Autotools sets up its config.h file with the '#define XXX 0' or '#define XXX 1' pattern. This check-in makes the sources Autotools aware. We need to verify CMake does the same
Commit afbd3e60f6 effectively treated a symptom and not the underlying problem. The problem was linkers on 32-bit systems ignore CRYPTOPP_ALIGN_DAT(16) passed down by the compiler and align to 8-bytes or less. We have to use Wei's original code in some places. It is not a bad thing, but the bit fiddling is something we would like to contain a little more by depending more on language or platform features.
This commit keeps the original changes which improve partial specializations; but fixes 32-bit linker behavior by effectively reverting afbd3e60f6 and e054d36dc8. We also add more comments so the next person has understands why things are done they way they are.
This allocator still has some demons buried inside due to the bit fiddling. This commit should isolate the demons to aligned stack allocations when an alignment facility from the platform or OS is not available. That is, we use CRYPTOPP_ALIGN_DATA when we can because it is most reliable.
We can tell when things have gone sideways using Debug builds. The CRYPTOPP_ASSERT(m_allocated) will fire on destruction because the flag gets overwritten.
Commit 3ed38e42f6 added the POWER8 infrastructure for GCM mode. It also added GCM_SetKeyWithoutResync_VMULL, GCM_Multiply_VMULL and GCM_Reduce_VMULL. This commit adds the remainder, which includes GCM_AuthenticateBlocks_VMULL.
GCC is OK on Linux (ppc64-le) and AIX (ppc64-be). We may need some touchups for XLC compiler
GCM_SetKeyWithoutResync_VMULL, GCM_Multiply_VMULL and GCM_Reduce_VMULL work as expected on Linux (ppc64-le) and AIX (ppc64-be). We are still working on GCM_AuthenticateBlocks_VMULL.
We got reports that x86_64 was producing incorrect results. Also, the problem persisted in i386 builds. I don't think we can work around this issue. Oracle must fix it.
This PR adds ARMv8.4 cpu feature detection support. Previously we only needed ARMv8.1 and things were much easier. For example, ARMv8.1 `__ARM_FEATURE_CRYPTO` meant PMULL, AES, SHA-1 and SHA-256 were available. ARMv8.4 `__ARM_FEATURE_CRYPTO` means PMULL, AES, SHA-1, SHA-256, SHA-512, SHA-3, SM3 and SM4 are available.
We still use the same pattern as before. We make something available based on compiler version and/or preprocessor macros. But this time around we had to tighten things up a bit to ensure ARMv8.4 did not cross-pollinate down into ARMv8.1.
ARMv8.4 is largely untested at the moment. There is no hardware in the field and CI lacks QEMU with the relevant patches/support. We will probably have to revisit some of this stuff in the future.
Since this update applies to ARM gadgets we took the time to expand Android and iOS testing on Travis. Travis now tests more platforms, and includes Autotools and CMake builds, too.
We were able to gut CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS for everything except Rijndael. Rijndael uses unaligned accesses on x86 to harden against timing attacks.
There's a little more to CRYPTOPP_ALLOW_UNALIGNED_DATA_ACCESS and Rijndael. If we remove unaligned access then AliasedWithTable hangs in an endless loop on non-AESNI machines. So care must be taken when trying to remove the vestige from Rijndael.
Visual Studio 2008 kind of forced out hand with this. VS2008 lacks <stdint.h> and <cstdint> and it caused compile problems in NaCl gear. We were being a tad bit lazy by relying on int8_t, int32_t and int64_t, but the compiler errors made us act
Perforance increases significantly, but there's still room for improvement. Even OpenSSL's numbers are relatively dull. We expect Power8's SHA-256 to be somewhere between 2 to 8 cpb but we are not hitting them.
SHA-256, GCC112 (ppc64-le): C++ 23.43, Power8 13.24 cpb (+ 110 MiB/s)
SHA-256, GCC119 (ppc64-be): C++ 10.16, Power8 9.74 cpb (+ 50 MiB/s)
SHA-512, GCC112 (ppc64-le): C++ 14.00, Power8 9.25 cpb (+ 150 MiB/s)
SHA-512, GCC119 (ppc64-be): C++ 21.05, Power8 6.17 cpb (+ 450 MiB/s)