website.
/// \since Crypto++ 8.6
class LSH512_256 : public LSH512_Base
{
public:
CRYPTOPP_CONSTANT(DIGESTSIZE = 32);
CRYPTOPP_CONSTANT(BLOCKSIZE = 128);
static std::string StaticAlgorithmName() { return "LSH-512-256"; }
/// \brief Construct a LSH-512-256
/// \details LSH_TYPE_512_256 is the magic value 0x0010020 defined in lsh.cpp.
LSH512_256() : LSH512_Base(0x0010020, DIGESTSIZE, BLOCKSIZE) { Restart(); }
std::string AlgorithmName() const { return StaticAlgorithmName(); }
};
NAMESPACE_END
#endif // CRYPTOPP_LSH_H

913
lsh256.cpp Normal file
View File

@ -0,0 +1,913 @@
// lsh.cpp - written and placed in the public domain by Jeffrey Walton
// Based on the specification and source code provided by
// Korea Internet & Security Agency (KISA) website. Also
// see https://seed.kisa.or.kr/kisa/algorithm/EgovLSHInfo.do
// and https://seed.kisa.or.kr/kisa/Board/22/detailView.do.
#include "pch.h"
#include "config.h"
#include "lsh.h"
#include "misc.h"
#if defined(__SSE2__)
# include <emmintrin.h>
# define M128_CAST(x) ((__m128i *)(void *)(x))
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
#endif
#if defined(__XOP__)
# include <ammintrin.h>
# if defined(__GNUC__)
# include <x86intrin.h>
# endif
#endif
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
using CryptoPP::word32;
using CryptoPP::rotlFixed;
using CryptoPP::rotrFixed;
using CryptoPP::rotlConstant;
using CryptoPP::rotrConstant;
using CryptoPP::LSH256;
using CryptoPP::Exception;
using CryptoPP::LITTLE_ENDIAN_ORDER;
using CryptoPP::ConditionalByteReverse;
typedef byte lsh_u8;
typedef word32 lsh_u32;
typedef word32 lsh_uint;
typedef word32 lsh_err;
typedef word32 lsh_type;
struct LSH256_Context
{
LSH256_Context(word32* state, word32 algType, word32& remainingBitLength) :
cv_l(state+0), cv_r(state+8), sub_msgs(state+16),
last_block(reinterpret_cast<byte*>(state+48)) ,
remain_databitlen(remainingBitLength), algtype(algType) {}
lsh_u32* cv_l; // start of our state block
lsh_u32* cv_r;
lsh_u32* sub_msgs;
lsh_u8* last_block;
lsh_u32& remain_databitlen;
lsh_type algtype;
};
struct LSH256_Internal
{
LSH256_Internal(word32* state) :
submsg_e_l(state+16), submsg_e_r(state+24),
submsg_o_l(state+32), submsg_o_r(state+40) { }
lsh_u32* submsg_e_l; /* even left sub-message */
lsh_u32* submsg_e_r; /* even right sub-message */
lsh_u32* submsg_o_l; /* odd left sub-message */
lsh_u32* submsg_o_r; /* odd right sub-message */
};
const unsigned int MSG_BLK_WORD_LEN = 32;
const unsigned int CV_WORD_LEN = 16;
const unsigned int CONST_WORD_LEN = 8;
const unsigned int HASH_VAL_MAX_WORD_LEN = 8;
const unsigned int WORD_BIT_LEN = 32;
const unsigned int NUM_STEPS = 26;
const unsigned int ROT_EVEN_ALPHA = 29;
const unsigned int ROT_EVEN_BETA = 1;
const unsigned int ROT_ODD_ALPHA = 5;
const unsigned int ROT_ODD_BETA = 17;
const unsigned int LSH_TYPE_256_256 = 0x0000020;
const unsigned int LSH_TYPE_256_224 = 0x000001C;
const unsigned int LSH_TYPE_224 = LSH_TYPE_256_224;
const unsigned int LSH_TYPE_256 = LSH_TYPE_256_256;
/* LSH AlgType Macro */
inline bool LSH_IS_LSH512(lsh_uint val) {
return val & 0xf0000 == 0;
}
inline lsh_uint LSH_GET_SMALL_HASHBIT(lsh_uint val) {
return val >> 24;
}
inline lsh_uint LSH_GET_HASHBYTE(lsh_uint val) {
return val & 0xffff;
}
inline lsh_uint LSH_GET_HASHBIT(lsh_uint val) {
return (LSH_GET_HASHBYTE(val) << 3) - LSH_GET_SMALL_HASHBIT(val);
}
/* LSH Constants */
const unsigned int LSH256_MSG_BLK_BYTE_LEN = 128;
const unsigned int LSH256_MSG_BLK_BIT_LEN = 1024;
const unsigned int LSH256_CV_BYTE_LEN = 64;
const unsigned int LSH256_HASH_VAL_MAX_BYTE_LEN = 32;
/* Error Code */
const unsigned int LSH_SUCCESS = 0x0;
const unsigned int LSH_ERR_NULL_PTR = 0x2401;
const unsigned int LSH_ERR_INVALID_ALGTYPE = 0x2402;
const unsigned int LSH_ERR_INVALID_DATABITLEN = 0x2403;
const unsigned int LSH_ERR_INVALID_STATE = 0x2404;
inline lsh_u32 loadLE32(lsh_u32 v) {
return ConditionalByteReverse(LITTLE_ENDIAN_ORDER, v);
}
lsh_u32 ROTL(lsh_u32 x, lsh_u32 r) {
return rotlFixed(x, r);
}
/* -------------------------------------------------------- *
* LSH: iv
* -------------------------------------------------------- */
#if (CRYPTOPP_CXX11_CONSTEXPR)
# define MAYBE_CONSTEXPR constexpr
#else
# define MAYBE_CONSTEXPR const
#endif
CRYPTOPP_ALIGN_DATA(16)
MAYBE_CONSTEXPR lsh_u32 g_IV224[CV_WORD_LEN] = {
0x068608D3, 0x62D8F7A7, 0xD76652AB, 0x4C600A43, 0xBDC40AA8, 0x1ECA0B68, 0xDA1A89BE, 0x3147D354,
0x707EB4F9, 0xF65B3862, 0x6B0B2ABE, 0x56B8EC0A, 0xCF237286, 0xEE0D1727, 0x33636595, 0x8BB8D05F,
};
CRYPTOPP_ALIGN_DATA(16)
MAYBE_CONSTEXPR lsh_u32 g_IV256[CV_WORD_LEN] = {
0x46a10f1f, 0xfddce486, 0xb41443a8, 0x198e6b9d, 0x3304388d, 0xb0f5a3c7, 0xb36061c4, 0x7adbd553,
0x105d5378, 0x2f74de54, 0x5c2f2d95, 0xf2553fbe, 0x8051357a, 0x138668c8, 0x47aa4484, 0xe01afb41
};
MAYBE_CONSTEXPR lsh_uint g_gamma256[8] = { 0, 8, 16, 24, 24, 16, 8, 0 };
/* -------------------------------------------------------- *
* LSH: step constants
* -------------------------------------------------------- */
MAYBE_CONSTEXPR lsh_u32 g_StepConstants[CONST_WORD_LEN * NUM_STEPS] = {
0x917caf90, 0x6c1b10a2, 0x6f352943, 0xcf778243, 0x2ceb7472, 0x29e96ff2, 0x8a9ba428, 0x2eeb2642,
0x0e2c4021, 0x872bb30e, 0xa45e6cb2, 0x46f9c612, 0x185fe69e, 0x1359621b, 0x263fccb2, 0x1a116870,
0x3a6c612f, 0xb2dec195, 0x02cb1f56, 0x40bfd858, 0x784684b6, 0x6cbb7d2e, 0x660c7ed8, 0x2b79d88a,
0xa6cd9069, 0x91a05747, 0xcdea7558, 0x00983098, 0xbecb3b2e, 0x2838ab9a, 0x728b573e, 0xa55262b5,
0x745dfa0f, 0x31f79ed8, 0xb85fce25, 0x98c8c898, 0x8a0669ec, 0x60e445c2, 0xfde295b0, 0xf7b5185a,
0xd2580983, 0x29967709, 0x182df3dd, 0x61916130, 0x90705676, 0x452a0822, 0xe07846ad, 0xaccd7351,
0x2a618d55, 0xc00d8032, 0x4621d0f5, 0xf2f29191, 0x00c6cd06, 0x6f322a67, 0x58bef48d, 0x7a40c4fd,
0x8beee27f, 0xcd8db2f2, 0x67f2c63b, 0xe5842383, 0xc793d306, 0xa15c91d6, 0x17b381e5, 0xbb05c277,
0x7ad1620a, 0x5b40a5bf, 0x5ab901a2, 0x69a7a768, 0x5b66d9cd, 0xfdee6877, 0xcb3566fc, 0xc0c83a32,
0x4c336c84, 0x9be6651a, 0x13baa3fc, 0x114f0fd1, 0xc240a728, 0xec56e074, 0x009c63c7, 0x89026cf2,
0x7f9ff0d0, 0x824b7fb5, 0xce5ea00f, 0x605ee0e2, 0x02e7cfea, 0x43375560, 0x9d002ac7, 0x8b6f5f7b,
0x1f90c14f, 0xcdcb3537, 0x2cfeafdd, 0xbf3fc342, 0xeab7b9ec, 0x7a8cb5a3, 0x9d2af264, 0xfacedb06,
0xb052106e, 0x99006d04, 0x2bae8d09, 0xff030601, 0xa271a6d6, 0x0742591d, 0xc81d5701, 0xc9a9e200,
0x02627f1e, 0x996d719d, 0xda3b9634, 0x02090800, 0x14187d78, 0x499b7624, 0xe57458c9, 0x738be2c9,
0x64e19d20, 0x06df0f36, 0x15d1cb0e, 0x0b110802, 0x2c95f58c, 0xe5119a6d, 0x59cd22ae, 0xff6eac3c,
0x467ebd84, 0xe5ee453c, 0xe79cd923, 0x1c190a0d, 0xc28b81b8, 0xf6ac0852, 0x26efd107, 0x6e1ae93b,
0xc53c41ca, 0xd4338221, 0x8475fd0a, 0x35231729, 0x4e0d3a7a, 0xa2b45b48, 0x16c0d82d, 0x890424a9,
0x017e0c8f, 0x07b5a3f5, 0xfa73078e, 0x583a405e, 0x5b47b4c8, 0x570fa3ea, 0xd7990543, 0x8d28ce32,
0x7f8a9b90, 0xbd5998fc, 0x6d7a9688, 0x927a9eb6, 0xa2fc7d23, 0x66b38e41, 0x709e491a, 0xb5f700bf,
0x0a262c0f, 0x16f295b9, 0xe8111ef5, 0x0d195548, 0x9f79a0c5, 0x1a41cfa7, 0x0ee7638a, 0xacf7c074,
0x30523b19, 0x09884ecf, 0xf93014dd, 0x266e9d55, 0x191a6664, 0x5c1176c1, 0xf64aed98, 0xa4b83520,
0x828d5449, 0x91d71dd8, 0x2944f2d6, 0x950bf27b, 0x3380ca7d, 0x6d88381d, 0x4138868e, 0x5ced55c4,
0x0fe19dcb, 0x68f4f669, 0x6e37c8ff, 0xa0fe6e10, 0xb44b47b0, 0xf5c0558a, 0x79bf14cf, 0x4a431a20,
0xf17f68da, 0x5deb5fd1, 0xa600c86d, 0x9f6c7eb0, 0xff92f864, 0xb615e07f, 0x38d3e448, 0x8d5d3a6a,
0x70e843cb, 0x494b312e, 0xa6c93613, 0x0beb2f4f, 0x928b5d63, 0xcbf66035, 0x0cb82c80, 0xea97a4f7,
0x592c0f3b, 0x947c5f77, 0x6fff49b9, 0xf71a7e5a, 0x1de8c0f5, 0xc2569600, 0xc4e4ac8c, 0x823c9ce1
};
inline void load_msg_blk(LSH256_Internal* i_state, const lsh_u32* msgblk)
{
CRYPTOPP_ASSERT(i_state != NULLPTR);
CRYPTOPP_ASSERT(msgblk != NULLPTR);
#if defined(__SSE2__)
_mm_storeu_si128(M128_CAST(i_state->submsg_e_l+0),
_mm_loadu_si128(CONST_M128_CAST(msgblk+0)));
_mm_storeu_si128(M128_CAST(i_state->submsg_e_l+4),
_mm_loadu_si128(CONST_M128_CAST(msgblk+4)));
_mm_storeu_si128(M128_CAST(i_state->submsg_e_r+0),
_mm_loadu_si128(CONST_M128_CAST(msgblk+8)));
_mm_storeu_si128(M128_CAST(i_state->submsg_e_r+4),
_mm_loadu_si128(CONST_M128_CAST(msgblk+12)));
_mm_storeu_si128(M128_CAST(i_state->submsg_o_l+0),
_mm_loadu_si128(CONST_M128_CAST(msgblk+16)));
_mm_storeu_si128(M128_CAST(i_state->submsg_o_l+4),
_mm_loadu_si128(CONST_M128_CAST(msgblk+20)));
_mm_storeu_si128(M128_CAST(i_state->submsg_o_r+0),
_mm_loadu_si128(CONST_M128_CAST(msgblk+24)));
_mm_storeu_si128(M128_CAST(i_state->submsg_o_r+4),
_mm_loadu_si128(CONST_M128_CAST(msgblk+28)));
#else
i_state->submsg_e_l[0] = loadLE32(msgblk[0]);
i_state->submsg_e_l[1] = loadLE32(msgblk[1]);
i_state->submsg_e_l[2] = loadLE32(msgblk[2]);
i_state->submsg_e_l[3] = loadLE32(msgblk[3]);
i_state->submsg_e_l[4] = loadLE32(msgblk[4]);
i_state->submsg_e_l[5] = loadLE32(msgblk[5]);
i_state->submsg_e_l[6] = loadLE32(msgblk[6]);
i_state->submsg_e_l[7] = loadLE32(msgblk[7]);
i_state->submsg_e_r[0] = loadLE32(msgblk[8]);
i_state->submsg_e_r[1] = loadLE32(msgblk[9]);
i_state->submsg_e_r[2] = loadLE32(msgblk[10]);
i_state->submsg_e_r[3] = loadLE32(msgblk[11]);
i_state->submsg_e_r[4] = loadLE32(msgblk[12]);
i_state->submsg_e_r[5] = loadLE32(msgblk[13]);
i_state->submsg_e_r[6] = loadLE32(msgblk[14]);
i_state->submsg_e_r[7] = loadLE32(msgblk[15]);
i_state->submsg_o_l[0] = loadLE32(msgblk[16]);
i_state->submsg_o_l[1] = loadLE32(msgblk[17]);
i_state->submsg_o_l[2] = loadLE32(msgblk[18]);
i_state->submsg_o_l[3] = loadLE32(msgblk[19]);
i_state->submsg_o_l[4] = loadLE32(msgblk[20]);
i_state->submsg_o_l[5] = loadLE32(msgblk[21]);
i_state->submsg_o_l[6] = loadLE32(msgblk[22]);
i_state->submsg_o_l[7] = loadLE32(msgblk[23]);
i_state->submsg_o_r[0] = loadLE32(msgblk[24]);
i_state->submsg_o_r[1] = loadLE32(msgblk[25]);
i_state->submsg_o_r[2] = loadLE32(msgblk[26]);
i_state->submsg_o_r[3] = loadLE32(msgblk[27]);
i_state->submsg_o_r[4] = loadLE32(msgblk[28]);
i_state->submsg_o_r[5] = loadLE32(msgblk[29]);
i_state->submsg_o_r[6] = loadLE32(msgblk[30]);
i_state->submsg_o_r[7] = loadLE32(msgblk[31]);
#endif
}
inline void msg_exp_even(LSH256_Internal* i_state)
{
CRYPTOPP_ASSERT(i_state != NULLPTR);
lsh_u32* submsg_e_l = i_state->submsg_e_l;
lsh_u32* submsg_e_r = i_state->submsg_e_r;
lsh_u32* submsg_o_l = i_state->submsg_o_l;
lsh_u32* submsg_o_r = i_state->submsg_o_r;
#if defined(__SSE2__)
_mm_storeu_si128(M128_CAST(submsg_e_l+0), _mm_add_epi32(
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_o_l+0)), _MM_SHUFFLE(3,2,1,0)),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_e_l+0)), _MM_SHUFFLE(1,0,2,3))));
_mm_storeu_si128(M128_CAST(submsg_e_l+4), _mm_add_epi32(
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_o_l+4)), _MM_SHUFFLE(3,2,1,0)),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_e_l+4)), _MM_SHUFFLE(2,1,0,3))));
_mm_storeu_si128(M128_CAST(submsg_e_r+0), _mm_add_epi32(
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_o_r+0)), _MM_SHUFFLE(3,2,1,0)),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_e_r+0)), _MM_SHUFFLE(1,0,2,3))));
_mm_storeu_si128(M128_CAST(submsg_e_r+4), _mm_add_epi32(
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_o_r+4)), _MM_SHUFFLE(3,2,1,0)),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_e_r+4)), _MM_SHUFFLE(2,1,0,3))));
#else
lsh_u32 temp;
temp = submsg_e_l[0];
submsg_e_l[0] = submsg_o_l[0] + submsg_e_l[3];
submsg_e_l[3] = submsg_o_l[3] + submsg_e_l[1];
submsg_e_l[1] = submsg_o_l[1] + submsg_e_l[2];
submsg_e_l[2] = submsg_o_l[2] + temp;
temp = submsg_e_l[4];
submsg_e_l[4] = submsg_o_l[4] + submsg_e_l[7];
submsg_e_l[7] = submsg_o_l[7] + submsg_e_l[6];
submsg_e_l[6] = submsg_o_l[6] + submsg_e_l[5];
submsg_e_l[5] = submsg_o_l[5] + temp;
temp = submsg_e_r[0];
submsg_e_r[0] = submsg_o_r[0] + submsg_e_r[3];
submsg_e_r[3] = submsg_o_r[3] + submsg_e_r[1];
submsg_e_r[1] = submsg_o_r[1] + submsg_e_r[2];
submsg_e_r[2] = submsg_o_r[2] + temp;
temp = submsg_e_r[4];
submsg_e_r[4] = submsg_o_r[4] + submsg_e_r[7];
submsg_e_r[7] = submsg_o_r[7] + submsg_e_r[6];
submsg_e_r[6] = submsg_o_r[6] + submsg_e_r[5];
submsg_e_r[5] = submsg_o_r[5] + temp;
#endif
}
inline void msg_exp_odd(LSH256_Internal* i_state)
{
CRYPTOPP_ASSERT(i_state != NULLPTR);
lsh_u32* submsg_e_l = i_state->submsg_e_l;
lsh_u32* submsg_e_r = i_state->submsg_e_r;
lsh_u32* submsg_o_l = i_state->submsg_o_l;
lsh_u32* submsg_o_r = i_state->submsg_o_r;
#if defined(__SSE2__)
_mm_storeu_si128(M128_CAST(submsg_o_l+0), _mm_add_epi32(
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_e_l+0)), _MM_SHUFFLE(3,2,1,0)),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_o_l+0)), _MM_SHUFFLE(1,0,2,3))));
_mm_storeu_si128(M128_CAST(submsg_o_l+4), _mm_add_epi32(
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_e_l+4)), _MM_SHUFFLE(3,2,1,0)),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_o_l+4)), _MM_SHUFFLE(2,1,0,3))));
_mm_storeu_si128(M128_CAST(submsg_o_r+0), _mm_add_epi32(
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_e_r+0)), _MM_SHUFFLE(3,2,1,0)),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_o_r+0)), _MM_SHUFFLE(1,0,2,3))));
_mm_storeu_si128(M128_CAST(submsg_o_r+4), _mm_add_epi32(
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_e_r+4)), _MM_SHUFFLE(3,2,1,0)),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(submsg_o_r+4)), _MM_SHUFFLE(2,1,0,3))));
#else
lsh_u32 temp;
temp = submsg_o_l[0];
submsg_o_l[0] = submsg_e_l[0] + submsg_o_l[3];
submsg_o_l[3] = submsg_e_l[3] + submsg_o_l[1];
submsg_o_l[1] = submsg_e_l[1] + submsg_o_l[2];
submsg_o_l[2] = submsg_e_l[2] + temp;
temp = submsg_o_l[4];
submsg_o_l[4] = submsg_e_l[4] + submsg_o_l[7];
submsg_o_l[7] = submsg_e_l[7] + submsg_o_l[6];
submsg_o_l[6] = submsg_e_l[6] + submsg_o_l[5];
submsg_o_l[5] = submsg_e_l[5] + temp;
temp = submsg_o_r[0];
submsg_o_r[0] = submsg_e_r[0] + submsg_o_r[3];
submsg_o_r[3] = submsg_e_r[3] + submsg_o_r[1];
submsg_o_r[1] = submsg_e_r[1] + submsg_o_r[2];
submsg_o_r[2] = submsg_e_r[2] + temp;
temp = submsg_o_r[4];
submsg_o_r[4] = submsg_e_r[4] + submsg_o_r[7];
submsg_o_r[7] = submsg_e_r[7] + submsg_o_r[6];
submsg_o_r[6] = submsg_e_r[6] + submsg_o_r[5];
submsg_o_r[5] = submsg_e_r[5] + temp;
#endif
}
inline void load_sc(const lsh_u32** p_const_v, size_t i)
{
CRYPTOPP_ASSERT(p_const_v != NULLPTR);
*p_const_v = &g_StepConstants[i];
}
inline void msg_add_even(lsh_u32* cv_l, lsh_u32* cv_r, LSH256_Internal* i_state)
{
CRYPTOPP_ASSERT(cv_l != NULLPTR);
CRYPTOPP_ASSERT(cv_r != NULLPTR);
CRYPTOPP_ASSERT(i_state != NULLPTR);
lsh_u32* submsg_e_l = i_state->submsg_e_l;
lsh_u32* submsg_e_r = i_state->submsg_e_r;
#if defined(__SSE2__)
_mm_storeu_si128(M128_CAST(cv_l), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_l)),
_mm_loadu_si128(CONST_M128_CAST(submsg_e_l))));
_mm_storeu_si128(M128_CAST(cv_l+4), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_l+4)),
_mm_loadu_si128(CONST_M128_CAST(submsg_e_l+4))));
_mm_storeu_si128(M128_CAST(cv_r), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_r)),
_mm_loadu_si128(CONST_M128_CAST(submsg_e_r))));
_mm_storeu_si128(M128_CAST(cv_r+4), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_r+4)),
_mm_loadu_si128(CONST_M128_CAST(submsg_e_r+4))));
#else
cv_l[0] ^= submsg_e_l[0]; cv_l[1] ^= submsg_e_l[1];
cv_l[2] ^= submsg_e_l[2]; cv_l[3] ^= submsg_e_l[3];
cv_l[4] ^= submsg_e_l[4]; cv_l[5] ^= submsg_e_l[5];
cv_l[6] ^= submsg_e_l[6]; cv_l[7] ^= submsg_e_l[7];
cv_r[0] ^= submsg_e_r[0]; cv_r[1] ^= submsg_e_r[1];
cv_r[2] ^= submsg_e_r[2]; cv_r[3] ^= submsg_e_r[3];
cv_r[4] ^= submsg_e_r[4]; cv_r[5] ^= submsg_e_r[5];
cv_r[6] ^= submsg_e_r[6]; cv_r[7] ^= submsg_e_r[7];
#endif
}
inline void msg_add_odd(lsh_u32* cv_l, lsh_u32* cv_r, LSH256_Internal* i_state)
{
CRYPTOPP_ASSERT(cv_l != NULLPTR);
CRYPTOPP_ASSERT(cv_r != NULLPTR);
CRYPTOPP_ASSERT(i_state != NULLPTR);
lsh_u32* submsg_o_l = i_state->submsg_o_l;
lsh_u32* submsg_o_r = i_state->submsg_o_r;
#if defined(__SSE2__)
_mm_storeu_si128(M128_CAST(cv_l), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_l)),
_mm_loadu_si128(CONST_M128_CAST(submsg_o_l))));
_mm_storeu_si128(M128_CAST(cv_l+4), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_l+4)),
_mm_loadu_si128(CONST_M128_CAST(submsg_o_l+4))));
_mm_storeu_si128(M128_CAST(cv_r), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_r)),
_mm_loadu_si128(CONST_M128_CAST(submsg_o_r))));
_mm_storeu_si128(M128_CAST(cv_r+4), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_r+4)),
_mm_loadu_si128(CONST_M128_CAST(submsg_o_r+4))));
#else
cv_l[0] ^= submsg_o_l[0]; cv_l[1] ^= submsg_o_l[1];
cv_l[2] ^= submsg_o_l[2]; cv_l[3] ^= submsg_o_l[3];
cv_l[4] ^= submsg_o_l[4]; cv_l[5] ^= submsg_o_l[5];
cv_l[6] ^= submsg_o_l[6]; cv_l[7] ^= submsg_o_l[7];
cv_r[0] ^= submsg_o_r[0]; cv_r[1] ^= submsg_o_r[1];
cv_r[2] ^= submsg_o_r[2]; cv_r[3] ^= submsg_o_r[3];
cv_r[4] ^= submsg_o_r[4]; cv_r[5] ^= submsg_o_r[5];
cv_r[6] ^= submsg_o_r[6]; cv_r[7] ^= submsg_o_r[7];
#endif
}
inline void add_blk(lsh_u32* cv_l, const lsh_u32* cv_r)
{
CRYPTOPP_ASSERT(cv_l != NULLPTR);
CRYPTOPP_ASSERT(cv_r != NULLPTR);
#if defined(__SSE2__)
_mm_storeu_si128(M128_CAST(cv_l), _mm_add_epi32(
_mm_loadu_si128(CONST_M128_CAST(cv_l)),
_mm_loadu_si128(CONST_M128_CAST(cv_r))));
_mm_storeu_si128(M128_CAST(cv_l+4), _mm_add_epi32(
_mm_loadu_si128(CONST_M128_CAST(cv_l+4)),
_mm_loadu_si128(CONST_M128_CAST(cv_r+4))));
#else
cv_l[0] += cv_r[0];
cv_l[1] += cv_r[1];
cv_l[2] += cv_r[2];
cv_l[3] += cv_r[3];
cv_l[4] += cv_r[4];
cv_l[5] += cv_r[5];
cv_l[6] += cv_r[6];
cv_l[7] += cv_r[7];
#endif
}
template <unsigned int R>
inline void rotate_blk(lsh_u32 cv[8])
{
CRYPTOPP_ASSERT(cv != NULLPTR);
#if defined(__XOP__)
_mm_storeu_si128(M128_CAST(cv),
_mm_roti_epi32(_mm_loadu_si128(CONST_M128_CAST(cv)), R));
_mm_storeu_si128(M128_CAST(cv+4),
_mm_roti_epi32(_mm_loadu_si128(CONST_M128_CAST(cv+4)), R));
#elif defined(__SSE2__)
_mm_storeu_si128(M128_CAST(cv), _mm_or_si128(
_mm_slli_epi32(_mm_loadu_si128(CONST_M128_CAST(cv)), R),
_mm_srli_epi32(_mm_loadu_si128(CONST_M128_CAST(cv)), 32-R)));
_mm_storeu_si128(M128_CAST(cv+4), _mm_or_si128(
_mm_slli_epi32(_mm_loadu_si128(CONST_M128_CAST(cv+4)), R),
_mm_srli_epi32(_mm_loadu_si128(CONST_M128_CAST(cv+4)), 32-R)));
#else
cv[0] = rotlConstant<R>(cv[0]);
cv[1] = rotlConstant<R>(cv[1]);
cv[2] = rotlConstant<R>(cv[2]);
cv[3] = rotlConstant<R>(cv[3]);
cv[4] = rotlConstant<R>(cv[4]);
cv[5] = rotlConstant<R>(cv[5]);
cv[6] = rotlConstant<R>(cv[6]);
cv[7] = rotlConstant<R>(cv[7]);
#endif
}
inline void xor_with_const(lsh_u32* cv_l, const lsh_u32* const_v)
{
CRYPTOPP_ASSERT(cv_l != NULLPTR);
CRYPTOPP_ASSERT(const_v != NULLPTR);
#if defined(__SSE2__)
_mm_storeu_si128(M128_CAST(cv_l), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_l)),
_mm_loadu_si128(CONST_M128_CAST(const_v))));
_mm_storeu_si128(M128_CAST(cv_l+4), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(cv_l+4)),
_mm_loadu_si128(CONST_M128_CAST(const_v+4))));
#else
cv_l[0] ^= const_v[0];
cv_l[1] ^= const_v[1];
cv_l[2] ^= const_v[2];
cv_l[3] ^= const_v[3];
cv_l[4] ^= const_v[4];
cv_l[5] ^= const_v[5];
cv_l[6] ^= const_v[6];
cv_l[7] ^= const_v[7];
#endif
}
inline void rotate_msg_gamma(lsh_u32* cv_r)
{
CRYPTOPP_ASSERT(cv_r != NULLPTR);
cv_r[1] = rotlFixed(cv_r[1], g_gamma256[1]);
cv_r[2] = rotlFixed(cv_r[2], g_gamma256[2]);
cv_r[3] = rotlFixed(cv_r[3], g_gamma256[3]);
cv_r[4] = rotlFixed(cv_r[4], g_gamma256[4]);
cv_r[5] = rotlFixed(cv_r[5], g_gamma256[5]);
cv_r[6] = rotlFixed(cv_r[6], g_gamma256[6]);
}
inline void word_perm(lsh_u32* cv_l, lsh_u32* cv_r)
{
CRYPTOPP_ASSERT(cv_l != NULLPTR);
CRYPTOPP_ASSERT(cv_r != NULLPTR);
#if defined(__SSE2__)
_mm_storeu_si128(M128_CAST(cv_l+0),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(cv_l+0)), _MM_SHUFFLE(3,1,0,2)));
_mm_storeu_si128(M128_CAST(cv_l+4),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(cv_l+4)), _MM_SHUFFLE(3,1,0,2)));
_mm_storeu_si128(M128_CAST(cv_r+0),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(cv_r+0)), _MM_SHUFFLE(1,2,3,0)));
_mm_storeu_si128(M128_CAST(cv_r+4),
_mm_shuffle_epi32(_mm_loadu_si128(CONST_M128_CAST(cv_r+4)), _MM_SHUFFLE(1,2,3,0)));
__m128i cv_l_temp = _mm_loadu_si128(CONST_M128_CAST(cv_l+0));
_mm_storeu_si128(M128_CAST(cv_l+0), _mm_loadu_si128(CONST_M128_CAST(cv_l+4)));
_mm_storeu_si128(M128_CAST(cv_l+4), _mm_loadu_si128(CONST_M128_CAST(cv_r+4)));
_mm_storeu_si128(M128_CAST(cv_r+4), _mm_loadu_si128(CONST_M128_CAST(cv_r+0)));
_mm_storeu_si128(M128_CAST(cv_r+0), cv_l_temp);
#else
lsh_u32 temp;
temp = cv_l[0];
cv_l[0] = cv_l[6];
cv_l[6] = cv_r[6];
cv_r[6] = cv_r[2];
cv_r[2] = cv_l[1];
cv_l[1] = cv_l[4];
cv_l[4] = cv_r[4];
cv_r[4] = cv_r[0];
cv_r[0] = cv_l[2];
cv_l[2] = cv_l[5];
cv_l[5] = cv_r[7];
cv_r[7] = cv_r[1];
cv_r[1] = temp;
temp = cv_l[3];
cv_l[3] = cv_l[7];
cv_l[7] = cv_r[5];
cv_r[5] = cv_r[3];
cv_r[3] = temp;
#endif
};
/* -------------------------------------------------------- *
* step function
* -------------------------------------------------------- */
template <unsigned int Alpha, unsigned int Beta>
inline void mix(lsh_u32* cv_l, lsh_u32* cv_r, const lsh_u32* const_v)
{
CRYPTOPP_ASSERT(cv_l != NULLPTR);
CRYPTOPP_ASSERT(cv_r != NULLPTR);
CRYPTOPP_ASSERT(const_v != NULLPTR);
add_blk(cv_l, cv_r);
rotate_blk<Alpha>(cv_l);
xor_with_const(cv_l, const_v);
add_blk(cv_r, cv_l);
rotate_blk<Beta>(cv_r);
add_blk(cv_l, cv_r);
rotate_msg_gamma(cv_r);
}
/* -------------------------------------------------------- *
* compression function
* -------------------------------------------------------- */
inline void compress(LSH256_Context* ctx, const lsh_u32 pdMsgBlk[MSG_BLK_WORD_LEN])
{
CRYPTOPP_ASSERT(ctx != NULLPTR);
LSH256_Internal s_state(ctx->cv_l);
LSH256_Internal* i_state = &s_state;
const lsh_u32* const_v = NULL;
lsh_u32* cv_l = ctx->cv_l;
lsh_u32* cv_r = ctx->cv_r;
load_msg_blk(i_state, pdMsgBlk);
msg_add_even(cv_l, cv_r, i_state);
load_sc(&const_v, 0);
mix<ROT_EVEN_ALPHA, ROT_EVEN_BETA>(cv_l, cv_r, const_v);
word_perm(cv_l, cv_r);
msg_add_odd(cv_l, cv_r, i_state);
load_sc(&const_v, 8);
mix<ROT_ODD_ALPHA, ROT_ODD_BETA>(cv_l, cv_r, const_v);
word_perm(cv_l, cv_r);
for (size_t i = 1; i < NUM_STEPS / 2; i++)
{
msg_exp_even(i_state);
msg_add_even(cv_l, cv_r, i_state);
load_sc(&const_v, 16 * i);
mix<ROT_EVEN_ALPHA, ROT_EVEN_BETA>(cv_l, cv_r, const_v);
word_perm(cv_l, cv_r);
msg_exp_odd(i_state);
msg_add_odd(cv_l, cv_r, i_state);
load_sc(&const_v, 16 * i + 8);
mix<ROT_ODD_ALPHA, ROT_ODD_BETA>(cv_l, cv_r, const_v);
word_perm(cv_l, cv_r);
}
msg_exp_even(i_state);
msg_add_even(cv_l, cv_r, i_state);
}
/* -------------------------------------------------------- */
inline void load_iv(word32* cv_l, word32* cv_r, const word32* iv)
{
#if defined(__SSE2__)
// The IV's are aligned so we can use _mm_load_si128.
_mm_storeu_si128(M128_CAST(cv_l+ 0), _mm_load_si128(CONST_M128_CAST(iv+ 0)));
_mm_storeu_si128(M128_CAST(cv_l+ 4), _mm_load_si128(CONST_M128_CAST(iv+ 4)));
_mm_storeu_si128(M128_CAST(cv_r+ 0), _mm_load_si128(CONST_M128_CAST(iv+ 8)));
_mm_storeu_si128(M128_CAST(cv_r+ 4), _mm_load_si128(CONST_M128_CAST(iv+12)));
#else
cv_l[0] = iv[0];
cv_l[1] = iv[1];
cv_l[2] = iv[2];
cv_l[3] = iv[3];
cv_l[4] = iv[4];
cv_l[5] = iv[5];
cv_l[6] = iv[6];
cv_l[7] = iv[7];
cv_r[0] = iv[8];
cv_r[1] = iv[9];
cv_r[2] = iv[10];
cv_r[3] = iv[11];
cv_r[4] = iv[12];
cv_r[5] = iv[13];
cv_r[6] = iv[14];
cv_r[7] = iv[15];
#endif
}
inline void init224(LSH256_Context* ctx)
{
CRYPTOPP_ASSERT(ctx != NULLPTR);
load_iv(ctx->cv_l, ctx->cv_r, g_IV224);
memset(ctx->sub_msgs, 0x00, 32*sizeof(lsh_u32));
}
inline void init256(LSH256_Context* ctx)
{
CRYPTOPP_ASSERT(ctx != NULLPTR);
load_iv(ctx->cv_l, ctx->cv_r, g_IV256);
memset(ctx->sub_msgs, 0x00, 32*sizeof(lsh_u32));
}
/* -------------------------------------------------------- */
inline void fin(LSH256_Context* ctx)
{
CRYPTOPP_ASSERT(ctx != NULLPTR);
#if defined(__SSE2__)
_mm_storeu_si128(M128_CAST(ctx->cv_l+0), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(ctx->cv_l+0)),
_mm_loadu_si128(CONST_M128_CAST(ctx->cv_r+0))));
_mm_storeu_si128(M128_CAST(ctx->cv_l+4), _mm_xor_si128(
_mm_loadu_si128(CONST_M128_CAST(ctx->cv_l+4)),
_mm_loadu_si128(CONST_M128_CAST(ctx->cv_r+4))));
#else
for (size_t i = 0; i < HASH_VAL_MAX_WORD_LEN; i++){
ctx->cv_l[i] = loadLE32(ctx->cv_l[i] ^ ctx->cv_r[i]);
}
#endif
}
/* -------------------------------------------------------- */
inline void get_hash(LSH256_Context* ctx, lsh_u8* pbHashVal)
{
CRYPTOPP_ASSERT(ctx != NULLPTR);
CRYPTOPP_ASSERT(ctx->algtype != 0);
CRYPTOPP_ASSERT(pbHashVal != NULLPTR);
lsh_uint algtype = ctx->algtype;
lsh_uint hash_val_byte_len = LSH_GET_HASHBYTE(algtype);
lsh_uint hash_val_bit_len = LSH_GET_SMALL_HASHBIT(algtype);
// Multiplying by sizeof(lsh_u8) looks odd...
memcpy(pbHashVal, ctx->cv_l, sizeof(lsh_u8) * hash_val_byte_len);
if (hash_val_bit_len){
pbHashVal[hash_val_byte_len-1] &= (((lsh_u8)0xff) << hash_val_bit_len);
}
}
/* -------------------------------------------------------- */
lsh_err lsh256_init(LSH256_Context* ctx)
{
CRYPTOPP_ASSERT(ctx != NULLPTR);
CRYPTOPP_ASSERT(ctx->algtype != 0);
lsh_u32 algtype = ctx->algtype;
const lsh_u32* const_v = NULL;
ctx->remain_databitlen = 0;
switch (algtype)
{
case LSH_TYPE_256_256:
init256(ctx);
return LSH_SUCCESS;
case LSH_TYPE_256_224:
init224(ctx);
return LSH_SUCCESS;
default:
break;
}
lsh_u32* cv_l = ctx->cv_l;
lsh_u32* cv_r = ctx->cv_r;
memset(ctx->cv_l, 0, 8 * sizeof(lsh_u32));
memset(ctx->cv_r, 0, 8 * sizeof(lsh_u32));
ctx->cv_l[0] = LSH256_HASH_VAL_MAX_BYTE_LEN;
ctx->cv_l[1] = LSH_GET_HASHBIT(algtype);
for (size_t i = 0; i < NUM_STEPS / 2; i++)
{
//Mix
load_sc(&const_v, i * 16);
mix<ROT_EVEN_ALPHA, ROT_EVEN_BETA>(cv_l, cv_r, const_v);
word_perm(cv_l, cv_r);
load_sc(&const_v, i * 16 + 8);
mix<ROT_ODD_ALPHA, ROT_ODD_BETA>(cv_l, cv_r, const_v);
word_perm(cv_l, cv_r);
}
return LSH_SUCCESS;
}
lsh_err lsh256_update(LSH256_Context* ctx, const lsh_u8* data, size_t databitlen)
{
CRYPTOPP_ASSERT(ctx != NULLPTR);
CRYPTOPP_ASSERT(data != NULLPTR);
CRYPTOPP_ASSERT(databitlen % 8 == 0);
CRYPTOPP_ASSERT(ctx->algtype != 0);
if (databitlen == 0){
return LSH_SUCCESS;
}
size_t databytelen = databitlen >> 3;
lsh_uint pos2 = databitlen & 0x7;
// We are byte oriented. remain_msg_bit will always be 0.
lsh_uint remain_msg_byte = ctx->remain_databitlen >> 3;
// lsh_uint remain_msg_bit = ctx->remain_databitlen & 7;
lsh_uint remain_msg_bit = 0;
if (remain_msg_byte >= LSH256_MSG_BLK_BYTE_LEN){
return LSH_ERR_INVALID_STATE;
}
if (remain_msg_bit > 0){
return LSH_ERR_INVALID_DATABITLEN;
}
if (databytelen + remain_msg_byte < LSH256_MSG_BLK_BYTE_LEN)
{
memcpy(ctx->last_block + remain_msg_byte, data, databytelen);
ctx->remain_databitlen += (lsh_uint)databitlen;
remain_msg_byte += (lsh_uint)databytelen;
if (pos2){
ctx->last_block[remain_msg_byte] = data[databytelen] & ((0xff >> pos2) ^ 0xff);
}
return LSH_SUCCESS;
}
if (remain_msg_byte > 0){
lsh_uint more_byte = LSH256_MSG_BLK_BYTE_LEN - remain_msg_byte;
memcpy(ctx->last_block + remain_msg_byte, data, more_byte);
compress(ctx, (lsh_u32*)ctx->last_block);
data += more_byte;
databytelen -= more_byte;
remain_msg_byte = 0;
ctx->remain_databitlen = 0;
}
while (databytelen >= LSH256_MSG_BLK_BYTE_LEN)
{
compress(ctx, (lsh_u32*)data);
data += LSH256_MSG_BLK_BYTE_LEN;
databytelen -= LSH256_MSG_BLK_BYTE_LEN;
}
if (databytelen > 0){
memcpy(ctx->last_block, data, databytelen);
ctx->remain_databitlen = (lsh_uint)(databytelen << 3);
}
if (pos2){
ctx->last_block[databytelen] = data[databytelen] & ((0xff >> pos2) ^ 0xff);
ctx->remain_databitlen += pos2;
}
return LSH_SUCCESS;
}
lsh_err lsh256_final(LSH256_Context* ctx, lsh_u8* hashval)
{
CRYPTOPP_ASSERT(ctx != NULLPTR);
CRYPTOPP_ASSERT(hashval != NULLPTR);
// We are byte oriented. remain_msg_bit will always be 0.
lsh_uint remain_msg_byte = ctx->remain_databitlen >> 3;
// lsh_uint remain_msg_bit = ctx->remain_databitlen & 7;
lsh_uint remain_msg_bit = 0;
if (remain_msg_byte >= LSH256_MSG_BLK_BYTE_LEN){
return LSH_ERR_INVALID_STATE;
}
if (remain_msg_bit){
ctx->last_block[remain_msg_byte] |= (0x1 << (7 - remain_msg_bit));
}
else{
ctx->last_block[remain_msg_byte] = 0x80;
}
memset(ctx->last_block + remain_msg_byte + 1, 0, LSH256_MSG_BLK_BYTE_LEN - remain_msg_byte - 1);
compress(ctx, (lsh_u32*)ctx->last_block);
fin(ctx);
get_hash(ctx, hashval);
return LSH_SUCCESS;
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
std::string LSH256_Base::AlgorithmProvider() const
{
#if defined(__SSE2__)
return "SSE2";
#else
return "C++";
#endif
}
void LSH256_Base::Restart()
{
LSH256_Context ctx(m_state, m_algType, m_remainingBitLength);
lsh_err err = lsh256_init(&ctx);
if (err != LSH_SUCCESS)
throw Exception(Exception::OTHER_ERROR, "LSH256_Base: lsh256_init failed");
}
void LSH256_Base::Update(const byte *input, size_t length)
{
CRYPTOPP_ASSERT(input != NULLPTR);
CRYPTOPP_ASSERT(length);
LSH256_Context ctx(m_state, m_algType, m_remainingBitLength);
lsh_err err = lsh256_update(&ctx, input, 8*length);
if (err != LSH_SUCCESS)
throw Exception(Exception::OTHER_ERROR, "LSH256_Base: lsh256_update failed");
}
void LSH256_Base::TruncatedFinal(byte *hash, size_t size)
{
CRYPTOPP_ASSERT(hash != NULLPTR);
ThrowIfInvalidTruncatedSize(size);
LSH256_Context ctx(m_state, m_algType, m_remainingBitLength);
lsh_err err;
if (size >= DigestSize())
{
err = lsh256_final(&ctx, hash);
}
else
{
// TODO: determine if LSH256 supports truncated hashes. See the code in get_hash(),
// where a bit-length is added to the last output byte of the hash function.
// CRYPTOPP_ASSERT(0);
byte fullHash[HASH_VAL_MAX_WORD_LEN * sizeof(lsh_u32)];
err = lsh256_final(&ctx, fullHash);
memcpy(hash, fullHash, size);
}
if (err != LSH_SUCCESS)
throw Exception(Exception::OTHER_ERROR, "LSH256_Base: lsh256_final failed");
Restart();
}
NAMESPACE_END

1125
lsh512.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -25,6 +25,7 @@
#include "ripemd.h" #include "ripemd.h"
#include "panama.h" #include "panama.h"
#include "whrlpool.h" #include "whrlpool.h"
#include "lsh.h"
#include "osrng.h" #include "osrng.h"
#include "drbg.h" #include "drbg.h"
@ -115,6 +116,11 @@ void RegisterFactories1()
RegisterDefaultFactoryFor<HashTransformation, SM3>(); RegisterDefaultFactoryFor<HashTransformation, SM3>();
RegisterDefaultFactoryFor<HashTransformation, BLAKE2s>(); RegisterDefaultFactoryFor<HashTransformation, BLAKE2s>();
RegisterDefaultFactoryFor<HashTransformation, BLAKE2b>(); RegisterDefaultFactoryFor<HashTransformation, BLAKE2b>();
RegisterDefaultFactoryFor<HashTransformation, LSH224>();
RegisterDefaultFactoryFor<HashTransformation, LSH256>();
RegisterDefaultFactoryFor<HashTransformation, LSH384>();
RegisterDefaultFactoryFor<HashTransformation, LSH512>();
RegisterDefaultFactoryFor<HashTransformation, LSH512_256>();
#ifdef BLOCKING_RNG_AVAILABLE #ifdef BLOCKING_RNG_AVAILABLE
RegisterDefaultFactoryFor<RandomNumberGenerator, BlockingRng>(); RegisterDefaultFactoryFor<RandomNumberGenerator, BlockingRng>();

View File

@ -1009,7 +1009,8 @@ bool Validate(int alg, bool thorough)
case 65: result = ValidateARIA(); break; case 65: result = ValidateARIA(); break;
case 66: result = ValidateCamellia(); break; case 66: result = ValidateCamellia(); break;
case 67: result = ValidateWhirlpool(); break; case 67: result = ValidateWhirlpool(); break;
case 68: result = ValidateTTMAC(); break; case 68: result = ValidateLSH(); break;
case 69: result = ValidateTTMAC(); break;
case 70: result = ValidateSalsa(); break; case 70: result = ValidateSalsa(); break;
case 71: result = ValidateChaCha(); break; case 71: result = ValidateChaCha(); break;
case 72: result = ValidateChaChaTLS(); break; case 72: result = ValidateChaChaTLS(); break;

View File

@ -107,6 +107,8 @@ bool ValidateAll(bool thorough)
pass=ValidateSHAKE() && pass; pass=ValidateSHAKE() && pass;
pass=ValidateSHAKE_XOF() && pass; pass=ValidateSHAKE_XOF() && pass;
pass=ValidateLSH() && pass;
pass=ValidateHashDRBG() && pass; pass=ValidateHashDRBG() && pass;
pass=ValidateHmacDRBG() && pass; pass=ValidateHmacDRBG() && pass;

View File

@ -28,6 +28,7 @@
#include "siphash.h" #include "siphash.h"
#include "poly1305.h" #include "poly1305.h"
#include "whrlpool.h" #include "whrlpool.h"
#include "lsh.h"
#include "pssr.h" #include "pssr.h"
#include "hkdf.h" #include "hkdf.h"
@ -514,14 +515,22 @@ bool ValidateHAVAL()
bool ValidatePanama() bool ValidatePanama()
{ {
std::cout << "\nPanama validation suite running...\n";
return RunTestDataFile("TestVectors/panama.txt"); return RunTestDataFile("TestVectors/panama.txt");
} }
bool ValidateWhirlpool() bool ValidateWhirlpool()
{ {
std::cout << "\nWhirlpool validation suite running...\n";
return RunTestDataFile("TestVectors/whrlpool.txt"); return RunTestDataFile("TestVectors/whrlpool.txt");
} }
bool ValidateLSH()
{
std::cout << "\nLSH validation suite running...\n";
return RunTestDataFile("TestVectors/lsh.txt");
}
#ifdef CRYPTOPP_REMOVED #ifdef CRYPTOPP_REMOVED
bool ValidateMD5MAC() bool ValidateMD5MAC()
{ {

View File

@ -60,6 +60,7 @@ bool ValidateTiger();
bool ValidateRIPEMD(); bool ValidateRIPEMD();
bool ValidatePanama(); bool ValidatePanama();
bool ValidateWhirlpool(); bool ValidateWhirlpool();
bool ValidateLSH();
bool ValidateSM3(); bool ValidateSM3();
bool ValidateBLAKE2s(); bool ValidateBLAKE2s();