Update documentation

This commit is contained in:
Jeffrey Walton 2021-09-25 15:50:27 -04:00
parent 72237f912a
commit f80fee7eef
No known key found for this signature in database
GPG Key ID: B36AB348921B1838

View File

@ -647,16 +647,16 @@ public:
/// \brief Extended Division
/// \param r a reference for the remainder
/// \param q a reference for the quotient
/// \param a a reference to the dividend
/// \param d a reference to the divisor
/// \param a reference to the dividend
/// \param d reference to the divisor
/// \details Divide calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)).
static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d);
/// \brief Extended Division
/// \param r a reference for the remainder
/// \param q a reference for the quotient
/// \param a a reference to the dividend
/// \param d a reference to the divisor
/// \param a reference to the dividend
/// \param d reference to the divisor
/// \details Divide calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)).
/// This overload uses a faster division algorithm because the divisor is short.
static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d);
@ -664,21 +664,21 @@ public:
/// \brief Extended Division
/// \param r a reference for the remainder
/// \param q a reference for the quotient
/// \param a a reference to the dividend
/// \param n a reference to the divisor
/// \param a reference to the dividend
/// \param n reference to the divisor
/// \details DivideByPowerOf2 calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)).
/// It returns same result as Divide(r, q, a, Power2(n)), but faster.
/// This overload uses a faster division algorithm because the divisor is a power of 2.
static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n);
/// \brief Calculate greatest common divisor
/// \param a a reference to the first number
/// \param n a reference to the secind number
/// \param a reference to the first number
/// \param n reference to the secind number
/// \return the greatest common divisor <tt>a</tt> and <tt>n</tt>.
static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n);
/// \brief Calculate multiplicative inverse
/// \param n a reference to the modulus
/// \param n reference to the modulus
/// \return an Integer <tt>*this % n</tt>.
/// \details InverseMod returns the multiplicative inverse of the Integer <tt>*this</tt>
/// modulo the Integer <tt>n</tt>. If no Integer exists then Integer 0 is returned.
@ -697,15 +697,15 @@ public:
/// \name INPUT/OUTPUT
//@{
/// \brief Extraction operator
/// \param in a reference to a std::istream
/// \param a a reference to an Integer
/// \return a reference to a std::istream reference
/// \param in reference to a std::istream
/// \param a reference to an Integer
/// \return reference to a std::istream reference
friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a);
/// \brief Insertion operator
/// \param out a reference to a std::ostream
/// \param out reference to a std::ostream
/// \param a a constant reference to an Integer
/// \return a reference to a std::ostream reference
/// \return reference to a std::ostream reference
/// \details The output integer responds to std::hex, std::oct, std::hex, std::upper and
/// std::lower. The output includes the suffix \a h (for hex), \a . (\a dot, for dec)
/// and \a o (for octal). There is currently no way to suppress the suffix.
@ -716,15 +716,15 @@ public:
//@}
/// \brief Modular multiplication
/// \param x a reference to the first term
/// \param y a reference to the second term
/// \param m a reference to the modulus
/// \param x reference to the first term
/// \param y reference to the second term
/// \param m reference to the modulus
/// \return an Integer <tt>(a * b) % m</tt>.
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m);
/// \brief Modular exponentiation
/// \param x a reference to the base
/// \param e a reference to the exponent
/// \param m a reference to the modulus
/// \param x reference to the base
/// \param e reference to the exponent
/// \param m reference to the modulus
/// \return an Integer <tt>(a ^ b) % m</tt>.
CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m);