// gf2n.h - originally written and placed in the public domain by Wei Dai /// \file gf2n.h /// \brief Classes and functions for schemes over GF(2^n) #ifndef CRYPTOPP_GF2N_H #define CRYPTOPP_GF2N_H #include "cryptlib.h" #include "secblock.h" #include "algebra.h" #include "misc.h" #include "asn.h" #include #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4231 4275) #endif NAMESPACE_BEGIN(CryptoPP) /// \brief Polynomial with Coefficients in GF(2) /*! \nosubgrouping */ class CRYPTOPP_DLL PolynomialMod2 { public: /// \name ENUMS, EXCEPTIONS, and TYPEDEFS //@{ /// \brief Exception thrown when divide by zero is encountered class DivideByZero : public Exception { public: DivideByZero() : Exception(OTHER_ERROR, "PolynomialMod2: division by zero") {} }; typedef unsigned int RandomizationParameter; //@} /// \name CREATORS //@{ /// \brief Construct the zero polynomial PolynomialMod2(); /// Copy construct a PolynomialMod2 PolynomialMod2(const PolynomialMod2& t); /// \brief Construct a PolynomialMod2 from a word /// \details value should be encoded with the least significant bit as coefficient to x^0 /// and most significant bit as coefficient to x^(WORD_BITS-1) /// bitLength denotes how much memory to allocate initially PolynomialMod2(word value, size_t bitLength=WORD_BITS); /// \brief Construct a PolynomialMod2 from big-endian byte array PolynomialMod2(const byte *encodedPoly, size_t byteCount) {Decode(encodedPoly, byteCount);} /// \brief Construct a PolynomialMod2 from big-endian form stored in a BufferedTransformation PolynomialMod2(BufferedTransformation &encodedPoly, size_t byteCount) {Decode(encodedPoly, byteCount);} /// \brief Create a uniformly distributed random polynomial /// \details Create a random polynomial uniformly distributed over all polynomials with degree less than bitcount PolynomialMod2(RandomNumberGenerator &rng, size_t bitcount) {Randomize(rng, bitcount);} /// \brief Provides x^i /// \return x^i static PolynomialMod2 CRYPTOPP_API Monomial(size_t i); /// \brief Provides x^t0 + x^t1 + x^t2 /// \return x^t0 + x^t1 + x^t2 /// \pre The coefficients should be provided in descending order. That is,
t0 > t1 > t2
.
		static PolynomialMod2 CRYPTOPP_API Trinomial(size_t t0, size_t t1, size_t t2);
		/// \brief Provides x^t0 + x^t1 + x^t2 + x^t3 + x^t4
		/// \return x^t0 + x^t1 + x^t2 + x^t3 + x^t4
		/// \pre The coefficients should be provided in descending order. That is, 
t0 > t1 > t2 > t3 > t4
.
		static PolynomialMod2 CRYPTOPP_API Pentanomial(size_t t0, size_t t1, size_t t2, size_t t3, size_t t4);
		/// \brief Provides x^(n-1) + ... + x + 1
		/// \return x^(n-1) + ... + x + 1
		static PolynomialMod2 CRYPTOPP_API AllOnes(size_t n);

		/// \brief The Zero polinomial
		/// \return the zero polynomial
		static const PolynomialMod2 & CRYPTOPP_API Zero();
		/// \brief The One polinomial
		/// \return the one polynomial
		static const PolynomialMod2 & CRYPTOPP_API One();
	//@}

	/// \name ENCODE/DECODE
	//@{
		/// minimum number of bytes to encode this polynomial
		/*! MinEncodedSize of 0 is 1 */
		unsigned int MinEncodedSize() const {return STDMAX(1U, ByteCount());}

		/// encode in big-endian format
		/// \details if outputLen < MinEncodedSize, the most significant bytes will be dropped
		///   if outputLen > MinEncodedSize, the most significant bytes will be padded
		void Encode(byte *output, size_t outputLen) const;
		///
		void Encode(BufferedTransformation &bt, size_t outputLen) const;

		///
		void Decode(const byte *input, size_t inputLen);
		///
		//* Precondition: bt.MaxRetrievable() >= inputLen
		void Decode(BufferedTransformation &bt, size_t inputLen);

		/// encode value as big-endian octet string
		void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const;
		/// decode value as big-endian octet string
		void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length);
	//@}

	/// \name ACCESSORS
	//@{
		/// number of significant bits = Degree() + 1
		unsigned int BitCount() const;
		/// number of significant bytes = ceiling(BitCount()/8)
		unsigned int ByteCount() const;
		/// number of significant words = ceiling(ByteCount()/sizeof(word))
		unsigned int WordCount() const;

		/// return the n-th bit, n=0 being the least significant bit
		bool GetBit(size_t n) const {return GetCoefficient(n)!=0;}
		/// return the n-th byte
		byte GetByte(size_t n) const;

		/// the zero polynomial will return a degree of -1
		signed int Degree() const {return (signed int)(BitCount()-1U);}
		/// degree + 1
		unsigned int CoefficientCount() const {return BitCount();}
		/// return coefficient for x^i
		int GetCoefficient(size_t i) const
			{return (i/WORD_BITS < reg.size()) ? int(reg[i/WORD_BITS] >> (i % WORD_BITS)) & 1 : 0;}
		/// return coefficient for x^i
		int operator[](unsigned int i) const {return GetCoefficient(i);}

		///
		bool IsZero() const {return !*this;}
		///
		bool Equals(const PolynomialMod2 &rhs) const;
	//@}

	/// \name MANIPULATORS
	//@{
		///
		PolynomialMod2&  operator=(const PolynomialMod2& t);
		///
		PolynomialMod2&  operator&=(const PolynomialMod2& t);
		///
		PolynomialMod2&  operator^=(const PolynomialMod2& t);
		///
		PolynomialMod2&  operator+=(const PolynomialMod2& t) {return *this ^= t;}
		///
		PolynomialMod2&  operator-=(const PolynomialMod2& t) {return *this ^= t;}
		///
		PolynomialMod2&  operator*=(const PolynomialMod2& t);
		///
		PolynomialMod2&  operator/=(const PolynomialMod2& t);
		///
		PolynomialMod2&  operator%=(const PolynomialMod2& t);
		///
		PolynomialMod2&  operator<<=(unsigned int);
		///
		PolynomialMod2&  operator>>=(unsigned int);

		///
		void Randomize(RandomNumberGenerator &rng, size_t bitcount);

		///
		void SetBit(size_t i, int value = 1);
		/// set the n-th byte to value
		void SetByte(size_t n, byte value);

		///
		void SetCoefficient(size_t i, int value) {SetBit(i, value);}

		///
		void swap(PolynomialMod2 &a) {reg.swap(a.reg);}
	//@}

	/// \name UNARY OPERATORS
	//@{
		///
		bool			operator!() const;
		///
		PolynomialMod2	operator+() const {return *this;}
		///
		PolynomialMod2	operator-() const {return *this;}
	//@}

	/// \name BINARY OPERATORS
	//@{
		///
		PolynomialMod2 And(const PolynomialMod2 &b) const;
		///
		PolynomialMod2 Xor(const PolynomialMod2 &b) const;
		///
		PolynomialMod2 Plus(const PolynomialMod2 &b) const {return Xor(b);}
		///
		PolynomialMod2 Minus(const PolynomialMod2 &b) const {return Xor(b);}
		///
		PolynomialMod2 Times(const PolynomialMod2 &b) const;
		///
		PolynomialMod2 DividedBy(const PolynomialMod2 &b) const;
		///
		PolynomialMod2 Modulo(const PolynomialMod2 &b) const;

		///
		PolynomialMod2 operator>>(unsigned int n) const;
		///
		PolynomialMod2 operator<<(unsigned int n) const;
	//@}

	/// \name OTHER ARITHMETIC FUNCTIONS
	//@{
		/// sum modulo 2 of all coefficients
		unsigned int Parity() const;

		/// check for irreducibility
		bool IsIrreducible() const;

		/// is always zero since we're working modulo 2
		PolynomialMod2 Doubled() const {return Zero();}
		///
		PolynomialMod2 Squared() const;

		/// only 1 is a unit
		bool IsUnit() const {return Equals(One());}
		/// return inverse if *this is a unit, otherwise return 0
		PolynomialMod2 MultiplicativeInverse() const {return IsUnit() ? One() : Zero();}

		/// greatest common divisor
		static PolynomialMod2 CRYPTOPP_API Gcd(const PolynomialMod2 &a, const PolynomialMod2 &n);
		/// calculate multiplicative inverse of *this mod n
		PolynomialMod2 InverseMod(const PolynomialMod2 &) const;

		/// calculate r and q such that (a == d*q + r) && (deg(r) < deg(d))
		static void CRYPTOPP_API Divide(PolynomialMod2 &r, PolynomialMod2 &q, const PolynomialMod2 &a, const PolynomialMod2 &d);
	//@}

	/// \name INPUT/OUTPUT
	//@{
		///
		friend std::ostream& operator<<(std::ostream& out, const PolynomialMod2 &a);
	//@}

private:
	friend class GF2NT;
	friend class GF2NT233;

	SecWordBlock reg;
};

///
inline bool operator==(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Equals(b);}
///
inline bool operator!=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return !(a==b);}
/// compares degree
inline bool operator> (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Degree() > b.Degree();}
/// compares degree
inline bool operator>=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Degree() >= b.Degree();}
/// compares degree
inline bool operator< (const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Degree() < b.Degree();}
/// compares degree
inline bool operator<=(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b)
{return a.Degree() <= b.Degree();}
///
inline CryptoPP::PolynomialMod2 operator&(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.And(b);}
///
inline CryptoPP::PolynomialMod2 operator^(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Xor(b);}
///
inline CryptoPP::PolynomialMod2 operator+(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Plus(b);}
///
inline CryptoPP::PolynomialMod2 operator-(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Minus(b);}
///
inline CryptoPP::PolynomialMod2 operator*(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Times(b);}
///
inline CryptoPP::PolynomialMod2 operator/(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.DividedBy(b);}
///
inline CryptoPP::PolynomialMod2 operator%(const CryptoPP::PolynomialMod2 &a, const CryptoPP::PolynomialMod2 &b) {return a.Modulo(b);}

// CodeWarrior 8 workaround: put these template instantiations after overloaded operator declarations,
// but before the use of QuotientRing > for VC .NET 2003
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing;
CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain;
CRYPTOPP_DLL_TEMPLATE_CLASS EuclideanDomainOf;
CRYPTOPP_DLL_TEMPLATE_CLASS QuotientRing >;

/// \brief GF(2^n) with Polynomial Basis
class CRYPTOPP_DLL GF2NP : public QuotientRing >
{
public:
	GF2NP(const PolynomialMod2 &modulus);

	virtual GF2NP * Clone() const {return new GF2NP(*this);}
	virtual void DEREncode(BufferedTransformation &bt) const
		{CRYPTOPP_UNUSED(bt); CRYPTOPP_ASSERT(false);}	// no ASN.1 syntax yet for general polynomial basis

	void DEREncodeElement(BufferedTransformation &out, const Element &a) const;
	void BERDecodeElement(BufferedTransformation &in, Element &a) const;

	bool Equal(const Element &a, const Element &b) const
		{CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree() && b.Degree() < m_modulus.Degree()); return a.Equals(b);}

	bool IsUnit(const Element &a) const
		{CRYPTOPP_ASSERT(a.Degree() < m_modulus.Degree()); return !!a;}

	unsigned int MaxElementBitLength() const
		{return m;}

	unsigned int MaxElementByteLength() const
		{return (unsigned int)BitsToBytes(MaxElementBitLength());}

	Element SquareRoot(const Element &a) const;

	Element HalfTrace(const Element &a) const;

	// returns z such that z^2 + z == a
	Element SolveQuadraticEquation(const Element &a) const;

protected:
	unsigned int m;
};

/// \brief GF(2^n) with Trinomial Basis
class CRYPTOPP_DLL GF2NT : public GF2NP
{
public:
	// polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
	GF2NT(unsigned int t0, unsigned int t1, unsigned int t2);

	GF2NP * Clone() const {return new GF2NT(*this);}
	void DEREncode(BufferedTransformation &bt) const;

	const Element& Multiply(const Element &a, const Element &b) const;

	const Element& Square(const Element &a) const
		{return Reduced(a.Squared());}

	const Element& MultiplicativeInverse(const Element &a) const;

protected:
	const Element& Reduced(const Element &a) const;

	unsigned int t0, t1;
	mutable PolynomialMod2 result;
};

/// \brief GF(2^n) for b233 and k233
/// \details GF2NT233 is a specialization of GF2NT that provides Multiply()
///   and Square() operations when carryless multiplies is available.
class CRYPTOPP_DLL GF2NT233 : public GF2NT
{
public:
	// polynomial modulus = x^t0 + x^t1 + x^t2, t0 > t1 > t2
	GF2NT233(unsigned int t0, unsigned int t1, unsigned int t2);

	GF2NP * Clone() const {return new GF2NT233(*this);}

	const Element& Multiply(const Element &a, const Element &b) const;

	const Element& Square(const Element &a) const;
};

/// \brief GF(2^n) with Pentanomial Basis
class CRYPTOPP_DLL GF2NPP : public GF2NP
{
public:
	// polynomial modulus = x^t0 + x^t1 + x^t2 + x^t3 + x^t4, t0 > t1 > t2 > t3 > t4
	GF2NPP(unsigned int t0, unsigned int t1, unsigned int t2, unsigned int t3, unsigned int t4)
		: GF2NP(PolynomialMod2::Pentanomial(t0, t1, t2, t3, t4)), t1(t1), t2(t2), t3(t3) {}

	GF2NP * Clone() const {return new GF2NPP(*this);}
	void DEREncode(BufferedTransformation &bt) const;

private:
	unsigned int t1, t2, t3;
};

// construct new GF2NP from the ASN.1 sequence Characteristic-two
CRYPTOPP_DLL GF2NP * CRYPTOPP_API BERDecodeGF2NP(BufferedTransformation &bt);

NAMESPACE_END

#ifndef __BORLANDC__
NAMESPACE_BEGIN(std)
template<> inline void swap(CryptoPP::PolynomialMod2 &a, CryptoPP::PolynomialMod2 &b)
{
	a.swap(b);
}
NAMESPACE_END
#endif

#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif

#endif