// gfpcrypt.h - originally written and placed in the public domain by Wei Dai // RFC6979 deterministic signatures added by Douglas Roark // ECGDSA added by Jeffrey Walton /// \file gfpcrypt.h /// \brief Classes and functions for schemes based on Discrete Logs (DL) over GF(p) #ifndef CRYPTOPP_GFPCRYPT_H #define CRYPTOPP_GFPCRYPT_H #include "config.h" #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4189 4231 4275) #endif #include "cryptlib.h" #include "pubkey.h" #include "integer.h" #include "modexppc.h" #include "algparam.h" #include "smartptr.h" #include "sha.h" #include "asn.h" #include "hmac.h" #include "misc.h" NAMESPACE_BEGIN(CryptoPP) CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters; /// \brief Integer-based GroupParameters specialization class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBased : public ASN1CryptoMaterial > { typedef DL_GroupParameters_IntegerBased ThisClass; public: virtual ~DL_GroupParameters_IntegerBased() {} /// \brief Initialize a group parameters over integers /// \param params the group parameters void Initialize(const DL_GroupParameters_IntegerBased ¶ms) {Initialize(params.GetModulus(), params.GetSubgroupOrder(), params.GetSubgroupGenerator());} /// \brief Create a group parameters over integers /// \param rng a RandomNumberGenerator derived class /// \param pbits the size of p, in bits /// \details This function overload of Initialize() creates a new private key because it /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, /// then use one of the other Initialize() overloads. void Initialize(RandomNumberGenerator &rng, unsigned int pbits) {GenerateRandom(rng, MakeParameters("ModulusSize", (int)pbits));} /// \brief Initialize a group parameters over integers /// \param p the modulus /// \param g the generator void Initialize(const Integer &p, const Integer &g) {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(ComputeGroupOrder(p)/2);} /// \brief Initialize a group parameters over integers /// \param p the modulus /// \param q the subgroup order /// \param g the generator void Initialize(const Integer &p, const Integer &q, const Integer &g) {SetModulusAndSubgroupGenerator(p, g); SetSubgroupOrder(q);} // ASN1Object interface void BERDecode(BufferedTransformation &bt); void DEREncode(BufferedTransformation &bt) const; /// \brief Generate a random key /// \param rng a RandomNumberGenerator to produce keying material /// \param alg additional initialization parameters /// \details Recognised NameValuePairs are ModulusSize and /// SubgroupOrderSize (optional) /// \throw KeyingErr if a key can't be generated or algorithm parameters /// are invalid void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg); /// \brief Get a named value /// \param name the name of the object or value to retrieve /// \param valueType reference to a variable that receives the value /// \param pValue void pointer to a variable that receives the value /// \return true if the value was retrieved, false otherwise /// \details GetVoidValue() retrieves the value of name if it exists. /// \note GetVoidValue() is an internal function and should be implemented /// by derived classes. Users should use one of the other functions instead. /// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(), /// GetRequiredParameter() and GetRequiredIntParameter() bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const; /// \brief Initialize or reinitialize this key /// \param source NameValuePairs to assign void AssignFrom(const NameValuePairs &source); // DL_GroupParameters const Integer & GetSubgroupOrder() const {return m_q;} Integer GetGroupOrder() const {return GetFieldType() == 1 ? GetModulus()-Integer::One() : GetModulus()+Integer::One();} bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const; bool ValidateElement(unsigned int level, const Integer &element, const DL_FixedBasePrecomputation *precomp) const; /// \brief Determine if subgroup membership check is fast /// \return true or false bool FastSubgroupCheckAvailable() const {return GetCofactor() == 2;} /// \brief Encodes the element /// \param reversible flag indicating the encoding format /// \param element reference to the element to encode /// \param encoded destination byte array for the encoded element /// \details EncodeElement() must be implemented in a derived class. /// \pre COUNTOF(encoded) == GetEncodedElementSize() /// \sa GetEncodedElementSize(), DecodeElement(), Cygwin /// i386 crash at -O3 void EncodeElement(bool reversible, const Element &element, byte *encoded) const; /// \brief Retrieve the encoded element's size /// \param reversible flag indicating the encoding format /// \return encoded element's size, in bytes /// \details The format of the encoded element varies by the underlying /// type of the element and the reversible flag. /// \sa EncodeElement(), DecodeElement() unsigned int GetEncodedElementSize(bool reversible) const; /// \brief Decodes the element /// \param encoded byte array with the encoded element /// \param checkForGroupMembership flag indicating if the element should be validated /// \return Element after decoding /// \details DecodeElement() must be implemented in a derived class. /// \pre COUNTOF(encoded) == GetEncodedElementSize() /// \sa GetEncodedElementSize(), EncodeElement() Integer DecodeElement(const byte *encoded, bool checkForGroupMembership) const; /// \brief Converts an element to an Integer /// \param element the element to convert to an Integer /// \return Element after converting to an Integer /// \details ConvertElementToInteger() must be implemented in a derived class. Integer ConvertElementToInteger(const Element &element) const {return element;} /// \brief Retrieve the maximum exponent for the group /// \return the maximum exponent for the group Integer GetMaxExponent() const; /// \brief Retrieve the OID of the algorithm /// \return OID of the algorithm OID GetAlgorithmID() const; /// \brief Retrieve the modulus for the group /// \return the modulus for the group virtual const Integer & GetModulus() const =0; /// \brief Set group parameters /// \param p the prime modulus /// \param g the group generator virtual void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) =0; /// \brief Set subgroup order /// \param q the subgroup order void SetSubgroupOrder(const Integer &q) {m_q = q; ParametersChanged();} static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "";} protected: Integer ComputeGroupOrder(const Integer &modulus) const {return modulus-(GetFieldType() == 1 ? 1 : -1);} // GF(p) = 1, GF(p^2) = 2 virtual int GetFieldType() const =0; virtual unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const; private: Integer m_q; }; /// \brief Integer-based GroupParameters default implementation /// \tparam GROUP_PRECOMP group parameters precomputation specialization /// \tparam BASE_PRECOMP base class precomputation specialization template > class CRYPTOPP_NO_VTABLE DL_GroupParameters_IntegerBasedImpl : public DL_GroupParametersImpl { typedef DL_GroupParameters_IntegerBasedImpl ThisClass; public: typedef typename GROUP_PRECOMP::Element Element; virtual ~DL_GroupParameters_IntegerBasedImpl() {} // GeneratibleCryptoMaterial interface bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const {return GetValueHelper(this, name, valueType, pValue).Assignable();} void AssignFrom(const NameValuePairs &source) {AssignFromHelper(this, source);} // DL_GroupParameters const DL_FixedBasePrecomputation & GetBasePrecomputation() const {return this->m_gpc;} DL_FixedBasePrecomputation & AccessBasePrecomputation() {return this->m_gpc;} // IntegerGroupParameters /// \brief Retrieve the modulus for the group /// \return the modulus for the group const Integer & GetModulus() const {return this->m_groupPrecomputation.GetModulus();} /// \brief Retrieves a reference to the group generator /// \return const reference to the group generator const Integer & GetGenerator() const {return this->m_gpc.GetBase(this->GetGroupPrecomputation());} void SetModulusAndSubgroupGenerator(const Integer &p, const Integer &g) // these have to be set together {this->m_groupPrecomputation.SetModulus(p); this->m_gpc.SetBase(this->GetGroupPrecomputation(), g); this->ParametersChanged();} // non-inherited bool operator==(const DL_GroupParameters_IntegerBasedImpl &rhs) const {return GetModulus() == rhs.GetModulus() && GetGenerator() == rhs.GetGenerator() && this->GetSubgroupOrder() == rhs.GetSubgroupOrder();} bool operator!=(const DL_GroupParameters_IntegerBasedImpl &rhs) const {return !operator==(rhs);} }; CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_IntegerBasedImpl; /// \brief GF(p) group parameters class CRYPTOPP_DLL DL_GroupParameters_GFP : public DL_GroupParameters_IntegerBasedImpl { public: virtual ~DL_GroupParameters_GFP() {} /// \brief Determines if an element is an identity /// \param element element to check /// \return true if the element is an identity, false otherwise /// \details The identity element or or neutral element is a special element /// in a group that leaves other elements unchanged when combined with it. /// \details IsIdentity() must be implemented in a derived class. bool IsIdentity(const Integer &element) const {return element == Integer::One();} /// \brief Exponentiates a base to multiple exponents /// \param results an array of Elements /// \param base the base to raise to the exponents /// \param exponents an array of exponents /// \param exponentsCount the number of exponents in the array /// \details SimultaneousExponentiate() raises the base to each exponent in /// the exponents array and stores the result at the respective position in /// the results array. /// \details SimultaneousExponentiate() must be implemented in a derived class. /// \pre COUNTOF(results) == exponentsCount /// \pre COUNTOF(exponents) == exponentsCount void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; /// \brief Get a named value /// \param name the name of the object or value to retrieve /// \param valueType reference to a variable that receives the value /// \param pValue void pointer to a variable that receives the value /// \return true if the value was retrieved, false otherwise /// \details GetVoidValue() retrieves the value of name if it exists. /// \note GetVoidValue() is an internal function and should be implemented /// by derived classes. Users should use one of the other functions instead. /// \sa GetValue(), GetValueWithDefault(), GetIntValue(), GetIntValueWithDefault(), /// GetRequiredParameter() and GetRequiredIntParameter() bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable(); } // used by MQV Element MultiplyElements(const Element &a, const Element &b) const; Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const; protected: int GetFieldType() const {return 1;} }; /// \brief GF(p) group parameters that default to safe primes class CRYPTOPP_DLL DL_GroupParameters_GFP_DefaultSafePrime : public DL_GroupParameters_GFP { public: typedef NoCofactorMultiplication DefaultCofactorOption; virtual ~DL_GroupParameters_GFP_DefaultSafePrime() {} protected: unsigned int GetDefaultSubgroupOrderSize(unsigned int modulusSize) const {return modulusSize-1;} }; /// ElGamal encryption for safe interop /// \sa On the /// (in)security of ElGamal in OpenPGP, /// Issue 1059, /// CVE-2021-40530 /// \since Crypto++ 8.6 class CRYPTOPP_DLL DL_GroupParameters_ElGamal : public DL_GroupParameters_GFP_DefaultSafePrime { public: typedef NoCofactorMultiplication DefaultCofactorOption; virtual ~DL_GroupParameters_ElGamal() {} Integer GetMaxExponent() const { return GetSubgroupOrder()-1; } }; /// \brief GDSA algorithm /// \tparam T FieldElement type or class /// \details FieldElement T can be Integer, ECP or EC2N. template class DL_Algorithm_GDSA : public DL_ElgamalLikeSignatureAlgorithm { public: CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-1363";} virtual ~DL_Algorithm_GDSA() {} void Sign(const DL_GroupParameters ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const { const Integer &q = params.GetSubgroupOrder(); r %= q; Integer kInv = k.InverseMod(q); s = (kInv * (x*r + e)) % q; CRYPTOPP_ASSERT(!!r && !!s); } bool Verify(const DL_GroupParameters ¶ms, const DL_PublicKey &publicKey, const Integer &e, const Integer &r, const Integer &s) const { const Integer &q = params.GetSubgroupOrder(); if (r>=q || r<1 || s>=q || s<1) return false; Integer w = s.InverseMod(q); Integer u1 = (e * w) % q; Integer u2 = (r * w) % q; // verify r == (g^u1 * y^u2 mod p) mod q return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q; } }; /// \brief DSA signature algorithm based on RFC 6979 /// \tparam T FieldElement type or class /// \tparam H HashTransformation derived class /// \details FieldElement T can be Integer, ECP or EC2N. /// \sa RFC 6979, Deterministic Usage of the /// Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) /// \since Crypto++ 6.0 template class DL_Algorithm_DSA_RFC6979 : public DL_Algorithm_GDSA, public DeterministicSignatureAlgorithm { public: CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "DSA-RFC6979";} virtual ~DL_Algorithm_DSA_RFC6979() {} bool IsProbabilistic() const {return false;} bool IsDeterministic() const {return true;} // Deterministic K Integer GenerateRandom(const Integer &x, const Integer &q, const Integer &e) const { static const byte zero = 0, one = 1; const size_t qlen = q.BitCount(); const size_t rlen = BitsToBytes(qlen); // Step (a) - formatted E(m) SecByteBlock BH(e.MinEncodedSize()); e.Encode(BH, BH.size()); BH = bits2octets(BH, q); // Step (a) - private key to byte array SecByteBlock BX(STDMAX(rlen, x.MinEncodedSize())); x.Encode(BX, BX.size()); // Step (b) SecByteBlock V(H::DIGESTSIZE); std::fill(V.begin(), V.begin()+H::DIGESTSIZE, one); // Step (c) SecByteBlock K(H::DIGESTSIZE); std::fill(K.begin(), K.begin()+H::DIGESTSIZE, zero); // Step (d) m_hmac.SetKey(K, K.size()); m_hmac.Update(V, V.size()); m_hmac.Update(&zero, 1); m_hmac.Update(BX, BX.size()); m_hmac.Update(BH, BH.size()); m_hmac.TruncatedFinal(K, K.size()); // Step (e) m_hmac.SetKey(K, K.size()); m_hmac.Update(V, V.size()); m_hmac.TruncatedFinal(V, V.size()); // Step (f) m_hmac.SetKey(K, K.size()); m_hmac.Update(V, V.size()); m_hmac.Update(&one, 1); m_hmac.Update(BX, BX.size()); m_hmac.Update(BH, BH.size()); m_hmac.TruncatedFinal(K, K.size()); // Step (g) m_hmac.SetKey(K, K.size()); m_hmac.Update(V, V.size()); m_hmac.TruncatedFinal(V, V.size()); Integer k; SecByteBlock temp(rlen); for (;;) { // We want qlen bits, but we support only hash functions with an output length // multiple of 8; hence, we will gather rlen bits, i.e., rolen octets. size_t toff = 0; while (toff < rlen) { m_hmac.Update(V, V.size()); m_hmac.TruncatedFinal(V, V.size()); size_t cc = STDMIN(V.size(), temp.size() - toff); memcpy_s(temp+toff, temp.size() - toff, V, cc); toff += cc; } k = bits2int(temp, qlen); if (k > 0 && k < q) break; // k is not in the proper range; update K and V, and loop. m_hmac.Update(V, V.size()); m_hmac.Update(&zero, 1); m_hmac.TruncatedFinal(K, K.size()); m_hmac.SetKey(K, K.size()); m_hmac.Update(V, V.size()); m_hmac.TruncatedFinal(V, V.size()); } return k; } protected: Integer bits2int(const SecByteBlock& bits, size_t qlen) const { Integer ret(bits, bits.size()); size_t blen = bits.size()*8; if (blen > qlen) ret >>= blen - qlen; return ret; } // RFC 6979 support function. Takes an integer and converts it into bytes that // are the same length as an elliptic curve's order. SecByteBlock int2octets(const Integer& val, size_t rlen) const { SecByteBlock block(val.MinEncodedSize()); val.Encode(block, val.MinEncodedSize()); if (block.size() == rlen) return block; // The least significant bytes are the ones we need to preserve. SecByteBlock t(rlen); if (block.size() > rlen) { size_t offset = block.size() - rlen; std::memcpy(t, block + offset, rlen); } else // block.size() < rlen { size_t offset = rlen - block.size(); std::memset(t, '\x00', offset); std::memcpy(t + offset, block, rlen - offset); } return t; } // Turn a stream of bits into a set of bytes with the same length as an elliptic // curve's order. SecByteBlock bits2octets(const SecByteBlock& in, const Integer& q) const { Integer b2 = bits2int(in, q.BitCount()); Integer b1 = b2 - q; return int2octets(b1.IsNegative() ? b2 : b1, q.ByteCount()); } private: mutable H m_hash; mutable HMAC m_hmac; }; /// \brief German Digital Signature Algorithm /// \tparam T FieldElement type or class /// \details FieldElement T can be Integer, ECP or EC2N. /// \details The Digital Signature Scheme ECGDSA does not define the algorithm over integers. Rather, the /// signature algorithm is only defined over elliptic curves. However, the library design is such that the /// generic algorithm reside in gfpcrypt.h. /// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf /// The Digital Signature Scheme ECGDSA (October 24, 2006) template class DL_Algorithm_GDSA_ISO15946 : public DL_ElgamalLikeSignatureAlgorithm { public: CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "GDSA-ISO15946";} virtual ~DL_Algorithm_GDSA_ISO15946() {} void Sign(const DL_GroupParameters ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const { const Integer &q = params.GetSubgroupOrder(); // r = x(k * G) mod q r = params.ConvertElementToInteger(params.ExponentiateBase(k)) % q; // s = (k * r - h(m)) * d_A mod q s = (k * r - e) * x % q; CRYPTOPP_ASSERT(!!r && !!s); } bool Verify(const DL_GroupParameters ¶ms, const DL_PublicKey &publicKey, const Integer &e, const Integer &r, const Integer &s) const { const Integer &q = params.GetSubgroupOrder(); if (r>=q || r<1 || s>=q || s<1) return false; const Integer& rInv = r.InverseMod(q); const Integer u1 = (rInv * e) % q; const Integer u2 = (rInv * s) % q; // verify x(G^u1 + P_A^u2) mod q return r == params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(u1, u2)) % q; } }; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979; CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_DSA_RFC6979; /// \brief NR algorithm /// \tparam T FieldElement type or class /// \details FieldElement T can be Integer, ECP or EC2N. template class DL_Algorithm_NR : public DL_ElgamalLikeSignatureAlgorithm { public: CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "NR";} virtual ~DL_Algorithm_NR() {} void Sign(const DL_GroupParameters ¶ms, const Integer &x, const Integer &k, const Integer &e, Integer &r, Integer &s) const { const Integer &q = params.GetSubgroupOrder(); r = (r + e) % q; s = (k - x*r) % q; CRYPTOPP_ASSERT(!!r); } bool Verify(const DL_GroupParameters ¶ms, const DL_PublicKey &publicKey, const Integer &e, const Integer &r, const Integer &s) const { const Integer &q = params.GetSubgroupOrder(); if (r>=q || r<1 || s>=q) return false; // check r == (m_g^s * m_y^r + m) mod m_q return r == (params.ConvertElementToInteger(publicKey.CascadeExponentiateBaseAndPublicElement(s, r)) + e) % q; } }; /// \brief Discrete Log (DL) public key in GF(p) groups /// \tparam GP GroupParameters derived class /// \details DSA public key format is defined in 7.3.3 of RFC 2459. The private key format is defined in 12.9 of PKCS #11 v2.10. template class DL_PublicKey_GFP : public DL_PublicKeyImpl { public: virtual ~DL_PublicKey_GFP() {} /// \brief Initialize a public key over GF(p) /// \param params the group parameters /// \param y the public element void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &y) {this->AccessGroupParameters().Initialize(params); this->SetPublicElement(y);} /// \brief Initialize a public key over GF(p) /// \param p the modulus /// \param g the generator /// \param y the public element void Initialize(const Integer &p, const Integer &g, const Integer &y) {this->AccessGroupParameters().Initialize(p, g); this->SetPublicElement(y);} /// \brief Initialize a public key over GF(p) /// \param p the modulus /// \param q the subgroup order /// \param g the generator /// \param y the public element void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &y) {this->AccessGroupParameters().Initialize(p, q, g); this->SetPublicElement(y);} // X509PublicKey void BERDecodePublicKey(BufferedTransformation &bt, bool, size_t) {this->SetPublicElement(Integer(bt));} void DEREncodePublicKey(BufferedTransformation &bt) const {this->GetPublicElement().DEREncode(bt);} }; /// \brief Discrete Log (DL) private key in GF(p) groups /// \tparam GP GroupParameters derived class template class DL_PrivateKey_GFP : public DL_PrivateKeyImpl { public: virtual ~DL_PrivateKey_GFP(); /// \brief Create a private key /// \param rng a RandomNumberGenerator derived class /// \param modulusBits the size of the modulus, in bits /// \details This function overload of Initialize() creates a new private key because it /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, /// then use one of the other Initialize() overloads. void Initialize(RandomNumberGenerator &rng, unsigned int modulusBits) {this->GenerateRandomWithKeySize(rng, modulusBits);} /// \brief Create a private key /// \param rng a RandomNumberGenerator derived class /// \param p the modulus /// \param g the generator /// \details This function overload of Initialize() creates a new private key because it /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, /// then use one of the other Initialize() overloads. void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &g) {this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupGenerator", g));} /// \brief Create a private key /// \param rng a RandomNumberGenerator derived class /// \param p the modulus /// \param q the subgroup order /// \param g the generator /// \details This function overload of Initialize() creates a new private key because it /// takes a RandomNumberGenerator() as a parameter. If you have an existing keypair, /// then use one of the other Initialize() overloads. void Initialize(RandomNumberGenerator &rng, const Integer &p, const Integer &q, const Integer &g) {this->GenerateRandom(rng, MakeParameters("Modulus", p)("SubgroupOrder", q)("SubgroupGenerator", g));} /// \brief Initialize a private key over GF(p) /// \param params the group parameters /// \param x the private exponent void Initialize(const DL_GroupParameters_IntegerBased ¶ms, const Integer &x) {this->AccessGroupParameters().Initialize(params); this->SetPrivateExponent(x);} /// \brief Initialize a private key over GF(p) /// \param p the modulus /// \param g the generator /// \param x the private exponent void Initialize(const Integer &p, const Integer &g, const Integer &x) {this->AccessGroupParameters().Initialize(p, g); this->SetPrivateExponent(x);} /// \brief Initialize a private key over GF(p) /// \param p the modulus /// \param q the subgroup order /// \param g the generator /// \param x the private exponent void Initialize(const Integer &p, const Integer &q, const Integer &g, const Integer &x) {this->AccessGroupParameters().Initialize(p, q, g); this->SetPrivateExponent(x);} }; // Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499 template DL_PrivateKey_GFP::~DL_PrivateKey_GFP() {} /// \brief Discrete Log (DL) signing/verification keys in GF(p) groups struct DL_SignatureKeys_GFP { typedef DL_GroupParameters_GFP GroupParameters; typedef DL_PublicKey_GFP PublicKey; typedef DL_PrivateKey_GFP PrivateKey; }; /// \brief Discrete Log (DL) encryption/decryption keys in GF(p) groups struct DL_CryptoKeys_GFP { typedef DL_GroupParameters_GFP_DefaultSafePrime GroupParameters; typedef DL_PublicKey_GFP PublicKey; typedef DL_PrivateKey_GFP PrivateKey; }; /// ElGamal encryption keys for safe interop /// \sa On the /// (in)security of ElGamal in OpenPGP, /// Issue 1059, /// CVE-2021-40530 /// \since Crypto++ 8.6 struct DL_CryptoKeys_ElGamal { typedef DL_GroupParameters_ElGamal GroupParameters; typedef DL_PublicKey_GFP PublicKey; typedef DL_PrivateKey_GFP PrivateKey; }; /// \brief DSA signature scheme /// \tparam H HashTransformation derived class /// \sa DSA-1363 /// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2 template struct GDSA : public DL_SS< DL_SignatureKeys_GFP, DL_Algorithm_GDSA, DL_SignatureMessageEncodingMethod_DSA, H> { }; /// \brief NR signature scheme /// \tparam H HashTransformation derived class /// \sa NR template struct NR : public DL_SS< DL_SignatureKeys_GFP, DL_Algorithm_NR, DL_SignatureMessageEncodingMethod_NR, H> { }; /// \brief DSA group parameters /// \details These are GF(p) group parameters that are allowed by the DSA standard /// \sa DL_Keys_DSA /// \since Crypto++ 1.0 class CRYPTOPP_DLL DL_GroupParameters_DSA : public DL_GroupParameters_GFP { public: virtual ~DL_GroupParameters_DSA() {} /// \brief Check the group for errors /// \param rng RandomNumberGenerator for objects which use randomized testing /// \param level level of thoroughness /// \return true if the tests succeed, false otherwise /// \details ValidateGroup() also checks that the lengths of p and q are allowed /// by the DSA standard. /// \details There are four levels of thoroughness: ///
    ///
  • 0 - using this object won't cause a crash or exception ///
  • 1 - this object will probably function, and encrypt, sign, other operations correctly ///
  • 2 - ensure this object will function correctly, and perform reasonable security checks ///
  • 3 - perform reasonable security checks, and do checks that may take a long time ///
/// \details Level 0 does not require a RandomNumberGenerator. A NullRNG() can be used for level 0. /// Level 1 may not check for weak keys and such. Levels 2 and 3 are recommended. bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const; /// \brief Generate a random key or crypto parameters /// \param rng a RandomNumberGenerator to produce keying material /// \param alg additional initialization parameters /// \details NameValuePairs can be ModulusSize alone; or Modulus, SubgroupOrder, and /// SubgroupGenerator. ModulusSize must be between DSA::MIN_PRIME_LENGTH and /// DSA::MAX_PRIME_LENGTH, and divisible by DSA::PRIME_LENGTH_MULTIPLE. /// \details An example of changing the modulus size using NameValuePairs is shown below. ///
    ///  AlgorithmParameters params = MakeParameters
    ///    (Name::ModulusSize(), 2048);
    ///
    ///  DL_GroupParameters_DSA groupParams;
    ///  groupParams.GenerateRandom(prng, params);
    /// 
/// \throw KeyingErr if a key can't be generated or algorithm parameters are invalid. void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg); /// \brief Check the prime length for errors /// \param pbits number of bits in the prime number /// \return true if the tests succeed, false otherwise static bool CRYPTOPP_API IsValidPrimeLength(unsigned int pbits) {return pbits >= MIN_PRIME_LENGTH && pbits <= MAX_PRIME_LENGTH && pbits % PRIME_LENGTH_MULTIPLE == 0;} /// \brief DSA prime length enum { /// \brief Minimum prime length MIN_PRIME_LENGTH = 1024, /// \brief Maximum prime length MAX_PRIME_LENGTH = 3072, /// \brief Prime length multiple PRIME_LENGTH_MULTIPLE = 1024 }; }; template class DSA2; /// \brief DSA keys /// \sa DL_GroupParameters_DSA /// \since Crypto++ 1.0 struct DL_Keys_DSA { typedef DL_PublicKey_GFP PublicKey; typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest, DSA2 > PrivateKey; }; /// \brief DSA signature scheme /// \tparam H HashTransformation derived class /// \details The class is named DSA2 instead of DSA for backwards compatibility because /// DSA was a non-template class. /// \details DSA default method GenerateRandom uses a 2048-bit modulus and a 224-bit subgoup by default. /// The modulus can be changed using the following code: ///
///  DSA::PrivateKey privateKey;
///  privateKey.GenerateRandomWithKeySize(prng, 2048);
/// 
/// \details The subgroup order can be changed using the following code: ///
///  AlgorithmParameters params = MakeParameters
///    (Name::ModulusSize(), 2048)
///    (Name::SubgroupOrderSize(), 256);
///
///  DSA::PrivateKey privateKey;
///  privateKey.GenerateRandom(prng, params);
/// 
/// \sa DSA, as specified in FIPS 186-3, /// Digital Signature Algorithm on the wiki, and /// NameValuePairs on the wiki. /// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2, Crypto++ 6.1 for 2048-bit modulus. template class DSA2 : public DL_SS< DL_Keys_DSA, DL_Algorithm_GDSA, DL_SignatureMessageEncodingMethod_DSA, H, DSA2 > { public: static std::string CRYPTOPP_API StaticAlgorithmName() {return "DSA/" + (std::string)H::StaticAlgorithmName();} }; /// \brief DSA deterministic signature scheme /// \tparam H HashTransformation derived class /// \sa DSA-1363 /// \since Crypto++ 1.0 for DSA, Crypto++ 5.6.2 for DSA2 template struct DSA_RFC6979 : public DL_SS< DL_SignatureKeys_GFP, DL_Algorithm_DSA_RFC6979, DL_SignatureMessageEncodingMethod_DSA, H, DSA_RFC6979 > { static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("DSA-RFC6979/") + H::StaticAlgorithmName();} }; /// DSA with SHA-1, typedef'd for backwards compatibility typedef DSA2 DSA; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_GFP; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_GFP; CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest, DSA2 >; /// \brief P1363 based XOR Encryption Method /// \tparam MAC MessageAuthenticationCode derived class used for MAC computation /// \tparam DHAES_MODE flag indicating DHAES mode /// \tparam LABEL_OCTETS flag indicating the label is octet count /// \details DL_EncryptionAlgorithm_Xor is based on an early P1363 draft, which itself appears to be based on an /// early Certicom SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used it in its Integrated /// Ecryption Schemes with NoCofactorMultiplication, DHAES_MODE=false and LABEL_OCTETS=true. /// \details If you need this method for Crypto++ 4.2 compatibility, then use the ECIES template class with /// NoCofactorMultiplication, DHAES_MODE=false and LABEL_OCTETS=true. /// \details If you need this method for Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES template class with /// NoCofactorMultiplication, DHAES_MODE=true and LABEL_OCTETS=false. /// \details Bouncy Castle 1.54 and Botan 1.11 compatibility are the default template parameters. /// \since Crypto++ 4.0 template class DL_EncryptionAlgorithm_Xor : public DL_SymmetricEncryptionAlgorithm { public: virtual ~DL_EncryptionAlgorithm_Xor() {} bool ParameterSupported(const char *name) const {return strcmp(name, Name::EncodingParameters()) == 0;} size_t GetSymmetricKeyLength(size_t plaintextLength) const {return plaintextLength + static_cast(MAC::DEFAULT_KEYLENGTH);} size_t GetSymmetricCiphertextLength(size_t plaintextLength) const {return plaintextLength + static_cast(MAC::DIGESTSIZE);} size_t GetMaxSymmetricPlaintextLength(size_t ciphertextLength) const {return SaturatingSubtract(ciphertextLength, static_cast(MAC::DIGESTSIZE));} void SymmetricEncrypt(RandomNumberGenerator &rng, const byte *key, const byte *plaintext, size_t plaintextLength, byte *ciphertext, const NameValuePairs ¶meters) const { CRYPTOPP_UNUSED(rng); const byte *cipherKey = NULLPTR, *macKey = NULLPTR; if (DHAES_MODE) { macKey = key; cipherKey = key + MAC::DEFAULT_KEYLENGTH; } else { cipherKey = key; macKey = key + plaintextLength; } ConstByteArrayParameter encodingParameters; parameters.GetValue(Name::EncodingParameters(), encodingParameters); if (plaintextLength) // Coverity finding xorbuf(ciphertext, plaintext, cipherKey, plaintextLength); MAC mac(macKey); mac.Update(ciphertext, plaintextLength); mac.Update(encodingParameters.begin(), encodingParameters.size()); if (DHAES_MODE) { byte L[8]; PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size()))); mac.Update(L, 8); } mac.Final(ciphertext + plaintextLength); } DecodingResult SymmetricDecrypt(const byte *key, const byte *ciphertext, size_t ciphertextLength, byte *plaintext, const NameValuePairs ¶meters) const { size_t plaintextLength = GetMaxSymmetricPlaintextLength(ciphertextLength); const byte *cipherKey, *macKey; if (DHAES_MODE) { macKey = key; cipherKey = key + MAC::DEFAULT_KEYLENGTH; } else { cipherKey = key; macKey = key + plaintextLength; } ConstByteArrayParameter encodingParameters; parameters.GetValue(Name::EncodingParameters(), encodingParameters); MAC mac(macKey); mac.Update(ciphertext, plaintextLength); mac.Update(encodingParameters.begin(), encodingParameters.size()); if (DHAES_MODE) { byte L[8]; PutWord(false, BIG_ENDIAN_ORDER, L, (LABEL_OCTETS ? word64(encodingParameters.size()) : 8 * word64(encodingParameters.size()))); mac.Update(L, 8); } if (!mac.Verify(ciphertext + plaintextLength)) return DecodingResult(); if (plaintextLength) // Coverity finding xorbuf(plaintext, ciphertext, cipherKey, plaintextLength); return DecodingResult(plaintextLength); } }; /// \brief P1363 based Key Derivation Method /// \tparam T FieldElement type or class /// \tparam DHAES_MODE flag indicating DHAES mode /// \tparam KDF key derivation function /// \details FieldElement T can be Integer, ECP or EC2N. template class DL_KeyDerivationAlgorithm_P1363 : public DL_KeyDerivationAlgorithm { public: virtual ~DL_KeyDerivationAlgorithm_P1363() {} bool ParameterSupported(const char *name) const {return strcmp(name, Name::KeyDerivationParameters()) == 0;} void Derive(const DL_GroupParameters ¶ms, byte *derivedKey, size_t derivedLength, const T &agreedElement, const T &ephemeralPublicKey, const NameValuePairs ¶meters) const { SecByteBlock agreedSecret; if (DHAES_MODE) { agreedSecret.New(params.GetEncodedElementSize(true) + params.GetEncodedElementSize(false)); params.EncodeElement(true, ephemeralPublicKey, agreedSecret); params.EncodeElement(false, agreedElement, agreedSecret + params.GetEncodedElementSize(true)); } else { agreedSecret.New(params.GetEncodedElementSize(false)); params.EncodeElement(false, agreedElement, agreedSecret); } ConstByteArrayParameter derivationParameters; parameters.GetValue(Name::KeyDerivationParameters(), derivationParameters); KDF::DeriveKey(derivedKey, derivedLength, agreedSecret, agreedSecret.size(), derivationParameters.begin(), derivationParameters.size()); } }; /// \brief Discrete Log Integrated Encryption Scheme /// \tparam COFACTOR_OPTION cofactor multiplication option /// \tparam HASH HashTransformation derived class used for key drivation and MAC computation /// \tparam DHAES_MODE flag indicating if the MAC includes addition context parameters such as the label /// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits /// \details DLIES is an Integer based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation Method (KEM) /// with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is /// IND-CCA2, which is a strong notion of security. /// You should prefer an Integrated Encryption Scheme over homegrown schemes. /// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom /// SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Ecryption /// Schemes with NoCofactorMultiplication, DHAES_MODE=false and LABEL_OCTETS=true. /// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the DLIES template class with /// NoCofactorMultiplication, DHAES_MODE=false and LABEL_OCTETS=true. /// \details If you desire an Integrated Encryption Scheme with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the DLIES /// template class with NoCofactorMultiplication, DHAES_MODE=true and LABEL_OCTETS=false. /// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of /// IncompatibleCofactorMultiplication and DHAES_MODE=true is recommended for best efficiency and security. /// SHA1 is used for compatibility reasons, but it can be changed if desired. SHA-256 or another hash will likely improve the /// security provided by the MAC. The hash is also used in the key derivation function as a PRF. /// \details Below is an example of constructing a Crypto++ 4.2 compatible DLIES encryptor and decryptor. ///
///    AutoSeededRandomPool prng;
///    DL_PrivateKey_GFP key;
///    key.Initialize(prng, 2048);
///
///    DLIES::Decryptor decryptor(key);
///    DLIES::Encryptor encryptor(decryptor);
/// 
/// \sa ECIES, Discrete Log Integrated Encryption Scheme (DLIES), /// Martínez, Encinas, and Ávila's A Survey of the Elliptic /// Curve Integrated Encryption Schemes /// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility template struct DLIES : public DL_ES< DL_CryptoKeys_GFP, DL_KeyAgreementAlgorithm_DH, DL_KeyDerivationAlgorithm_P1363 >, DL_EncryptionAlgorithm_Xor, DHAES_MODE, LABEL_OCTETS>, DLIES<> > { static std::string CRYPTOPP_API StaticAlgorithmName() {return "DLIES";} // TODO: fix this after name is standardized }; NAMESPACE_END #if CRYPTOPP_MSC_VERSION # pragma warning(pop) #endif #endif