Also use CRYPTOPP_DISABLE_XXX_ASM consistently. The pattern is needed for Clang which still can't compile Intel assembly language. Also see http://llvm.org/bugs/show_bug.cgi?id=24232.
Currently the CRYPTOPP_BOOL_XXX macros set the macro value to 0 or 1. If we remove setting the 0 value (the #else part of the expression), then the self tests speed up by about 0.3 seconds. I can't explain it, but I have observed it repeatedly.
This check-in prepares for the removal in Upstream master
Reworked SHA class internals to align all the implementations. Formerly all hashes were software based, IterHashBase handled endian conversions, IterHashBase repeatedly called the single block SHA{N}::Transform. The rework added SHA{N}::HashMultipleBlocks, and the SHA classes attempt to always use it.
Now SHA{N}::Transform calls into SHA{N}_HashMultipleBlocks, which is a free standing function. An added wrinkle is hardware wants little endian data and software presents big endian data, so HashMultipleBlocks accepts a ByteOrder for the incoming data. Hardware based SHA{N}_HashMultipleBlocks can often perform the endian swap much easier by setting an EPI mask so it was profitable to defer to hardware when available.
The rework also removed the hacked-in pointers to implementations. The class now looks more like AES, GCM, etc.
This should have happened when we removed most of MAINTAIN_BACKWARDS_COMPATIBILITY artifacts. Its not practical move SHA1 into Weak:: namespace or "typedef SHA256 SHA" because SHA1 is too intertwined at the moment.
In the interim, maybe we can place SHA1 in both CryptoPP:: and Weak:: namespaces. This will allow us to transition into Weak::SHA1 over time, and signal to users SHA1 should be avoided.
- added AuthenticatedSymmetricCipher interface class and Filter wrappers
- added CCM, GCM (with SSE2 assembly), CMAC, and SEED
- improved AES speed on x86 and x64
- removed WORD64_AVAILABLE; compiler 64-bit int support is now required