Calls to `MASM_RDSEED_GenerateBlock` would hang for an unknown reasons on Windows 10 and VS2017/VS2019 toolchains. Similar calls to `MASM_RDRAND_GenerateBlock` worked as expected. They were effectively the same code. The only differences were the function names and the opcodes (they were literally copy/paste).
Splitting `rdrand.asm` (with both `RDRAND` and `RDSEED`) into `rdrand.asm` (with `RDRAND`) and `rdseed.asm` (with `RDSEED`) resolved the issue. We don't know why.
This check-in provides the fix for leaks in ECP's Add() and Double(). The fixes were taken from Joost Renes, Craig Costello, and Lejla Batina's [Complete addition formulas for prime order elliptic curves](https://eprint.iacr.org/2015/1060.pdf).
The Pull Request includes two additional changes that were related to testing the primary fix. First, an `AuthenticatedKeyAgreementWithRolesValidate` interface was added. It allows us to test key agreement when roles are involved. Roles are "client", "server", "initiator", "recipient", etc.
Second, `SetGlobalSeed` was added to `test.cpp` to help with reproducible results. We had code in two different places that set the seed value for the random number generator. But it was sloppy and doing a poor job since results could not be reproduced under some circumstances.
We tweaked ChaCha to arrive at the IETF's implementation specified by RFC 7539. We are not sure how to handle block counter wrap. At the moment the caller is responsible for managing it. We were not able to find a reference implementation so we disable SIMD implementations like SSE, AVX, NEON and Power4. We need the wide block tests for corner cases to ensure our implementation is correct.
TweetNaCl is a compact reimplementation of the NaCl library by Daniel J. Bernstein, Bernard van Gastel, Wesley Janssen, Tanja Lange, Peter Schwabe and Sjaak Smetsers. The library is less than 20 KB in size and provides 25 of the NaCl library functions.
The compact library uses curve25519, XSalsa20, Poly1305 and SHA-512 as default primitives, and includes both x25519 key exchange and ed25519 signatures. The complete list of functions can be found in TweetNaCl: A crypto library in 100 tweets (20140917), Table 1, page 5.
Crypto++ retained the function names and signatures but switched to data types provided by <stdint.h> to promote interoperability with Crypto++ and avoid size problems on platforms like Cygwin. For example, NaCl typdef'd u64 as an unsigned long long, but Cygwin, MinGW and MSYS are LP64 systems (not LLP64 systems). In addition, Crypto++ was missing NaCl's signed 64-bit integer i64.
Crypto++ enforces the 0-key restriction due to small points. The TweetNaCl library allowed the 0-keys to small points. Also see RFC 7748, Elliptic Curves for Security, Section 6.
TweetNaCl is well written but not well optimized. It runs 2x to 3x slower than optimized routines from libsodium. However, the library is still 2x to 4x faster than the algorithms NaCl was designed to replace.
The Crypto++ wrapper for TweetNaCl requires OS features. That is, NO_OS_DEPENDENCE cannot be defined. It is due to TweetNaCl's internal function randombytes. Crypto++ used DefaultAutoSeededRNG within randombytes, so OS integration must be enabled. You can use another generator like RDRAND to avoid the restriction.