Refactor <cipher>_AdvancedProcessBlocks_<arch> into adv-simd.h

This also fixes the SPECK64 bug where CTR mode self tests fail. It was an odd failure because it only affected 64-bit SPECK. SIMON was fine and it used nearly the same code. We tracked it down through trial and error to the table based rotates.
This commit is contained in:
Jeffrey Walton 2017-12-09 21:04:25 -05:00
parent 3ff04f1bf0
commit 8a5911e6eb
No known key found for this signature in database
GPG Key ID: B36AB348921B1838
6 changed files with 1016 additions and 1312 deletions

View File

@ -1,6 +1,7 @@
3way.cpp
3way.h
adhoc.cpp.proto
adv-simd.h
adler32.cpp
adler32.h
aes.h

947
adv-simd.h Normal file
View File

@ -0,0 +1,947 @@
// adv-simd.h - written and placed in the public domain by Jeffrey Walton
//
// The SIMD based implementations for ciphers that use SSE, NEON and Power7
// have a commom pattern. Namely, they have a specialized implementation of
// AdvancedProcessBlocks which processes multiple block using hardware
// acceleration. After several implementations we noticed a lot of copy and
// paste occuring. adv-simd.h provides a template to avoid the copy and paste.
//
// There are 8 templates provided in this file. The number following the
// function name is the block size of the cipher. The name following that
// is the acceleration and arrangement. For example SSE1x4 means Intel SSE
// using two encrypt (or decrypt) functions: one that operates on 1 block,
// and one that operates on 4 blocks.
//
// * AdvancedProcessBlocks64_SSE1x4
// * AdvancedProcessBlocks128_SSE1x4
// * AdvancedProcessBlocks64_SSE2x6
// * AdvancedProcessBlocks128_SSE2x6
// * AdvancedProcessBlocks64_NEON2x6
// * AdvancedProcessBlocks128_NEON2x6
//
#ifndef CRYPTOPP_ADVANCED_SIMD_TEMPLATES
#include "config.h"
#include "misc.h"
#if (CRYPTOPP_ARM_NEON_AVAILABLE)
# include <arm_neon.h>
#endif
#if (CRYPTOPP_SSSE3_AVAILABLE)
# include <emmintrin.h>
# include <pmmintrin.h>
# include <tmmintrin.h>
#endif
// ************************ All block ciphers *********************** //
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::BlockTransformation;
CRYPTOPP_CONSTANT(BT_XorInput = BlockTransformation::BT_XorInput)
CRYPTOPP_CONSTANT(BT_AllowParallel = BlockTransformation::BT_AllowParallel)
CRYPTOPP_CONSTANT(BT_InBlockIsCounter = BlockTransformation::BT_InBlockIsCounter)
CRYPTOPP_CONSTANT(BT_ReverseDirection = BlockTransformation::BT_ReverseDirection)
CRYPTOPP_CONSTANT(BT_DontIncrementInOutPointers = BlockTransformation::BT_DontIncrementInOutPointers)
ANONYMOUS_NAMESPACE_END
// *************************** ARM NEON ************************** //
#if defined(CRYPTOPP_ARM_NEON_AVAILABLE)
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::word32;
using CryptoPP::word64;
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4_1b[] = {0, 0, 0, 1<<24};
const word32 s_one32x4_2b[] = {0, 2<<24, 0, 2<<24};
#else
const word32 s_zero32x4[] = {0, 0, 0, 0};
const word32 s_one32x4_1b[] = {0, 0, 0, 1};
const word32 s_one32x4_2b[] = {0, 2, 0, 2};
#endif
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_one128[] = {0, 0, 0, 1<<24};
#else
const word32 s_one128[] = {0, 0, 0, 1};
#endif
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
template <typename F2, typename F6>
inline size_t AdvancedProcessBlocks64_NEON2x6(F2 func2, F6 func6,
const word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_CONSTANT(blockSize = 8)
CRYPTOPP_CONSTANT(neonBlockSize = 16)
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : neonBlockSize;
size_t xorIncrement = xorBlocks ? neonBlockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : neonBlockSize;
if (flags & BT_ReverseDirection)
{
inBlocks += length - neonBlockSize;
xorBlocks += length - neonBlockSize;
outBlocks += length - neonBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*neonBlockSize)
{
uint32x4_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t ctr = vld1_u8(inBlocks);
block0 = vaddq_u32(vld1q_u32(s_one32x4_1b),
vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const uint32x4_t be2 = vld1q_u32(s_one32x4_2b);
block1 = vaddq_u32(be2, block0);
block2 = vaddq_u32(be2, block1);
block3 = vaddq_u32(be2, block2);
block4 = vaddq_u32(be2, block3);
block5 = vaddq_u32(be2, block4);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(be2, block5))));
}
else
{
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block2 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block3 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block4 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block5 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (flags & BT_XorInput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block2));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block3));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block4));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block5));
outBlocks += outIncrement;
length -= 6*neonBlockSize;
}
while (length >= 2*neonBlockSize)
{
uint32x4_t block0, block1;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t ctr = vld1_u8(inBlocks);
block0 = vaddq_u32(vld1q_u32(s_one32x4_1b),
vreinterpretq_u32_u8(vcombine_u8(ctr,ctr)));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const uint32x4_t be2 = vld1q_u32(s_one32x4_2b);
block1 = vaddq_u32(be2, block0);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(be2, block1))));
}
else
{
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (flags & BT_XorInput)
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u32(block1));
outBlocks += outIncrement;
length -= 2*neonBlockSize;
}
}
if (length)
{
// Adjust to real block size
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
uint32x4_t block, zero = vld1q_u32(s_zero32x4);
const uint8x8_t v = vld1_u8(inBlocks);
block = vreinterpretq_u32_u8(vcombine_u8(v,v));
if (flags & BT_XorInput)
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
vst1_u8(const_cast<byte*>(outBlocks),
vget_low_u8(vreinterpretq_u8_u32(block)));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
template <typename F2, typename F6>
size_t AdvancedProcessBlocks128_NEON2x6(F2 func2, F6 func6,
const word64 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_CONSTANT(blockSize = 16)
// CRYPTOPP_CONSTANT(neonBlockSize = 16)
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = xorBlocks ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
if (flags & BT_ReverseDirection)
{
inBlocks += length - blockSize;
xorBlocks += length - blockSize;
outBlocks += length - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one128));
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, be);
block2 = vaddq_u64(block1, be);
block3 = vaddq_u64(block2, be);
block4 = vaddq_u64(block3, be);
block5 = vaddq_u64(block4, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, be)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (flags & BT_XorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block2));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block3));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block4));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block5));
outBlocks += outIncrement;
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
uint64x2_t block0, block1;
if (flags & BT_InBlockIsCounter)
{
const uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one128));
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
block1 = vaddq_u64(block0, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block1, be)));
}
else
{
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
inBlocks += inIncrement;
}
if (flags & BT_XorInput)
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
xorBlocks += xorIncrement;
}
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block0));
outBlocks += outIncrement;
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block1));
outBlocks += outIncrement;
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block, zero = {0,0};
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (flags & BT_XorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
NAMESPACE_END
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// *************************** Intel SSE ************************** //
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#ifndef M128_CAST
# define M128_CAST(x) ((__m128i *)(void *)(x))
#endif
#ifndef CONST_M128_CAST
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
#endif
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::word32;
using CryptoPP::word64;
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one64_1b[] = {0, 0, 0, 1<<24};
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one64_2b[] = {0, 2<<24, 0, 2<<24};
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one128[] = {0, 0, 0, 1<<24};
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
template <typename F2, typename F6>
inline size_t AdvancedProcessBlocks64_SSE2x6(F2 func2, F6 func6,
const word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
CRYPTOPP_CONSTANT(blockSize = 8)
CRYPTOPP_CONSTANT(xmmBlockSize = 16)
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : xmmBlockSize;
size_t xorIncrement = xorBlocks ? xmmBlockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : xmmBlockSize;
if (flags & BT_ReverseDirection)
{
inBlocks += length - xmmBlockSize;
xorBlocks += length - xmmBlockSize;
outBlocks += length - xmmBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*xmmBlockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one64_1b), _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(inBlocks))));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one64_2b);
block1 = _mm_add_epi32(be2, block0);
block2 = _mm_add_epi32(be2, block1);
block3 = _mm_add_epi32(be2, block2);
block4 = _mm_add_epi32(be2, block3);
block5 = _mm_add_epi32(be2, block4);
// Store the next counter.
_mm_store_sd(reinterpret_cast<double*>(const_cast<byte*>(inBlocks)),
_mm_castsi128_pd(_mm_add_epi32(be2, block5)));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (flags & BT_XorInput)
{
// Coverity finding, appears to be false positive. Assert the condition.
CRYPTOPP_ASSERT(xorBlocks);
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks += outIncrement;
length -= 6*xmmBlockSize;
}
while (length >= 2*xmmBlockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one64_1b), _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(inBlocks))));
// After initial increment of {0,1} remaining counters increment by {2,2}.
const __m128i be2 = *CONST_M128_CAST(s_one64_2b);
block1 = _mm_add_epi32(be2, block0);
// Store the next counter.
_mm_store_sd(reinterpret_cast<double*>(const_cast<byte*>(inBlocks)),
_mm_castsi128_pd(_mm_add_epi64(be2, block1)));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (flags & BT_XorInput)
{
// Coverity finding, appears to be false positive. Assert the condition.
CRYPTOPP_ASSERT(xorBlocks);
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*xmmBlockSize;
}
}
if (length)
{
// Adjust to real block size
const size_t blockSize = 8;
if (flags & BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
block = _mm_castpd_si128(
_mm_load_sd(reinterpret_cast<const double*>(inBlocks)));
if (flags & BT_XorInput)
{
block = _mm_xor_si128(block, _mm_castpd_si128(
_mm_load_sd(reinterpret_cast<const double*>(xorBlocks))));
}
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
block = _mm_xor_si128(block, _mm_castpd_si128(
_mm_load_sd(reinterpret_cast<const double*>(xorBlocks))));
}
_mm_store_sd(reinterpret_cast<double*>(outBlocks), _mm_castsi128_pd(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
template <typename F2, typename F6>
inline size_t AdvancedProcessBlocks128_SSE2x6(F2 func2, F6 func6,
const word64 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
CRYPTOPP_CONSTANT(blockSize = 16)
// CRYPTOPP_CONSTANT(xmmBlockSize = 16)
size_t inIncrement = (flags & (BT_InBlockIsCounter|BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = xorBlocks ? blockSize : 0;
size_t outIncrement = (flags & BT_DontIncrementInOutPointers) ? 0 : blockSize;
if (flags & BT_ReverseDirection)
{
inBlocks += length - blockSize;
xorBlocks += length - blockSize;
outBlocks += length - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BT_AllowParallel)
{
while (length >= 6*blockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one128);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
block2 = _mm_add_epi32(block1, be1);
block3 = _mm_add_epi32(block2, be1);
block4 = _mm_add_epi32(block3, be1);
block5 = _mm_add_epi32(block4, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block5, be1));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block4 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block5 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (flags & BT_XorInput)
{
// Coverity finding, appears to be false positive. Assert the condition.
CRYPTOPP_ASSERT(xorBlocks);
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block4 = _mm_xor_si128(block4, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block5 = _mm_xor_si128(block5, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block2);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block3);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block4);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block5);
outBlocks += outIncrement;
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
__m128i block0, block1;
if (flags & BT_InBlockIsCounter)
{
const __m128i be1 = *CONST_M128_CAST(s_one128);
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
block1 = _mm_add_epi32(block0, be1);
_mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block1, be1));
}
else
{
block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
inBlocks += inIncrement;
}
if (flags & BT_XorInput)
{
// Coverity finding, appears to be false positive. Assert the condition.
CRYPTOPP_ASSERT(xorBlocks);
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
{
block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
xorBlocks += xorIncrement;
}
_mm_storeu_si128(M128_CAST(outBlocks), block0);
outBlocks += outIncrement;
_mm_storeu_si128(M128_CAST(outBlocks), block1);
outBlocks += outIncrement;
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
__m128i block, zero = _mm_setzero_si128();
block = _mm_loadu_si128(CONST_M128_CAST(inBlocks));
if (flags & BT_XorInput)
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
if (flags & BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BT_XorInput))
block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks)));
_mm_storeu_si128(M128_CAST(outBlocks), block);
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
NAMESPACE_END
#endif // CRYPTOPP_SSSE3_AVAILABLE
#endif // CRYPTOPP_ADVANCED_SIMD_TEMPLATES

View File

@ -359,6 +359,7 @@
<ItemGroup>
<ClInclude Include="3way.h" />
<ClInclude Include="adler32.h" />
<ClInclude Include="adv-simd.h" />
<ClInclude Include="aes.h" />
<ClInclude Include="algebra.h" />
<ClInclude Include="algparam.h" />

View File

@ -477,6 +477,9 @@
<ClInclude Include="adler32.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="adv-simd.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="aes.h">
<Filter>Header Files</Filter>
</ClInclude>

View File

@ -10,6 +10,7 @@
#include "simon.h"
#include "misc.h"
#include "adv-simd.h"
// Uncomment for benchmarking C++ against SSE or NEON.
// Do so in both simon.cpp and simon-simd.cpp.
@ -35,10 +36,6 @@
# include <immintrin.h>
#endif
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#define M128_CAST(x) ((__m128i *)(void *)(x))
#define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::byte;
@ -46,22 +43,11 @@ using CryptoPP::word32;
using CryptoPP::word64;
using CryptoPP::rotlFixed;
using CryptoPP::rotrFixed;
using CryptoPP::BlockTransformation;
// *************************** ARM NEON ************************** //
#if defined(CRYPTOPP_ARM_NEON_AVAILABLE)
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_zero[] = {0, 0, 0, 0};
const word32 s_one64_1b[] = {0, 0, 0, 1<<24}; // Only second 8-byte block is incremented after loading
const word32 s_one64_2b[] = {0, 2<<24, 0, 2<<24}; // Routine step. Both 8-byte block are incremented
#else
const word32 s_zero[] = {0, 0, 0, 0};
const word32 s_one64_1b[] = {0, 0, 0, 1};
const word32 s_one64_2b[] = {0, 2, 0, 2};
#endif
template <unsigned int R>
inline uint32x4_t RotateLeft32(const uint32x4_t& val)
{
@ -342,232 +328,10 @@ inline void SIMON64_Dec_6_Blocks(uint32x4_t &block0, uint32x4_t &block1,
block5 = t5.val[1];
}
template <typename F2, typename F6>
inline size_t SIMON64_AdvancedProcessBlocks_NEON(F2 func2, F6 func6,
const word32 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 8);
const size_t neonBlockSize = 16;
size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : neonBlockSize;
size_t xorIncrement = xorBlocks ? neonBlockSize : 0;
size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : neonBlockSize;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inBlocks += length - neonBlockSize;
xorBlocks += length - neonBlockSize;
outBlocks += length - neonBlockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BlockTransformation::BT_AllowParallel)
{
// Load these magic values once. Analysis claims be1 and be2
// may be uninitialized, but they are when the block is a ctr.
uint32x4_t be1, be2;
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
be1 = vld1q_u32(s_one64_1b);
be2 = vld1q_u32(s_one64_2b);
}
while (length >= 6*neonBlockSize)
{
uint32x4_t block0, block1, block2, block3, block4, block5;
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the initial single CTR block.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t c = vld1_u8(inBlocks);
block0 = vaddq_u32(be1, vreinterpretq_u32_u8(vcombine_u8(c,c)));
// After initial increment of {0,1} remaining counters increment by {1,1}.
block1 = vaddq_u32(be2, block0);
block2 = vaddq_u32(be2, block1);
block3 = vaddq_u32(be2, block2);
block4 = vaddq_u32(be2, block3);
block5 = vaddq_u32(be2, block4);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(be2, block5))));
}
else
{
const int inc = static_cast<int>(inIncrement);
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+0*inc));
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+1*inc));
block2 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+2*inc));
block3 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+3*inc));
block4 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+4*inc));
block5 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+5*inc));
inBlocks += 6*inc;
}
if (flags & BlockTransformation::BT_XorInput)
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+1*inc)));
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+2*inc)));
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+3*inc)));
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+4*inc)));
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+5*inc)));
xorBlocks += 6*inc;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+1*inc)));
block2 = veorq_u32(block2, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+2*inc)));
block3 = veorq_u32(block3, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+3*inc)));
block4 = veorq_u32(block4, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+4*inc)));
block5 = veorq_u32(block5, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+5*inc)));
xorBlocks += 6*inc;
}
const int inc = static_cast<int>(outIncrement);
vst1q_u8(outBlocks+0*inc, vreinterpretq_u8_u32(block0));
vst1q_u8(outBlocks+1*inc, vreinterpretq_u8_u32(block1));
vst1q_u8(outBlocks+2*inc, vreinterpretq_u8_u32(block2));
vst1q_u8(outBlocks+3*inc, vreinterpretq_u8_u32(block3));
vst1q_u8(outBlocks+4*inc, vreinterpretq_u8_u32(block4));
vst1q_u8(outBlocks+5*inc, vreinterpretq_u8_u32(block5));
outBlocks += 6*inc;
length -= 6*neonBlockSize;
}
while (length >= 2*neonBlockSize)
{
uint32x4_t block0, block1;
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the initial single CTR block.
// After the dup load we have two counters in the NEON word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
const uint8x8_t c = vld1_u8(inBlocks);
block0 = vaddq_u32(be1, vreinterpretq_u32_u8(vcombine_u8(c,c)));
// After initial increment of {0,1} remaining counters increment by {1,1}.
block1 = vaddq_u32(be2, block0);
vst1_u8(const_cast<byte*>(inBlocks), vget_low_u8(
vreinterpretq_u8_u32(vaddq_u32(be2, block1))));
}
else
{
const int inc = static_cast<int>(inIncrement);
block0 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+0*inc));
block1 = vreinterpretq_u32_u8(vld1q_u8(inBlocks+1*inc));
inBlocks += 2*inc;
}
if (flags & BlockTransformation::BT_XorInput)
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+1*inc)));
xorBlocks += 2*inc;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u32(block0, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u32(block1, vreinterpretq_u32_u8(vld1q_u8(xorBlocks+1*inc)));
xorBlocks += 2*inc;
}
const int inc = static_cast<int>(outIncrement);
vst1q_u8(outBlocks+0*inc, vreinterpretq_u8_u32(block0));
vst1q_u8(outBlocks+1*inc, vreinterpretq_u8_u32(block1));
outBlocks += 2*inc;
length -= 2*neonBlockSize;
}
}
if (length)
{
// Adjust to real block size
const size_t blockSize = 8;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inIncrement += inIncrement ? blockSize : 0;
xorIncrement += xorIncrement ? blockSize : 0;
outIncrement += outIncrement ? blockSize : 0;
inBlocks -= inIncrement;
xorBlocks -= xorIncrement;
outBlocks -= outIncrement;
}
else
{
inIncrement -= inIncrement ? blockSize : 0;
xorIncrement -= xorIncrement ? blockSize : 0;
outIncrement -= outIncrement ? blockSize : 0;
}
while (length >= blockSize)
{
uint32x4_t block, zero = vld1q_u32(s_zero);
const uint8x8_t v = vld1_u8(inBlocks);
block = vreinterpretq_u32_u8(vcombine_u8(v,v));
if (flags & BlockTransformation::BT_XorInput)
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
if (flags & BlockTransformation::BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[7]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
const uint8x8_t x = vld1_u8(xorBlocks);
block = veorq_u32(block, vreinterpretq_u32_u8(vcombine_u8(x,x)));
}
vst1_u8(const_cast<byte*>(outBlocks),
vget_low_u8(vreinterpretq_u8_u32(block)));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
}
return length;
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
#if defined(CRYPTOPP_ARM_NEON_AVAILABLE)
#if defined(CRYPTOPP_LITTLE_ENDIAN)
const word32 s_one128[] = {0, 0, 0, 1<<24};
#else
const word32 s_one128[] = {0, 0, 0, 1};
#endif
template <class T>
inline T UnpackHigh64(const T& a, const T& b)
{
@ -832,184 +596,19 @@ inline void SIMON128_Dec_6_Blocks(uint64x2_t &block0, uint64x2_t &block1,
block5 = UnpackHigh64(x3, y3);
}
template <typename F2, typename F6>
size_t SIMON128_AdvancedProcessBlocks_NEON(F2 func2, F6 func6,
const word64 *subKeys, size_t rounds, const byte *inBlocks,
const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
CRYPTOPP_ASSERT(subKeys);
CRYPTOPP_ASSERT(inBlocks);
CRYPTOPP_ASSERT(outBlocks);
CRYPTOPP_ASSERT(length >= 16);
const size_t blockSize = 16;
size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize;
size_t xorIncrement = xorBlocks ? blockSize : 0;
size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize;
if (flags & BlockTransformation::BT_ReverseDirection)
{
inBlocks += length - blockSize;
xorBlocks += length - blockSize;
outBlocks += length - blockSize;
inIncrement = 0-inIncrement;
xorIncrement = 0-xorIncrement;
outIncrement = 0-outIncrement;
}
if (flags & BlockTransformation::BT_AllowParallel)
{
while (length >= 6*blockSize)
{
uint64x2_t block0, block1, block2, block3, block4, block5;
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one128));
block1 = vaddq_u64(block0, be);
block2 = vaddq_u64(block1, be);
block3 = vaddq_u64(block2, be);
block4 = vaddq_u64(block3, be);
block5 = vaddq_u64(block4, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block5, be)));
}
else
{
const int inc = static_cast<int>(inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+1*inc));
block2 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+2*inc));
block3 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+3*inc));
block4 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+4*inc));
block5 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+5*inc));
inBlocks += 6*inc;
}
if (flags & BlockTransformation::BT_XorInput)
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+1*inc)));
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+2*inc)));
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+3*inc)));
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+4*inc)));
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+5*inc)));
xorBlocks += 6*inc;
}
func6(block0, block1, block2, block3, block4, block5, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+1*inc)));
block2 = veorq_u64(block2, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+2*inc)));
block3 = veorq_u64(block3, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+3*inc)));
block4 = veorq_u64(block4, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+4*inc)));
block5 = veorq_u64(block5, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+5*inc)));
xorBlocks += 6*inc;
}
const int inc = static_cast<int>(outIncrement);
vst1q_u8(outBlocks+0*inc, vreinterpretq_u8_u64(block0));
vst1q_u8(outBlocks+1*inc, vreinterpretq_u8_u64(block1));
vst1q_u8(outBlocks+2*inc, vreinterpretq_u8_u64(block2));
vst1q_u8(outBlocks+3*inc, vreinterpretq_u8_u64(block3));
vst1q_u8(outBlocks+4*inc, vreinterpretq_u8_u64(block4));
vst1q_u8(outBlocks+5*inc, vreinterpretq_u8_u64(block5));
outBlocks += 6*inc;
length -= 6*blockSize;
}
while (length >= 2*blockSize)
{
uint64x2_t block0, block1;
block0 = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
uint64x2_t be = vreinterpretq_u64_u32(vld1q_u32(s_one128));
block1 = vaddq_u64(block0, be);
vst1q_u8(const_cast<byte*>(inBlocks),
vreinterpretq_u8_u64(vaddq_u64(block1, be)));
}
else
{
const int inc = static_cast<int>(inIncrement);
block1 = vreinterpretq_u64_u8(vld1q_u8(inBlocks+1*inc));
inBlocks += 2*inc;
}
if (flags & BlockTransformation::BT_XorInput)
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+1*inc)));
xorBlocks += 2*inc;
}
func2(block0, block1, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
{
const int inc = static_cast<int>(xorIncrement);
block0 = veorq_u64(block0, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+0*inc)));
block1 = veorq_u64(block1, vreinterpretq_u64_u8(vld1q_u8(xorBlocks+1*inc)));
xorBlocks += 2*inc;
}
const int inc = static_cast<int>(outIncrement);
vst1q_u8(outBlocks+0*inc, vreinterpretq_u8_u64(block0));
vst1q_u8(outBlocks+1*inc, vreinterpretq_u8_u64(block1));
outBlocks += 2*inc;
length -= 2*blockSize;
}
}
while (length >= blockSize)
{
uint64x2_t block, zero = {0,0};
block = vreinterpretq_u64_u8(vld1q_u8(inBlocks));
if (flags & BlockTransformation::BT_XorInput)
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
if (flags & BlockTransformation::BT_InBlockIsCounter)
const_cast<byte *>(inBlocks)[15]++;
func2(block, zero, subKeys, static_cast<unsigned int>(rounds));
if (xorBlocks && !(flags & BlockTransformation::BT_XorInput))
block = veorq_u64(block, vreinterpretq_u64_u8(vld1q_u8(xorBlocks)));
vst1q_u8(outBlocks, vreinterpretq_u8_u64(block));
inBlocks += inIncrement;
outBlocks += outIncrement;
xorBlocks += xorIncrement;
length -= blockSize;
}
return length;
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
// ***************************** IA-32 ***************************** //
#if defined(CRYPTOPP_SSSE3_AVAILABLE)
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one64_1b[] = {0, 0, 0, 1<<24}; // Only second 8-byte block is incremented after loading
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one64_2b[] = {0, 2<<24, 0, 2<<24}; // Routine step. Both 8-byte block are incremented
CRYPTOPP_ALIGN_DATA(16)
const word32 s_one128[] = {0, 0, 0, 1<<24};
// Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670
#ifndef M128_CAST
# define M128_CAST(x) ((__m128i *)(void *)(x))
#endif
#ifndef CONST_M128_CAST
# define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x))
#endif
inline void Swap128(__m128i& a,__m128i& b)
{
@ -1759,27 +1358,19 @@ inline size_t SIMON64_AdvancedProcessBlocks_SSE41(F2 func2, F6 func6,
if (flags & BlockTransformation::BT_AllowParallel)
{
// Load these magic values once. Analysis claims be1 and be2
// may be uninitialized, but they are when the block is a ctr.
__m128i be1, be2;
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
be1 = *CONST_M128_CAST(s_one64_1b);
be2 = *CONST_M128_CAST(s_one64_2b);
}
while (length >= 6*xmmBlockSize)
{
__m128i block0, block1, block2, block3, block4, block5;
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the initial single CTR block.
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
block0 = _mm_add_epi32(be1, _mm_castpd_si128(
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one64_1b), _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(inBlocks))));
// After initial increment of {0,1} remaining counters increment by {1,1}.
const __m128i be2 = *CONST_M128_CAST(s_one64_2b);
block1 = _mm_add_epi32(be2, block0);
block2 = _mm_add_epi32(be2, block1);
block3 = _mm_add_epi32(be2, block2);
@ -1863,13 +1454,14 @@ inline size_t SIMON64_AdvancedProcessBlocks_SSE41(F2 func2, F6 func6,
__m128i block0, block1;
if (flags & BlockTransformation::BT_InBlockIsCounter)
{
// For 64-bit block ciphers we need to load the initial single CTR block.
// For 64-bit block ciphers we need to load the CTR block, which is 8 bytes.
// After the dup load we have two counters in the XMM word. Then we need
// to increment the low ctr by 0 and the high ctr by 1.
block0 = _mm_add_epi32(be1, _mm_castpd_si128(
block0 = _mm_add_epi32(*CONST_M128_CAST(s_one64_1b), _mm_castpd_si128(
_mm_loaddup_pd(reinterpret_cast<const double*>(inBlocks))));
// After initial increment of {0,1} remaining counters increment by {1,1}.
const __m128i be2 = *CONST_M128_CAST(s_one64_2b);
block1 = _mm_add_epi32(be2, block0);
// Store the next counter.
@ -1982,14 +1574,14 @@ NAMESPACE_BEGIN(CryptoPP)
size_t SIMON64_Enc_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON64_AdvancedProcessBlocks_NEON(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks,
return AdvancedProcessBlocks64_NEON2x6(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON64_Dec_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON64_AdvancedProcessBlocks_NEON(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks,
return AdvancedProcessBlocks64_NEON2x6(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE
@ -1998,14 +1590,14 @@ size_t SIMON64_Dec_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t roun
size_t SIMON128_Enc_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON128_AdvancedProcessBlocks_NEON(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
return AdvancedProcessBlocks128_NEON2x6(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
size_t SIMON128_Dec_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds,
const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags)
{
return SIMON128_AdvancedProcessBlocks_NEON(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
return AdvancedProcessBlocks128_NEON2x6(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks,
subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags);
}
#endif // CRYPTOPP_ARM_NEON_AVAILABLE

File diff suppressed because it is too large Load Diff