Thanks to Jack Lloyd and Botan for allowing us to use the implementation.
The numbers for SSE2 are very good. When compared with Salsa20 ASM the results are:
* Salsa20 2.55 cpb; ChaCha/20 2.90 cpb
* Salsa20/12 1.61 cpb; ChaCha/12 1.90 cpb
* Salsa20/8 1.34 cpb; ChaCha/8 1.5 cpb
Commit afbd3e60f6 effectively treated a symptom and not the underlying problem. The problem was linkers on 32-bit systems ignore CRYPTOPP_ALIGN_DAT(16) passed down by the compiler and align to 8-bytes or less. We have to use Wei's original code in some places. It is not a bad thing, but the bit fiddling is something we would like to contain a little more by depending more on language or platform features.
This commit keeps the original changes which improve partial specializations; but fixes 32-bit linker behavior by effectively reverting afbd3e60f6 and e054d36dc8. We also add more comments so the next person has understands why things are done they way they are.
These fixes were interesting in a morbid sort of way. I thought the FixedSizeAllocatorWithCleanup specializations faithfully reproduced semantics but I was wrong on Win32 and Sparc. Also see Commit e054d36dc8.
It seems there was another requirement or dependency that we missed, but it was not readily apparent. If I am parsing results correctly (which I may not be), it appears the bit twiddling using 8 byte alignment had more influence on alignment than I originally thought based on use of CRYPTOPP_BOOL_ALIGN16 and T_Align16. Or maybe the alignment attributes specified by CRYPTOPP_ALIGN_DATA are not being honored like they should for stack allocations.
This check-in avoids some uses of x86 movdqa (aligned) in favor of movdqu (unaligned). The uses were concentrated on memory operands which were 8-byte aligned instead of 16-byte aligned. It is not clear to me how the specializations lost 8-bytes of alignment. The check-in also enlists CRYPTOPP_ASSERT to tell us when there's a problem so we don't need to go hunting for bugs.
Currently the CRYPTOPP_BOOL_XXX macros set the macro value to 0 or 1. If we remove setting the 0 value (the #else part of the expression), then the self tests speed up by about 0.3 seconds. I can't explain it, but I have observed it repeatedly.
This check-in prepares for the removal in Upstream master
trap.h and CRYPTOPP_ASSERT has existed for over a year in Master. We deferred on the cut-over waiting for a minor version bump (5.7). We have to use it now due to CVE-2016-7420
- added AuthenticatedSymmetricCipher interface class and Filter wrappers
- added CCM, GCM (with SSE2 assembly), CMAC, and SEED
- improved AES speed on x86 and x64
- removed WORD64_AVAILABLE; compiler 64-bit int support is now required