Marcel Keller reports it broke curve operations
This commit is contained in:
Jeffrey Walton 2020-12-30 04:54:52 -05:00
parent 38cff9aa59
commit 4e56a6393d
No known key found for this signature in database
GPG Key ID: B36AB348921B1838

511
ecp.cpp
View File

@ -55,489 +55,6 @@ struct ProjectivePoint
Integer x, y, z;
};
/// \brief Addition and Double functions
/// \sa <A HREF="https://eprint.iacr.org/2015/1060.pdf">Complete
/// addition formulas for prime order elliptic curves</A>
struct AdditionFunction
{
explicit AdditionFunction(const ECP::Field& field,
const ECP::FieldElement &a, const ECP::FieldElement &b, ECP::Point &r);
// Double(P)
ECP::Point operator()(const ECP::Point& P) const;
// Add(P, Q)
ECP::Point operator()(const ECP::Point& P, const ECP::Point& Q) const;
protected:
/// \brief Parameters and representation for Addition
/// \details Addition and Doubling will use different algorithms,
/// depending on the <tt>A</tt> coefficient and the representation
/// (Affine or Montgomery with precomputation).
enum Alpha {
/// \brief Coefficient A is 0
A_0 = 1,
/// \brief Coefficient A is -3
A_3 = 2,
/// \brief Coefficient A is arbitrary
A_Star = 4,
/// \brief Representation is Montgomery
A_Montgomery = 8
};
const ECP::Field& field;
const ECP::FieldElement &a, &b;
ECP::Point &R;
Alpha m_alpha;
};
#define X p.x
#define Y p.y
#define Z p.z
#define X1 p.x
#define Y1 p.y
#define Z1 p.z
#define X2 q.x
#define Y2 q.y
#define Z2 q.z
#define X3 r.x
#define Y3 r.y
#define Z3 r.z
AdditionFunction::AdditionFunction(const ECP::Field& field,
const ECP::FieldElement &a, const ECP::FieldElement &b, ECP::Point &r)
: field(field), a(a), b(b), R(r), m_alpha(static_cast<Alpha>(0))
{
if (field.IsMontgomeryRepresentation())
{
m_alpha = A_Montgomery;
}
else
{
if (a == 0)
{
m_alpha = A_0;
}
else if (a == -3 || (a - field.GetModulus()) == -3)
{
m_alpha = A_3;
}
else
{
m_alpha = A_Star;
}
}
}
ECP::Point AdditionFunction::operator()(const ECP::Point& P) const
{
if (m_alpha == A_3)
{
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x = P.x * IdentityToInteger(!P.identity);
const Integer y = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
const Integer z = 1 * IdentityToInteger(!P.identity);
ProjectivePoint p(x, y, z), r;
ECP::FieldElement t0 = field.Square(X);
ECP::FieldElement t1 = field.Square(Y);
ECP::FieldElement t2 = field.Square(Z);
ECP::FieldElement t3 = field.Multiply(X, Y);
t3 = field.Add(t3, t3);
Z3 = field.Multiply(X, Z);
Z3 = field.Add(Z3, Z3);
Y3 = field.Multiply(b, t2);
Y3 = field.Subtract(Y3, Z3);
X3 = field.Add(Y3, Y3);
Y3 = field.Add(X3, Y3);
X3 = field.Subtract(t1, Y3);
Y3 = field.Add(t1, Y3);
Y3 = field.Multiply(X3, Y3);
X3 = field.Multiply(X3, t3);
t3 = field.Add(t2, t2);
t2 = field.Add(t2, t3);
Z3 = field.Multiply(b, Z3);
Z3 = field.Subtract(Z3, t2);
Z3 = field.Subtract(Z3, t0);
t3 = field.Add(Z3, Z3);
Z3 = field.Add(Z3, t3);
t3 = field.Add(t0, t0);
t0 = field.Add(t3, t0);
t0 = field.Subtract(t0, t2);
t0 = field.Multiply(t0, Z3);
Y3 = field.Add(Y3, t0);
t0 = field.Multiply(Y, Z);
t0 = field.Add(t0, t0);
Z3 = field.Multiply(t0, Z3);
X3 = field.Subtract(X3, Z3);
Z3 = field.Multiply(t0, t1);
Z3 = field.Add(Z3, Z3);
Z3 = field.Add(Z3, Z3);
const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
R.x = X3*Z3.NotZero();
R.y = Y3*Z3.NotZero();
R.identity = Z3.IsZero();
return R;
}
else if (m_alpha == A_0)
{
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x = P.x * IdentityToInteger(!P.identity);
const Integer y = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
const Integer z = 1 * IdentityToInteger(!P.identity);
ProjectivePoint p(x, y, z), r;
const ECP::FieldElement b3 = field.Multiply(b, 3);
ECP::FieldElement t0 = field.Square(Y);
Z3 = field.Add(t0, t0);
Z3 = field.Add(Z3, Z3);
Z3 = field.Add(Z3, Z3);
ECP::FieldElement t1 = field.Add(Y, Z);
ECP::FieldElement t2 = field.Square(Z);
t2 = field.Multiply(b3, t2);
X3 = field.Multiply(t2, Z3);
Y3 = field.Add(t0, t2);
Z3 = field.Multiply(t1, Z3);
t1 = field.Add(t2, t2);
t2 = field.Add(t1, t2);
t0 = field.Subtract(t0, t2);
Y3 = field.Multiply(t0, Y3);
Y3 = field.Add(X3, Y3);
t1 = field.Multiply(X, Y);
X3 = field.Multiply(t0, t1);
X3 = field.Add(X3, X3);
const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
R.x = X3*Z3.NotZero();
R.y = Y3*Z3.NotZero();
R.identity = Z3.IsZero();
return R;
}
#if 0
// Code path disabled at the moment due to https://github.com/weidai11/cryptopp/issues/878
else if (m_alpha == A_Star)
{
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x = P.x * IdentityToInteger(!P.identity);
const Integer y = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
const Integer z = 1 * IdentityToInteger(!P.identity);
ProjectivePoint p(x, y, z), r;
const ECP::FieldElement b3 = field.Multiply(b, 3);
ECP::FieldElement t0 = field.Square(Y);
Z3 = field.Add(t0, t0);
Z3 = field.Add(Z3, Z3);
Z3 = field.Add(Z3, Z3);
ECP::FieldElement t1 = field.Add(Y, Z);
ECP::FieldElement t2 = field.Square(Z);
t2 = field.Multiply(b3, t2);
X3 = field.Multiply(t2, Z3);
Y3 = field.Add(t0, t2);
Z3 = field.Multiply(t1, Z3);
t1 = field.Add(t2, t2);
t2 = field.Add(t1, t2);
t0 = field.Subtract(t0, t2);
Y3 = field.Multiply(t0, Y3);
Y3 = field.Add(X3, Y3);
t1 = field.Multiply(X, Y);
X3 = field.Multiply(t0, t1);
X3 = field.Add(X3, X3);
const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
R.x = X3*Z3.NotZero();
R.y = Y3*Z3.NotZero();
R.identity = Z3.IsZero();
return R;
}
#endif
else // A_Montgomery
{
// More gyrations
bool identity = !!(P.identity + (P.y == field.Identity()));
ECP::FieldElement t = field.Square(P.x);
t = field.Add(field.Add(field.Double(t), t), a);
t = field.Divide(t, field.Double(P.y));
ECP::FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), P.x);
R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
R.x.swap(x);
// More gyrations
R.x *= IdentityToInteger(!identity);
R.y *= IdentityToInteger(!identity);
R.identity = identity;
return R;
}
}
ECP::Point AdditionFunction::operator()(const ECP::Point& P, const ECP::Point& Q) const
{
if (m_alpha == A_3)
{
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x1 = P.x * IdentityToInteger(!P.identity);
const Integer y1 = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
const Integer z1 = 1 * IdentityToInteger(!P.identity);
const Integer x2 = Q.x * IdentityToInteger(!Q.identity);
const Integer y2 = Q.y * IdentityToInteger(!Q.identity) + 1 * IdentityToInteger(Q.identity);
const Integer z2 = 1 * IdentityToInteger(!Q.identity);
ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
ECP::FieldElement t0 = field.Multiply(X1, X2);
ECP::FieldElement t1 = field.Multiply(Y1, Y2);
ECP::FieldElement t2 = field.Multiply(Z1, Z2);
ECP::FieldElement t3 = field.Add(X1, Y1);
ECP::FieldElement t4 = field.Add(X2, Y2);
t3 = field.Multiply(t3, t4);
t4 = field.Add(t0, t1);
t3 = field.Subtract(t3, t4);
t4 = field.Add(Y1, Z1);
X3 = field.Add(Y2, Z2);
t4 = field.Multiply(t4, X3);
X3 = field.Add(t1, t2);
t4 = field.Subtract(t4, X3);
X3 = field.Add(X1, Z1);
Y3 = field.Add(X2, Z2);
X3 = field.Multiply(X3, Y3);
Y3 = field.Add(t0, t2);
Y3 = field.Subtract(X3, Y3);
Z3 = field.Multiply(b, t2);
X3 = field.Subtract(Y3, Z3);
Z3 = field.Add(X3, X3);
X3 = field.Add(X3, Z3);
Z3 = field.Subtract(t1, X3);
X3 = field.Add(t1, X3);
Y3 = field.Multiply(b, Y3);
t1 = field.Add(t2, t2);
t2 = field.Add(t1, t2);
Y3 = field.Subtract(Y3, t2);
Y3 = field.Subtract(Y3, t0);
t1 = field.Add(Y3, Y3);
Y3 = field.Add(t1, Y3);
t1 = field.Add(t0, t0);
t0 = field.Add(t1, t0);
t0 = field.Subtract(t0, t2);
t1 = field.Multiply(t4, Y3);
t2 = field.Multiply(t0, Y3);
Y3 = field.Multiply(X3, Z3);
Y3 = field.Add(Y3, t2);
X3 = field.Multiply(t3, X3);
X3 = field.Subtract(X3, t1);
Z3 = field.Multiply(t4, Z3);
t1 = field.Multiply(t3, t0);
Z3 = field.Add(Z3, t1);
const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
R.x = X3*Z3.NotZero();
R.y = Y3*Z3.NotZero();
R.identity = Z3.IsZero();
return R;
}
else if (m_alpha == A_0)
{
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x1 = P.x * IdentityToInteger(!P.identity);
const Integer y1 = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
const Integer z1 = 1 * IdentityToInteger(!P.identity);
const Integer x2 = Q.x * IdentityToInteger(!Q.identity);
const Integer y2 = Q.y * IdentityToInteger(!Q.identity) + 1 * IdentityToInteger(Q.identity);
const Integer z2 = 1 * IdentityToInteger(!Q.identity);
ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
const ECP::FieldElement b3 = field.Multiply(b, 3);
ECP::FieldElement t0 = field.Square(Y);
Z3 = field.Add(t0, t0);
Z3 = field.Add(Z3, Z3);
Z3 = field.Add(Z3, Z3);
ECP::FieldElement t1 = field.Add(Y, Z);
ECP::FieldElement t2 = field.Square(Z);
t2 = field.Multiply(b3, t2);
X3 = field.Multiply(t2, Z3);
Y3 = field.Add(t0, t2);
Z3 = field.Multiply(t1, Z3);
t1 = field.Add(t2, t2);
t2 = field.Add(t1, t2);
t0 = field.Subtract(t0, t2);
Y3 = field.Multiply(t0, Y3);
Y3 = field.Add(X3, Y3);
t1 = field.Multiply(X, Y);
X3 = field.Multiply(t0, t1);
X3 = field.Add(X3, X3);
const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
R.x = X3*Z3.NotZero();
R.y = Y3*Z3.NotZero();
R.identity = Z3.IsZero();
return R;
}
#if 0
// Code path disabled at the moment due to https://github.com/weidai11/cryptopp/issues/878
else if (m_alpha == A_Star)
{
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x1 = P.x * IdentityToInteger(!P.identity);
const Integer y1 = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity);
const Integer z1 = 1 * IdentityToInteger(!P.identity);
const Integer x2 = Q.x * IdentityToInteger(!Q.identity);
const Integer y2 = Q.y * IdentityToInteger(!Q.identity) + 1 * IdentityToInteger(Q.identity);
const Integer z2 = 1 * IdentityToInteger(!Q.identity);
ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
const ECP::FieldElement b3 = field.Multiply(b, 3);
ECP::FieldElement t0 = field.Multiply(X1, X2);
ECP::FieldElement t1 = field.Multiply(Y1, Y2);
ECP::FieldElement t2 = field.Multiply(Z1, Z2);
ECP::FieldElement t3 = field.Add(X1, Y1);
ECP::FieldElement t4 = field.Add(X2, Y2);
t3 = field.Multiply(t3, t4);
t4 = field.Add(t0, t1);
t3 = field.Subtract(t3, t4);
t4 = field.Add(X1, Z1);
ECP::FieldElement t5 = field.Add(X2, Z2);
t4 = field.Multiply(t4, t5);
t5 = field.Add(t0, t2);
t4 = field.Subtract(t4, t5);
t5 = field.Add(Y1, Z1);
X3 = field.Add(Y2, Z2);
t5 = field.Multiply(t5, X3);
X3 = field.Add(t1, t2);
t5 = field.Subtract(t5, X3);
Z3 = field.Multiply(a, t4);
X3 = field.Multiply(b3, t2);
Z3 = field.Add(X3, Z3);
X3 = field.Subtract(t1, Z3);
Z3 = field.Add(t1, Z3);
Y3 = field.Multiply(X3, Z3);
t1 = field.Add(t0, t0);
t1 = field.Add(t1, t0);
t2 = field.Multiply(a, t2);
t4 = field.Multiply(b3, t4);
t1 = field.Add(t1, t2);
t2 = field.Subtract(t0, t2);
t2 = field.Multiply(a, t2);
t4 = field.Add(t4, t2);
t0 = field.Multiply(t1, t4);
Y3 = field.Add(Y3, t0);
t0 = field.Multiply(t5, t4);
X3 = field.Multiply(t3, X3);
X3 = field.Subtract(X3, t0);
t0 = field.Multiply(t3, t1);
Z3 = field.Multiply(t5, Z3);
Z3 = field.Add(Z3, t0);
const ECP::FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
R.x = X3*Z3.NotZero();
R.y = Y3*Z3.NotZero();
R.identity = Z3.IsZero();
return R;
}
#endif
else // A_Montgomery
{
// More gyrations
bool return_Q = P.identity;
bool return_P = Q.identity;
bool double_P = field.Equal(P.x, Q.x) && field.Equal(P.y, Q.y);
bool identity = field.Equal(P.x, Q.x) && !field.Equal(P.y, Q.y);
// This code taken from Double(P) for below
identity = !!((double_P * (P.identity + (P.y == field.Identity()))) + identity);
ECP::Point S = R;
if (double_P)
{
// This code taken from Double(P)
ECP::FieldElement t = field.Square(P.x);
t = field.Add(field.Add(field.Double(t), t), a);
t = field.Divide(t, field.Double(P.y));
ECP::FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), P.x);
R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
R.x.swap(x);
}
else
{
// Original Add(P,Q) code
ECP::FieldElement t = field.Subtract(Q.y, P.y);
t = field.Divide(t, field.Subtract(Q.x, P.x));
ECP::FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), Q.x);
R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
R.x.swap(x);
}
// More gyrations
R.x = R.x * IdentityToInteger(!identity);
R.y = R.y * IdentityToInteger(!identity);
R.identity = identity;
if (return_Q)
return (R = S), Q;
else if (return_P)
return (R = S), P;
else
return (S = R), R;
}
}
#undef X
#undef Y
#undef Z
#undef X1
#undef Y1
#undef Z1
#undef X2
#undef Y2
#undef Z2
#undef X3
#undef Y3
#undef Z3
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
@ -742,14 +259,34 @@ const ECP::Point& ECP::Inverse(const Point &P) const
const ECP::Point& ECP::Add(const Point &P, const Point &Q) const
{
AdditionFunction add(GetField(), m_a, m_b, m_R);
return (m_R = add(P, Q));
if (P.identity) return Q;
if (Q.identity) return P;
if (GetField().Equal(P.x, Q.x))
return GetField().Equal(P.y, Q.y) ? Double(P) : Identity();
FieldElement t = GetField().Subtract(Q.y, P.y);
t = GetField().Divide(t, GetField().Subtract(Q.x, P.x));
FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), Q.x);
m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
m_R.x.swap(x);
m_R.identity = false;
return m_R;
}
const ECP::Point& ECP::Double(const Point &P) const
{
AdditionFunction add(GetField(), m_a, m_b, m_R);
return (m_R = add(P));
if (P.identity || P.y==GetField().Identity()) return Identity();
FieldElement t = GetField().Square(P.x);
t = GetField().Add(GetField().Add(GetField().Double(t), t), m_a);
t = GetField().Divide(t, GetField().Double(P.y));
FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), P.x);
m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
m_R.x.swap(x);
m_R.identity = false;
return m_R;
}
template <class T, class Iterator> void ParallelInvert(const AbstractRing<T> &ring, Iterator begin, Iterator end)