Fix ECP leakage in Add() and Double() (GH #869, PR #871)

This check-in provides the fix for leaks in ECP's Add() and Double(). The fixes were taken from Joost Renes, Craig Costello, and Lejla Batina's [Complete addition formulas for prime order elliptic curves](https://eprint.iacr.org/2015/1060.pdf).

The Pull Request includes two additional changes that were related to testing the primary fix. First, an `AuthenticatedKeyAgreementWithRolesValidate` interface was added. It allows us to test key agreement when roles are involved. Roles are "client", "server", "initiator", "recipient", etc.

Second, `SetGlobalSeed` was added to `test.cpp` to help with reproducible results. We had code in two different places that set the seed value for the random number generator. But it was sloppy and doing a poor job since results could not be reproduced under some circumstances.
This commit is contained in:
Jeffrey Walton 2019-08-05 03:51:58 -04:00 committed by GitHub
parent b3eb4c6a69
commit c9ef9420e7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
13 changed files with 613 additions and 130 deletions

View File

@ -3,4 +3,4 @@
<PropertyGroup>
<LocalDebuggerCommandArguments>v</LocalDebuggerCommandArguments>
</PropertyGroup>
</Project>
</Project>

View File

@ -16,7 +16,8 @@ ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::EC2N;
#if defined(HAVE_GCC_INIT_PRIORITY)
const EC2N::Point g_identity __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 50))) = EC2N::Point();
#define INIT_ATTRIBUTE __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 51)))
const EC2N::Point g_identity INIT_ATTRIBUTE = EC2N::Point();
#elif defined(HAVE_MSC_INIT_PRIORITY)
#pragma warning(disable: 4075)
#pragma init_seg(".CRT$XCU")
@ -51,8 +52,8 @@ void EC2N::DEREncode(BufferedTransformation &bt) const
{
m_field->DEREncode(bt);
DERSequenceEncoder seq(bt);
m_field->DEREncodeElement(seq, m_a);
m_field->DEREncodeElement(seq, m_b);
m_field->DEREncodeElement(seq, m_a);
m_field->DEREncodeElement(seq, m_b);
seq.MessageEnd();
}
@ -260,7 +261,7 @@ const EC2N::Point& EC2N::Double(const Point &P) const
// ********************************************************
/*
#if 0
EcPrecomputation<EC2N>& EcPrecomputation<EC2N>::operator=(const EcPrecomputation<EC2N> &rhs)
{
m_ec = rhs.m_ec;
@ -312,7 +313,7 @@ EC2N::Point EcPrecomputation<EC2N>::CascadeExponentiate(const Integer &exponent,
{
return m_ep.CascadeExponentiate(exponent, static_cast<const EcPrecomputation<EC2N> &>(pc2).m_ep, exponent2);
}
*/
#endif
NAMESPACE_END

1
ec2n.h
View File

@ -3,7 +3,6 @@
/// \file ec2n.h
/// \brief Classes for Elliptic Curves over binary fields
#ifndef CRYPTOPP_EC2N_H
#define CRYPTOPP_EC2N_H

View File

@ -28,6 +28,9 @@
#include "ec2n.h"
#include "misc.h"
#include <iostream>
#include <sstream>
// Squash MS LNK4221 and libtool warnings
#ifndef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
extern const char ECCRYPTO_FNAME[] = __FILE__;
@ -683,6 +686,13 @@ OID DL_GroupParameters_EC<EC>::GetAlgorithmID() const
return ASN1::id_ecPublicKey();
}
std::ostream& operator<<(std::ostream& os, const DL_GroupParameters_EC<ECP>::Element& obj)
{
std::ostringstream oss;
oss << "(" << std::hex << obj.x << ", " << std::hex << obj.y << ")";
return os << oss.str();
}
// ******************************************************************
template <class EC>

View File

@ -22,6 +22,8 @@
#include "ecp.h"
#include "ec2n.h"
#include <iosfwd>
#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275)
@ -168,6 +170,8 @@ protected:
mutable bool m_compress, m_encodeAsOID; // presentation details
};
inline std::ostream& operator<<(std::ostream& os, const DL_GroupParameters_EC<ECP>::Element& obj);
/// \brief Elliptic Curve Discrete Log (DL) public key
/// \tparam EC elliptic curve field
template <class EC>

457
ecp.cpp
View File

@ -15,10 +15,12 @@
ANONYMOUS_NAMESPACE_BEGIN
using CryptoPP::ECP;
using CryptoPP::Integer;
using CryptoPP::ModularArithmetic;
#if defined(HAVE_GCC_INIT_PRIORITY)
const ECP::Point g_identity __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 51))) = ECP::Point();
#define INIT_ATTRIBUTE __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 50)))
const ECP::Point g_identity INIT_ATTRIBUTE = ECP::Point();
#elif defined(HAVE_MSC_INIT_PRIORITY)
#pragma warning(disable: 4075)
#pragma init_seg(".CRT$XCU")
@ -39,6 +41,12 @@ inline ECP::Point FromMontgomery(const ModularArithmetic &mr, const ECP::Point &
return P.identity ? P : ECP::Point(mr.ConvertOut(P.x), mr.ConvertOut(P.y));
}
template <typename T>
inline Integer ToInteger(const T& val)
{
return !!val ? Integer::One() : Integer::Zero();
}
ANONYMOUS_NAMESPACE_END
NAMESPACE_BEGIN(CryptoPP)
@ -243,34 +251,14 @@ const ECP::Point& ECP::Inverse(const Point &P) const
const ECP::Point& ECP::Add(const Point &P, const Point &Q) const
{
if (P.identity) return Q;
if (Q.identity) return P;
if (GetField().Equal(P.x, Q.x))
return GetField().Equal(P.y, Q.y) ? Double(P) : Identity();
FieldElement t = GetField().Subtract(Q.y, P.y);
t = GetField().Divide(t, GetField().Subtract(Q.x, P.x));
FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), Q.x);
m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
m_R.x.swap(x);
m_R.identity = false;
return m_R;
AdditionFunction add(*this);
return (m_R = add(P, Q));
}
const ECP::Point& ECP::Double(const Point &P) const
{
if (P.identity || P.y==GetField().Identity()) return Identity();
FieldElement t = GetField().Square(P.x);
t = GetField().Add(GetField().Add(GetField().Double(t), t), m_a);
t = GetField().Divide(t, GetField().Double(P.y));
FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), P.x);
m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
m_R.x.swap(x);
m_R.identity = false;
return m_R;
AdditionFunction add(*this);
return (m_R = add(P));
}
template <class T, class Iterator> void ParallelInvert(const AbstractRing<T> &ring, Iterator begin, Iterator end)
@ -323,7 +311,7 @@ class ProjectiveDoubling
{
public:
ProjectiveDoubling(const ModularArithmetic &m_mr, const Integer &m_a, const Integer &m_b, const ECPPoint &Q)
: mr(m_mr), firstDoubling(true), negated(false)
: mr(m_mr)
{
CRYPTOPP_UNUSED(m_b);
if (Q.identity)
@ -360,7 +348,6 @@ public:
const ModularArithmetic &mr;
ProjectivePoint P;
bool firstDoubling, negated;
Integer sixteenY4, aZ4, twoY, fourY2, S, M;
};
@ -495,6 +482,422 @@ ECP::Point ECP::CascadeScalarMultiply(const Point &P, const Integer &k1, const P
return AbstractGroup<Point>::CascadeScalarMultiply(P, k1, Q, k2);
}
#define X p.x
#define Y p.y
#define Z p.z
#define X1 p.x
#define Y1 p.y
#define Z1 p.z
#define X2 q.x
#define Y2 q.y
#define Z2 q.z
#define X3 r.x
#define Y3 r.y
#define Z3 r.z
ECP::AdditionFunction::AdditionFunction(const ECP& ecp)
: m_ecp(ecp), m_alpha(static_cast<Alpha>(0))
{
if (m_ecp.GetField().IsMontgomeryRepresentation())
{
m_alpha = A_Montgomery;
}
else
{
if (m_ecp.m_a == 0)
{
m_alpha = A_0;
}
else if (m_ecp.m_a == -3 || (m_ecp.m_a - m_ecp.GetField().GetModulus()) == -3)
{
m_alpha = A_3;
}
else
{
m_alpha = A_Star;
}
}
}
ECP::Point ECP::AdditionFunction::operator()(const Point& P) const
{
if (m_alpha == A_3)
{
const ECP::Field& field = m_ecp.GetField();
const FieldElement& b = m_ecp.m_b;
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x = P.x * ToInteger(!P.identity);
const Integer y = P.y * ToInteger(!P.identity) + 1 * ToInteger(P.identity);
const Integer z = 1 * ToInteger(!P.identity);
ProjectivePoint p(x, y, z), r;
FieldElement t0 = field.Square(X);
FieldElement t1 = field.Square(Y);
FieldElement t2 = field.Square(Z);
FieldElement t3 = field.Multiply(X,Y);
t3 = field.Add(t3,t3);
Z3 = field.Multiply(X,Z);
Z3 = field.Add(Z3,Z3);
Y3 = field.Multiply(b,t2);
Y3 = field.Subtract(Y3,Z3);
X3 = field.Add(Y3,Y3);
Y3 = field.Add(X3,Y3);
X3 = field.Subtract(t1,Y3);
Y3 = field.Add(t1,Y3);
Y3 = field.Multiply(X3,Y3);
X3 = field.Multiply(X3,t3);
t3 = field.Add(t2,t2);
t2 = field.Add(t2,t3);
Z3 = field.Multiply(b,Z3);
Z3 = field.Subtract(Z3,t2);
Z3 = field.Subtract(Z3,t0);
t3 = field.Add(Z3,Z3);
Z3 = field.Add(Z3,t3);
t3 = field.Add(t0,t0);
t0 = field.Add(t3,t0);
t0 = field.Subtract(t0,t2);
t0 = field.Multiply(t0,Z3);
Y3 = field.Add(Y3,t0);
t0 = field.Multiply(Y,Z);
t0 = field.Add(t0,t0);
Z3 = field.Multiply(t0,Z3);
X3 = field.Subtract(X3,Z3);
Z3 = field.Multiply(t0,t1);
Z3 = field.Add(Z3,Z3);
Z3 = field.Add(Z3,Z3);
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
ECP::Point result(X3*Z3.NotZero(), Y3*Z3.NotZero());
result.identity = Z3.IsZero();
return result;
}
else if (m_alpha == A_0)
{
const ECP::Field& field = m_ecp.GetField();
const FieldElement b3 = field.Multiply(m_ecp.m_b, 3);
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x = P.x * ToInteger(!P.identity);
const Integer y = P.y * ToInteger(!P.identity) + 1 * ToInteger(P.identity);
const Integer z = 1 * ToInteger(!P.identity);
ProjectivePoint p(x, y, z), r;
FieldElement t0 = field.Square(Y);
Z3 = field.Add(t0,t0);
Z3 = field.Add(Z3,Z3);
Z3 = field.Add(Z3,Z3);
FieldElement t1 = field.Add(Y,Z);
FieldElement t2 = field.Square(Z);
t2 = field.Multiply(b3,t2);
X3 = field.Multiply(t2,Z3);
Y3 = field.Add(t0,t2);
Z3 = field.Multiply(t1,Z3);
t1 = field.Add(t2,t2);
t2 = field.Add(t1,t2);
t0 = field.Subtract(t0,t2);
Y3 = field.Multiply(t0,Y3);
Y3 = field.Add(X3,Y3);
t1 = field.Multiply(X,Y);
X3 = field.Multiply(t0,t1);
X3 = field.Add(X3,X3);
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
ECP::Point result(X3*Z3.NotZero(), Y3*Z3.NotZero());
result.identity = Z3.IsZero();
return result;
}
else if (m_alpha == A_Star)
{
const ECP::Field& field = m_ecp.GetField();
const FieldElement b3 = field.Multiply(m_ecp.m_b, 3);
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x = P.x * ToInteger(!P.identity);
const Integer y = P.y * ToInteger(!P.identity) + 1 * ToInteger(P.identity);
const Integer z = 1 * ToInteger(!P.identity);
ProjectivePoint p(x, y, z), r;
FieldElement t0 = field.Square(Y);
Z3 = field.Add(t0,t0);
Z3 = field.Add(Z3,Z3);
Z3 = field.Add(Z3,Z3);
FieldElement t1 = field.Add(Y,Z);
FieldElement t2 = field.Square(Z);
t2 = field.Multiply(b3,t2);
X3 = field.Multiply(t2,Z3);
Y3 = field.Add(t0,t2);
Z3 = field.Multiply(t1,Z3);
t1 = field.Add(t2,t2);
t2 = field.Add(t1,t2);
t0 = field.Subtract(t0,t2);
Y3 = field.Multiply(t0,Y3);
Y3 = field.Add(X3,Y3);
t1 = field.Multiply(X,Y);
X3 = field.Multiply(t0,t1);
X3 = field.Add(X3,X3);
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
ECP::Point result(X3*Z3.NotZero(), Y3*Z3.NotZero());
result.identity = Z3.IsZero();
return result;
}
else // A_Montgomery
{
ECP::Point& m_R = m_ecp.m_R;
const ECP::Field& field = m_ecp.GetField();
if (P.identity || P.y==field.Identity()) return m_ecp.Identity();
FieldElement t = field.Square(P.x);
t = field.Add(field.Add(field.Double(t), t), m_ecp.m_a);
t = field.Divide(t, field.Double(P.y));
FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), P.x);
m_R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
m_R.x.swap(x);
m_R.identity = false;
return m_R;
}
}
ECP::Point ECP::AdditionFunction::operator()(const Point& P, const Point& Q) const
{
if (m_alpha == A_3)
{
const ECP::Field& field = m_ecp.GetField();
const FieldElement& b = m_ecp.m_b;
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x1 = P.x * ToInteger(!P.identity);
const Integer y1 = P.y * ToInteger(!P.identity) + 1 * ToInteger(P.identity);
const Integer z1 = 1 * ToInteger(!P.identity);
const Integer x2 = Q.x * ToInteger(!Q.identity);
const Integer y2 = Q.y * ToInteger(!Q.identity) + 1 * ToInteger(Q.identity);
const Integer z2 = 1 * ToInteger(!Q.identity);
ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
FieldElement t0 = field.Multiply(X1,X2);
FieldElement t1 = field.Multiply(Y1,Y2);
FieldElement t2 = field.Multiply(Z1,Z2);
FieldElement t3 = field.Add(X1,Y1);
FieldElement t4 = field.Add(X2,Y2);
t3 = field.Multiply(t3,t4);
t4 = field.Add(t0,t1);
t3 = field.Subtract(t3,t4);
t4 = field.Add(Y1,Z1);
X3 = field.Add(Y2,Z2);
t4 = field.Multiply(t4,X3);
X3 = field.Add(t1,t2);
t4 = field.Subtract(t4,X3);
X3 = field.Add(X1,Z1);
Y3 = field.Add(X2,Z2);
X3 = field.Multiply(X3,Y3);
Y3 = field.Add(t0,t2);
Y3 = field.Subtract(X3,Y3);
Z3 = field.Multiply(b,t2);
X3 = field.Subtract(Y3,Z3);
Z3 = field.Add(X3,X3);
X3 = field.Add(X3,Z3);
Z3 = field.Subtract(t1,X3);
X3 = field.Add(t1,X3);
Y3 = field.Multiply(b,Y3);
t1 = field.Add(t2,t2);
t2 = field.Add(t1,t2);
Y3 = field.Subtract(Y3,t2);
Y3 = field.Subtract(Y3,t0);
t1 = field.Add(Y3,Y3);
Y3 = field.Add(t1,Y3);
t1 = field.Add(t0,t0);
t0 = field.Add(t1,t0);
t0 = field.Subtract(t0,t2);
t1 = field.Multiply(t4,Y3);
t2 = field.Multiply(t0,Y3);
Y3 = field.Multiply(X3,Z3);
Y3 = field.Add(Y3,t2);
X3 = field.Multiply(t3,X3);
X3 = field.Subtract(X3,t1);
Z3 = field.Multiply(t4,Z3);
t1 = field.Multiply(t3,t0);
Z3 = field.Add(Z3,t1);
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
ECP::Point result(X3*Z3.NotZero(), Y3*Z3.NotZero());
result.identity = Z3.IsZero();
return result;
}
else if (m_alpha == A_0)
{
const ECP::Field& field = m_ecp.GetField();
const FieldElement b3 = field.Multiply(m_ecp.m_b, 3);
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x1 = P.x * ToInteger(!P.identity);
const Integer y1 = P.y * ToInteger(!P.identity) + 1 * ToInteger(P.identity);
const Integer z1 = 1 * ToInteger(!P.identity);
const Integer x2 = Q.x * ToInteger(!Q.identity);
const Integer y2 = Q.y * ToInteger(!Q.identity) + 1 * ToInteger(Q.identity);
const Integer z2 = 1 * ToInteger(!Q.identity);
ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
FieldElement t0 = field.Square(Y);
Z3 = field.Add(t0,t0);
Z3 = field.Add(Z3,Z3);
Z3 = field.Add(Z3,Z3);
FieldElement t1 = field.Add(Y,Z);
FieldElement t2 = field.Square(Z);
t2 = field.Multiply(b3,t2);
X3 = field.Multiply(t2,Z3);
Y3 = field.Add(t0,t2);
Z3 = field.Multiply(t1,Z3);
t1 = field.Add(t2,t2);
t2 = field.Add(t1,t2);
t0 = field.Subtract(t0,t2);
Y3 = field.Multiply(t0,Y3);
Y3 = field.Add(X3,Y3);
t1 = field.Multiply(X,Y);
X3 = field.Multiply(t0,t1);
X3 = field.Add(X3,X3);
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
ECP::Point result(X3*Z3.NotZero(), Y3*Z3.NotZero());
result.identity = Z3.IsZero();
return result;
}
else if (m_alpha == A_Star)
{
const ECP::Field& field = m_ecp.GetField();
const FieldElement &a = m_ecp.m_a;
const FieldElement b3 = field.Multiply(m_ecp.m_b, 3);
// Gyrations attempt to maintain constant-timeness
// We need either (P.x, P.y, 1) or (0, 1, 0).
const Integer x1 = P.x * ToInteger(!P.identity);
const Integer y1 = P.y * ToInteger(!P.identity) + 1 * ToInteger(P.identity);
const Integer z1 = 1 * ToInteger(!P.identity);
const Integer x2 = Q.x * ToInteger(!Q.identity);
const Integer y2 = Q.y * ToInteger(!Q.identity) + 1 * ToInteger(Q.identity);
const Integer z2 = 1 * ToInteger(!Q.identity);
ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r;
FieldElement t0 = field.Multiply(X1,X2);
FieldElement t1 = field.Multiply(Y1,Y2);
FieldElement t2 = field.Multiply(Z1,Z2);
FieldElement t3 = field.Add(X1,Y1);
FieldElement t4 = field.Add(X2,Y2);
t3 = field.Multiply(t3,t4);
t4 = field.Add(t0,t1);
t3 = field.Subtract(t3,t4);
t4 = field.Add(X1,Z1);
FieldElement t5 = field.Add(X2,Z2);
t4 = field.Multiply(t4,t5);
t5 = field.Add(t0,t2);
t4 = field.Subtract(t4,t5);
t5 = field.Add(Y1,Z1);
X3 = field.Add(Y2,Z2);
t5 = field.Multiply(t5,X3);
X3 = field.Add(t1,t2);
t5 = field.Subtract(t5,X3);
Z3 = field.Multiply(a,t4);
X3 = field.Multiply(b3,t2);
Z3 = field.Add(X3,Z3);
X3 = field.Subtract(t1,Z3);
Z3 = field.Add(t1,Z3);
Y3 = field.Multiply(X3,Z3);
t1 = field.Add(t0,t0);
t1 = field.Add(t1,t0);
t2 = field.Multiply(a,t2);
t4 = field.Multiply(b3,t4);
t1 = field.Add(t1,t2);
t2 = field.Subtract(t0,t2);
t2 = field.Multiply(a,t2);
t4 = field.Add(t4,t2);
t0 = field.Multiply(t1,t4);
Y3 = field.Add(Y3,t0);
t0 = field.Multiply(t5,t4);
X3 = field.Multiply(t3,X3);
X3 = field.Subtract(X3,t0);
t0 = field.Multiply(t3,t1);
Z3 = field.Multiply(t5,Z3);
Z3 = field.Add(Z3,t0);
const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3);
X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv);
// More gyrations
ECP::Point result(X3*Z3.NotZero(), Y3*Z3.NotZero());
result.identity = Z3.IsZero();
return result;
}
else // A_Montgomery
{
ECP::Point& m_R = m_ecp.m_R;
const ECP::Field& field = m_ecp.GetField();
if (P.identity) return Q;
if (Q.identity) return P;
if (field.Equal(P.x, Q.x))
return field.Equal(P.y, Q.y) ? m_ecp.Double(P) : m_ecp.Identity();
FieldElement t = field.Subtract(Q.y, P.y);
t = field.Divide(t, field.Subtract(Q.x, P.x));
FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), Q.x);
m_R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y);
m_R.x.swap(x);
m_R.identity = false;
return m_R;
}
}
#undef X
#undef Y
#undef Z
#undef X1
#undef Y1
#undef Z1
#undef X2
#undef Y2
#undef Z2
#undef X3
#undef Y3
#undef Z3
NAMESPACE_END
#endif

36
ecp.h
View File

@ -106,6 +106,42 @@ public:
bool operator==(const ECP &rhs) const
{return GetField() == rhs.GetField() && m_a == rhs.m_a && m_b == rhs.m_b;}
protected:
/// \brief Addition and Double functions
/// \sa <A HREF="https://eprint.iacr.org/2015/1060.pdf">Complete
/// addition formulas for prime order elliptic curves</A>
class AdditionFunction
{
public:
explicit AdditionFunction(const ECP& ecp);
// Double(P)
Point operator()(const Point& P) const;
// Add(P, Q)
Point operator()(const Point& P, const Point& Q) const;
protected:
/// \brief Parameters and representation for Addition
/// \details Addition and Doubling will use different algorithms,
/// depending on the <tt>A</tt> coefficient and the representation
/// (Affine or Montgomery with precomputation).
enum Alpha {
/// \brief Coefficient A is 0
A_0=1,
/// \brief Coefficient A is -3
A_3=2,
/// \brief Coefficient A is arbitrary
A_Star=4,
/// \brief Representation is Montgomery
A_Montgomery=8
};
const ECP& m_ecp;
Alpha m_alpha;
private:
AdditionFunction(const AdditionFunction&);
};
private:
clonable_ptr<Field> m_fieldPtr;
FieldElement m_a, m_b;

38
fhmqv.h
View File

@ -288,36 +288,18 @@ public:
bbs = StaticPublicKeyLength();
}
// DecodeElement calls ValidateElement at level 1. Level 1 only calls
// VerifyPoint to ensure the element is in G*. If the other's PublicKey is
// requested to be validated, we manually call ValidateElement at level 3.
Element VV1 = params.DecodeElement(staticOtherPublicKey, false);
if(!params.ValidateElement(validateStaticOtherPublicKey ? 3 : 1, VV1, NULLPTR))
{
CRYPTOPP_ASSERT(0);
return false;
}
// DecodeElement calls ValidateElement at level 1. Level 1 only calls
// VerifyPoint to ensure the element is in G*. Crank it up.
Element VV2 = params.DecodeElement(ephemeralOtherPublicKey, false);
if(!params.ValidateElement(3, VV2, NULLPTR))
{
CRYPTOPP_ASSERT(0);
return false;
}
Element VV1 = params.DecodeElement(staticOtherPublicKey, validateStaticOtherPublicKey);
Element VV2 = params.DecodeElement(ephemeralOtherPublicKey, true);
const Integer& q = params.GetSubgroupOrder();
const unsigned int len /*bytes*/ = (((q.BitCount()+1)/2 +7)/8);
Integer d, e;
SecByteBlock dd(len), ee(len);
Hash(NULLPTR, XX, xxs, YY, yys, AA, aas, BB, bbs, dd.BytePtr(), dd.SizeInBytes());
d.Decode(dd.BytePtr(), dd.SizeInBytes());
Integer d(dd.BytePtr(), dd.SizeInBytes());
Hash(NULLPTR, YY, yys, XX, xxs, AA, aas, BB, bbs, ee.BytePtr(), ee.SizeInBytes());
e.Decode(ee.BytePtr(), ee.SizeInBytes());
Integer e(ee.BytePtr(), ee.SizeInBytes());
Element sigma;
if(m_role == RoleServer)
@ -372,11 +354,11 @@ protected:
if(sigma)
{
//SecByteBlock sbb(GetAbstractGroupParameters().GetEncodedElementSize(false));
//GetAbstractGroupParameters().EncodeElement(false, *sigma, sbb);
Integer x = GetAbstractGroupParameters().ConvertElementToInteger(*sigma);
SecByteBlock sbb(x.MinEncodedSize());
x.Encode(sbb.BytePtr(), sbb.SizeInBytes());
//Integer x = GetAbstractGroupParameters().ConvertElementToInteger(*sigma);
//SecByteBlock sbb(x.MinEncodedSize());
//x.Encode(sbb.BytePtr(), sbb.SizeInBytes());
SecByteBlock sbb(GetAbstractGroupParameters().GetEncodedElementSize(false));
GetAbstractGroupParameters().EncodeElement(false, *sigma, sbb);
hash.Update(sbb.BytePtr(), sbb.SizeInBytes());
}
@ -404,7 +386,7 @@ protected:
private:
// The paper uses Initiator and Recipient - make it classical.
enum KeyAgreementRole{ RoleServer = 1, RoleClient };
enum KeyAgreementRole { RoleServer = 1, RoleClient };
DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return m_groupParameters;}
const DL_GroupParameters<Element> & GetAbstractGroupParameters() const{return m_groupParameters;}

44
hmqv.h
View File

@ -287,38 +287,20 @@ public:
bbs = StaticPublicKeyLength();
}
// DecodeElement calls ValidateElement at level 1. Level 1 only calls
// VerifyPoint to ensure the element is in G*. If the other's PublicKey is
// requested to be validated, we manually call ValidateElement at level 3.
Element VV1 = params.DecodeElement(staticOtherPublicKey, false);
if(!params.ValidateElement(validateStaticOtherPublicKey ? 3 : 1, VV1, NULLPTR))
{
CRYPTOPP_ASSERT(0);
return false;
}
// DecodeElement calls ValidateElement at level 1. Level 1 only calls
// VerifyPoint to ensure the element is in G*. Crank it up.
Element VV2 = params.DecodeElement(ephemeralOtherPublicKey, false);
if(!params.ValidateElement(3, VV2, NULLPTR))
{
CRYPTOPP_ASSERT(0);
return false;
}
Element VV1 = params.DecodeElement(staticOtherPublicKey, validateStaticOtherPublicKey);
Element VV2 = params.DecodeElement(ephemeralOtherPublicKey, true);
const Integer& q = params.GetSubgroupOrder();
const unsigned int len /*bytes*/ = (((q.BitCount()+1)/2 +7)/8);
Integer d, e;
SecByteBlock dd(len), ee(len);
// Compute $d = \hat{H}(X, \hat{B})$
Hash(NULLPTR, XX, xxs, BB, bbs, dd.BytePtr(), dd.SizeInBytes());
d.Decode(dd.BytePtr(), dd.SizeInBytes());
Integer d(dd.BytePtr(), dd.SizeInBytes());
// Compute $e = \hat{H}(Y, \hat{A})$
Hash(NULLPTR, YY, yys, AA, aas, ee.BytePtr(), ee.SizeInBytes());
e.Decode(ee.BytePtr(), ee.SizeInBytes());
Integer e(ee.BytePtr(), ee.SizeInBytes());
Element sigma;
if(m_role == RoleServer)
@ -345,11 +327,11 @@ public:
Element B = params.DecodeElement(BB, false);
Element Y = params.DecodeElement(YY, false);
Element t1 = params.ExponentiateElement(B, e);
Element t2 = m_groupParameters.MultiplyElements(Y, t1);
Element t3 = params.ExponentiateElement(B, e);
Element t4 = m_groupParameters.MultiplyElements(Y, t3);
// $\sigma_A}=(Y \cdot B^{e})^{s_A}
sigma = params.ExponentiateElement(t2, s_A);
sigma = params.ExponentiateElement(t4, s_A);
}
Hash(&sigma, NULLPTR, 0, NULLPTR, 0, agreedValue, AgreedValueLength());
}
@ -379,11 +361,11 @@ protected:
if (e1len != 0 || s1len != 0) {
CRYPTOPP_ASSERT(0);
}
//SecByteBlock sbb(GetAbstractGroupParameters().GetEncodedElementSize(false));
//GetAbstractGroupParameters().EncodeElement(false, *sigma, sbb);
Integer x = GetAbstractGroupParameters().ConvertElementToInteger(*sigma);
SecByteBlock sbb(x.MinEncodedSize());
x.Encode(sbb.BytePtr(), sbb.SizeInBytes());
//Integer x = GetAbstractGroupParameters().ConvertElementToInteger(*sigma);
//SecByteBlock sbb(x.MinEncodedSize());
//x.Encode(sbb.BytePtr(), sbb.SizeInBytes());
SecByteBlock sbb(GetAbstractGroupParameters().GetEncodedElementSize(false));
GetAbstractGroupParameters().EncodeElement(false, *sigma, sbb);
hash.Update(sbb.BytePtr(), sbb.SizeInBytes());
} else {
if (e1len == 0 || s1len == 0) {
@ -412,7 +394,7 @@ protected:
private:
// The paper uses Initiator and Recipient - make it classical.
enum KeyAgreementRole{ RoleServer = 1, RoleClient };
enum KeyAgreementRole { RoleServer = 1, RoleClient };
DL_GroupParameters<Element> & AccessAbstractGroupParameters()
{return m_groupParameters;}

15
mqv.cpp
View File

@ -7,6 +7,7 @@
#include "mqv.h"
#include "hmqv.h"
#include "fhmqv.h"
#include "eccrypto.h"
// Squash MS LNK4221 and libtool warnings
extern const char MQV_FNAME[] = __FILE__;
@ -16,17 +17,29 @@ NAMESPACE_BEGIN(CryptoPP)
#if defined(CRYPTOPP_DEBUG) && !defined(CRYPTOPP_DOXYGEN_PROCESSING)
void TestInstantiations_MQV()
{
MQV mqv;
MQV mqv;
ECMQV<ECP> ecmqv;
CRYPTOPP_UNUSED(mqv);
CRYPTOPP_UNUSED(ecmqv);
}
void TestInstantiations_HMQV()
{
HMQV hmqv;
ECHMQV<ECP> echmqv;
CRYPTOPP_UNUSED(hmqv);
CRYPTOPP_UNUSED(echmqv);
}
void TestInstantiations_FHMQV()
{
FHMQV fhmqv;
ECFHMQV<ECP> ecfhmqv;
CRYPTOPP_UNUSED(fhmqv);
CRYPTOPP_UNUSED(ecfhmqv);
}
#endif

View File

@ -34,6 +34,7 @@
#include <iostream>
#include <sstream>
#include <locale>
#include <cstdlib>
#include <ctime>
#ifdef CRYPTOPP_WIN32_AVAILABLE
@ -89,7 +90,8 @@ int (*AdhocTest)(int argc, char *argv[]) = NULLPTR;
NAMESPACE_BEGIN(CryptoPP)
NAMESPACE_BEGIN(Test)
const int MAX_PHRASE_LENGTH=250;
const int MAX_PHRASE_LENGTH = 250;
const int GLOBAL_SEED_LENGTH = 16;
std::string g_argvPathHint="";
void GenerateRSAKey(unsigned int keyLength, const char *privFilename, const char *pubFilename, const char *seed);
@ -125,7 +127,8 @@ void HexDecode(const char *infile, const char *outfile);
void FIPS140_GenerateRandomFiles();
bool Validate(int, bool, const char *);
bool Validate(int, bool);
bool SetGlobalSeed(int argc, char* argv[], std::string& seed);
void SetArgvPathHint(const char* argv0, std::string& pathHint);
ANONYMOUS_NAMESPACE_BEGIN
@ -166,23 +169,26 @@ int scoped_main(int argc, char *argv[])
cin.set_safe_flag(stream_MT::unsafe_object);
#endif
// A hint to help locate TestData/ and TestVectors/ after install.
SetArgvPathHint(argv[0], g_argvPathHint);
try
{
RegisterFactories(All);
// Some editors have problems with the '\0' character when redirecting output.
s_globalSeed = IntToString(time(NULLPTR));
s_globalSeed.resize(16, ' ');
// A hint to help locate TestData/ and TestVectors/ after install.
SetArgvPathHint(argv[0], g_argvPathHint);
// Set a seed for reproducible results. It can be set on the command line.
// If the seed is short then it is padded with spaces. If the seed is
// missing then time() is used.
// For example:
// ./cryptest.exe v seed=abcdefg
SetGlobalSeed(argc, argv, s_globalSeed);
#if (CRYPTOPP_USE_AES_GENERATOR)
// Fetch the SymmetricCipher interface, not the RandomNumberGenerator
// interface, to key the underlying cipher. If CRYPTOPP_USE_AES_GENERATOR is 1
// then AES/OFB based is used. Otherwise the OS random number generator is used.
SymmetricCipher& cipher = dynamic_cast<SymmetricCipher&>(GlobalRNG());
cipher.SetKeyWithIV((byte *)s_globalSeed.data(), 16, (byte *)s_globalSeed.data());
cipher.SetKeyWithIV((byte *)s_globalSeed.data(), s_globalSeed.size(), (byte *)s_globalSeed.data());
#endif
std::string command, executableName, macFilename;
@ -393,7 +399,7 @@ int scoped_main(int argc, char *argv[])
else if (command == "ir")
InformationRecoverFile(argc-3, argv[2], argv+3);
else if (command == "v" || command == "vv")
return !Validate(argc>2 ? StringToValue<int, true>(argv[2]) : 0, argv[1][1] == 'v', argc>3 ? argv[3] : NULLPTR);
return !Validate(argc>2 ? StringToValue<int, true>(argv[2]) : 0, argv[1][1] == 'v');
else if (command.substr(0,1) == "b") // "b", "b1", "b2", ...
BenchmarkWithCommand(argc, argv);
else if (command == "z")
@ -446,6 +452,35 @@ int scoped_main(int argc, char *argv[])
}
} // main()
bool SetGlobalSeed(int argc, char* argv[], std::string& seed)
{
bool ret = false;
for (int i=0; i<argc; ++i)
{
std::string arg(argv[i]);
std::string::size_type pos = arg.find("seed=");
if (pos != std::string::npos)
{
// length of "seed=" is 5
seed = arg.substr(pos+5);
ret = true; goto finish;
}
}
// Use a random seed if none is provided
if (s_globalSeed.empty())
s_globalSeed = IntToString(time(NULLPTR));
finish:
// Some editors have problems with '\0' fill characters when redirecting output.
s_globalSeed.resize(GLOBAL_SEED_LENGTH, ' ');
return ret;
}
void SetArgvPathHint(const char* argv0, std::string& pathHint)
{
# if (PATH_MAX > 0) // Posix
@ -886,26 +921,10 @@ void HexDecode(const char *in, const char *out)
FileSource(in, true, new HexDecoder(new FileSink(out)));
}
bool Validate(int alg, bool thorough, const char *seedInput)
bool Validate(int alg, bool thorough)
{
bool result;
// Some editors have problems with the '\0' character when redirecting output.
// seedInput is argv[3] when issuing 'cryptest.exe v all <seed>'
if (seedInput != NULLPTR)
{
s_globalSeed = seedInput;
s_globalSeed.resize(16, ' ');
}
#if (CRYPTOPP_USE_AES_GENERATOR)
// Fetch the OFB_Mode<AES> interface, not the RandomNumberGenerator
// interface, to key the underlying cipher. If CRYPTOPP_USE_AES_GENERATOR is 1
// then AES/OFB based is used. Otherwise the OS random number generator is used.
SymmetricCipher& cipher = dynamic_cast<SymmetricCipher&>(GlobalRNG());
cipher.SetKeyWithIV((byte *)s_globalSeed.data(), 16, (byte *)s_globalSeed.data());
#endif
g_testBegin = ::time(NULLPTR);
PrintSeedAndThreads();
@ -1010,6 +1029,10 @@ bool Validate(int alg, bool thorough, const char *seedInput)
case 111: result = ValidateSHAKE(); break;
case 112: result = ValidateSHAKE_XOF(); break;
case 120: result = ValidateMQV(); break;
case 121: result = ValidateHMQV(); break;
case 122: result = ValidateFHMQV(); break;
#if defined(CRYPTOPP_EXTENDED_VALIDATION)
// http://github.com/weidai11/cryptopp/issues/92
case 9999: result = TestSecBlock(); break;

View File

@ -199,7 +199,7 @@ bool AuthenticatedKeyAgreementWithRolesValidate(AuthenticatedKeyAgreementDomain
return false;
}
std::cout << "passed authenticated key agreement" << std::endl;
std::cout << "passed authenticated key agreement shared secret" << std::endl;
return true;
}

View File

@ -76,7 +76,7 @@ bool ValidateMQV()
bool ValidateHMQV()
{
std::cout << "\nHMQV validation suite running...\n\n";
bool success = true;
bool success = true, fail;
FileSource f256(DataDir("TestData/hmqv256.dat").c_str(), true, new HexDecoder);
FileSource f384(DataDir("TestData/hmqv384.dat").c_str(), true, new HexDecoder);
@ -91,7 +91,12 @@ bool ValidateHMQV()
const OID oid = ASN1::secp256r1();
ECHMQV< ECP >::Domain hmqvA256(oid, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(hmqvA256, hmqvB256) && success;
fail = !AuthenticatedKeyAgreementWithRolesValidate(hmqvA256, hmqvB256);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
/////////////////////////
@ -102,7 +107,12 @@ bool ValidateHMQV()
const OID oid384 = ASN1::secp384r1();
ECHMQV384 hmqvA384(oid384, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(hmqvA384, hmqvB384) && success;
fail = !AuthenticatedKeyAgreementWithRolesValidate(hmqvA384, hmqvB384);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
/////////////////////////
@ -113,7 +123,12 @@ bool ValidateHMQV()
const OID oid521 = ASN1::secp521r1();
ECHMQV512 hmqvA521(oid521, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(hmqvA521, hmqvB521) && success;
fail = !AuthenticatedKeyAgreementWithRolesValidate(hmqvA521, hmqvB521);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
return success;
}
@ -121,7 +136,7 @@ bool ValidateHMQV()
bool ValidateFHMQV()
{
std::cout << "\nFHMQV validation suite running...\n\n";
bool success = true;
bool success = true, fail;
FileSource f256(DataDir("TestData/fhmqv256.dat").c_str(), true, new HexDecoder);
FileSource f384(DataDir("TestData/fhmqv384.dat").c_str(), true, new HexDecoder);
@ -136,7 +151,12 @@ bool ValidateFHMQV()
const OID oid = ASN1::secp256r1();
ECFHMQV< ECP >::Domain fhmqvA256(oid, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(fhmqvA256, fhmqvB256) && success;
fail = !AuthenticatedKeyAgreementWithRolesValidate(fhmqvA256, fhmqvB256);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
/////////////////////////
@ -147,7 +167,12 @@ bool ValidateFHMQV()
const OID oid384 = ASN1::secp384r1();
ECHMQV384 fhmqvA384(oid384, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(fhmqvA384, fhmqvB384) && success;
fail = !AuthenticatedKeyAgreementWithRolesValidate(fhmqvA384, fhmqvB384);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
/////////////////////////
@ -158,7 +183,12 @@ bool ValidateFHMQV()
const OID oid521 = ASN1::secp521r1();
ECHMQV512 fhmqvA521(oid521, true /*client*/);
success = AuthenticatedKeyAgreementWithRolesValidate(fhmqvA521, fhmqvB521) && success;
fail = !AuthenticatedKeyAgreementWithRolesValidate(fhmqvA521, fhmqvB521);
success = !fail && success;
if (fail == false)
std::cout << "passed authenticated key agreement" << std::endl;
else
std::cout << "FAILED authenticated key agreement" << std::endl;
return success;
}