Cleanup adv-simd.h for x86

This commit is contained in:
Jeffrey Walton 2018-08-12 19:04:14 -04:00
parent 6c621f91ce
commit 7f374faf52
No known key found for this signature in database
GPG Key ID: B36AB348921B1838

View File

@ -886,14 +886,6 @@ inline size_t AdvancedProcessBlocks64_2x1_SSE(F1 func1, F2 func2,
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
// Avoid casting byte* to double*. Clang and GCC do not agree.
double temp[2];
const size_t blockSize = 8;
const size_t xmmBlockSize = 16;
@ -917,25 +909,28 @@ inline size_t AdvancedProcessBlocks64_2x1_SSE(F1 func1, F2 func2,
if (flags & BT_AllowParallel)
{
double temp[2];
while (length >= 2*xmmBlockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 and 2 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
const __m128i s_two = _mm_set_epi32(2<<24, 0, 2<<24, 0);
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b),
_mm_castpd_si128(_mm_loaddup_pd(temp)));
block0 = _mm_add_epi32(s_one, _mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
block1 = _mm_add_epi32(s_two, block0);
// Store the next counter. When BT_InBlockIsCounter is set then
// inBlocks is backed by m_counterArray which is non-const.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(be2, block1)));
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(s_two, block1)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
@ -994,6 +989,7 @@ inline size_t AdvancedProcessBlocks64_2x1_SSE(F1 func1, F2 func2,
while (length >= blockSize)
{
double temp[2];
std::memcpy(temp, inBlocks, blockSize);
__m128i block = _mm_castpd_si128(_mm_load_sd(temp));
@ -1045,14 +1041,6 @@ inline size_t AdvancedProcessBlocks64_6x2_SSE(F2 func2, F6 func6,
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
// Avoid casting byte* to double*. Clang and GCC do not agree.
double temp[2];
const size_t blockSize = 8;
const size_t xmmBlockSize = 16;
@ -1076,29 +1064,32 @@ inline size_t AdvancedProcessBlocks64_6x2_SSE(F2 func2, F6 func6,
if (flags & BT_AllowParallel)
{
double temp[2];
while (length >= 6*xmmBlockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 and 2 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
const __m128i s_two = _mm_set_epi32(2<<24, 0, 2<<24, 0);
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b),
_mm_castpd_si128(_mm_loaddup_pd(temp)));
block0 = _mm_add_epi32(s_one, _mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
block2 = _mm_add_epi32(be2, block1);
block3 = _mm_add_epi32(be2, block2);
block4 = _mm_add_epi32(be2, block3);
block5 = _mm_add_epi32(be2, block4);
block1 = _mm_add_epi32(s_two, block0);
block2 = _mm_add_epi32(s_two, block1);
block3 = _mm_add_epi32(s_two, block2);
block4 = _mm_add_epi32(s_two, block3);
block5 = _mm_add_epi32(s_two, block4);
// Store the next counter. When BT_InBlockIsCounter is set then
// inBlocks is backed by m_counterArray which is non-const.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi32(be2, block5)));
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi32(s_two, block5)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
@ -1172,20 +1163,22 @@ inline size_t AdvancedProcessBlocks64_6x2_SSE(F2 func2, F6 func6,
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 and 2 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
const __m128i s_two = _mm_set_epi32(2<<24, 0, 2<<24, 0);
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b),
_mm_castpd_si128(_mm_loaddup_pd(temp)));
block0 = _mm_add_epi32(s_one, _mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
block1 = _mm_add_epi32(s_two, block0);
// Store the next counter. When BT_InBlockIsCounter is set then
// inBlocks is backed by m_counterArray which is non-const.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(be2, block1)));
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(s_two, block1)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
@ -1244,6 +1237,7 @@ inline size_t AdvancedProcessBlocks64_6x2_SSE(F2 func2, F6 func6,
while (length >= blockSize)
{
double temp[2];
__m128i block, zero = _mm_setzero_si128();
std::memcpy(temp, inBlocks, blockSize);
block = _mm_castpd_si128(_mm_load_sd(temp));
@ -1298,9 +1292,6 @@ inline size_t AdvancedProcessBlocks128_6x2_SSE(F2 func2, F6 func6,
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
const size_t blockSize = 16;
// const size_t xmmBlockSize = 16;
@ -1329,14 +1320,15 @@ inline size_t AdvancedProcessBlocks128_6x2_SSE(F2 func2, F6 func6,
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
// Increment of 1 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
block4 = _mm_add_epi32(block3, be1);
block5 = _mm_add_epi32(block4, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, be1));
block1 = _mm_add_epi32(block0, s_one);
block2 = _mm_add_epi32(block1, s_one);
block3 = _mm_add_epi32(block2, s_one);
block4 = _mm_add_epi32(block3, s_one);
block5 = _mm_add_epi32(block4, s_one);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, s_one));
}
else
{
@ -1409,10 +1401,11 @@ inline size_t AdvancedProcessBlocks128_6x2_SSE(F2 func2, F6 func6,
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
// Increment of 1 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, be1));
block1 = _mm_add_epi32(block0, s_one);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, s_one));
}
else
{
@ -1494,9 +1487,6 @@ inline size_t AdvancedProcessBlocks128_4x1_SSE(F1 func1, F4 func4,
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4[] = {0, 0, 0, 1<<24};
const size_t blockSize = 16;
// const size_t xmmBlockSize = 16;
@ -1525,12 +1515,13 @@ inline size_t AdvancedProcessBlocks128_4x1_SSE(F1 func1, F4 func4,
__m128i block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one32x4);
// Increment of 1 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, be1));
block1 = _mm_add_epi32(block0, s_one);
block2 = _mm_add_epi32(block1, s_one);
block3 = _mm_add_epi32(block2, s_one);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, s_one));
}
else
{
@ -1627,14 +1618,6 @@ inline size_t AdvancedProcessBlocks64_4x1_SSE(F1 func1, F4 func4,
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_1b[] = { 0, 0, 0, 1 << 24 };
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one32x4_2b[] = { 0, 2 << 24, 0, 2 << 24 };
// Avoid casting byte* to double*. Clang and GCC do not agree.
double temp[2];
const size_t blockSize = 8;
const size_t xmmBlockSize = 16;
@ -1658,27 +1641,30 @@ inline size_t AdvancedProcessBlocks64_4x1_SSE(F1 func1, F4 func4,
if (flags & BT_AllowParallel)
{
double temp[2];
while (length >= 4 * xmmBlockSize)
{
__m128i block0, block1, block2, block3;
if (flags & BT_InBlockIsCounter)
{
// Increment of 1 and 2 in big-endian compatible with the ctr byte array.
const __m128i s_one = _mm_set_epi32(1<<24, 0, 0, 0);
const __m128i s_two = _mm_set_epi32(2<<24, 0, 2<<24, 0);
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
std::memcpy(temp, inBlocks, blockSize);
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one32x4_1b),
_mm_castpd_si128(_mm_loaddup_pd(temp)));
block0 = _mm_add_epi32(s_one, _mm_castpd_si128(_mm_loaddup_pd(temp)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one32x4_2b);
block1 = _mm_add_epi32(be2, block0);
block2 = _mm_add_epi32(be2, block1);
block3 = _mm_add_epi32(be2, block2);
block1 = _mm_add_epi32(s_two, block0);
block2 = _mm_add_epi32(s_two, block1);
block3 = _mm_add_epi32(s_two, block2);
// Store the next counter. When BT_InBlockIsCounter is set then
// inBlocks is backed by m_counterArray which is non-const.
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(be2, block3)));
_mm_store_sd(temp, _mm_castsi128_pd(_mm_add_epi64(s_two, block3)));
std::memcpy(const_cast<byte*>(inBlocks), temp, blockSize);
}
else
@ -1753,6 +1739,7 @@ inline size_t AdvancedProcessBlocks64_4x1_SSE(F1 func1, F4 func4,
while (length >= blockSize)
{
double temp[2];
std::memcpy(temp, inBlocks, blockSize);
__m128i block = _mm_castpd_si128(_mm_load_sd(temp));