// integer.h - originally written and placed in the public domain by Wei Dai /// \file integer.h /// \brief Multiple precision integer with arithmetic operations /// \details The Integer class can represent positive and negative integers /// with absolute value less than (256**sizeof(word))(256**sizeof(int)). /// \details Internally, the library uses a sign magnitude representation, and the class /// has two data members. The first is a IntegerSecBlock (a SecBlock) and it is /// used to hold the representation. The second is a Sign (an enumeration), and it is /// used to track the sign of the Integer. /// \details For details on how the Integer class initializes its function pointers using /// InitializeInteger and how it creates Integer::Zero(), Integer::One(), and /// Integer::Two(), then see the comments at the top of integer.cpp. /// \since Crypto++ 1.0 #ifndef CRYPTOPP_INTEGER_H #define CRYPTOPP_INTEGER_H #include "cryptlib.h" #include "secblock.h" #include "stdcpp.h" #include NAMESPACE_BEGIN(CryptoPP) /// \struct InitializeInteger /// \brief Performs static initialization of the Integer class struct InitializeInteger { InitializeInteger(); }; // Always align, http://github.com/weidai11/cryptopp/issues/256 typedef SecBlock > IntegerSecBlock; /// \brief Multiple precision integer with arithmetic operations /// \details The Integer class can represent positive and negative integers /// with absolute value less than (256**sizeof(word))(256**sizeof(int)). /// \details Internally, the library uses a sign magnitude representation, and the class /// has two data members. The first is a IntegerSecBlock (a SecBlock) and it is /// used to hold the representation. The second is a Sign (an enumeration), and it is /// used to track the sign of the Integer. /// \details For details on how the Integer class initializes its function pointers using /// InitializeInteger and how it creates Integer::Zero(), Integer::One(), and /// Integer::Two(), then see the comments at the top of integer.cpp. /// \since Crypto++ 1.0 /// \nosubgrouping class CRYPTOPP_DLL Integer : private InitializeInteger, public ASN1Object { public: /// \name ENUMS, EXCEPTIONS, and TYPEDEFS //@{ /// \brief Exception thrown when division by 0 is encountered class DivideByZero : public Exception { public: DivideByZero() : Exception(OTHER_ERROR, "Integer: division by zero") {} }; /// \brief Exception thrown when a random number cannot be found that /// satisfies the condition class RandomNumberNotFound : public Exception { public: RandomNumberNotFound() : Exception(OTHER_ERROR, "Integer: no integer satisfies the given parameters") {} }; /// \enum Sign /// \brief Used internally to represent the integer /// \details Sign is used internally to represent the integer. It is also used in a few API functions. /// \sa SetPositive(), SetNegative(), Signedness enum Sign { /// \brief the value is positive or 0 POSITIVE=0, /// \brief the value is negative NEGATIVE=1}; /// \enum Signedness /// \brief Used when importing and exporting integers /// \details Signedness is usually used in API functions. /// \sa Sign enum Signedness { /// \brief an unsigned value UNSIGNED, /// \brief a signed value SIGNED}; /// \enum RandomNumberType /// \brief Properties of a random integer enum RandomNumberType { /// \brief a number with no special properties ANY, /// \brief a number which is probabilistically prime PRIME}; //@} /// \name CREATORS //@{ /// \brief Creates the zero integer Integer(); /// copy constructor Integer(const Integer& t); /// \brief Convert from signed long Integer(signed long value); /// \brief Convert from lword /// \param sign enumeration indicating Sign /// \param value the long word Integer(Sign sign, lword value); /// \brief Convert from two words /// \param sign enumeration indicating Sign /// \param highWord the high word /// \param lowWord the low word Integer(Sign sign, word highWord, word lowWord); /// \brief Convert from a C-string /// \param str C-string value /// \param order the ByteOrder of the string to be processed /// \details \p str can be in base 8, 10, or 16. Base is determined /// by a case insensitive suffix of 'o' (8), '.' (10), or 'h' (16). /// No suffix means base 10. /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian /// integers with curve25519, Poly1305 and Microsoft CAPI. explicit Integer(const char *str, ByteOrder order = BIG_ENDIAN_ORDER); /// \brief Convert from a wide C-string /// \param str wide C-string value /// \param order the ByteOrder of the string to be processed /// \details \p str can be in base 8, 10, or 16. Base is determined /// by a case insensitive suffix of 'o' (8), '.' (10), or 'h' (16). /// No suffix means base 10. /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian /// integers with curve25519, Poly1305 and Microsoft CAPI. explicit Integer(const wchar_t *str, ByteOrder order = BIG_ENDIAN_ORDER); /// \brief Convert from a big-endian byte array /// \param encodedInteger big-endian byte array /// \param byteCount length of the byte array /// \param sign enumeration indicating Signedness /// \param order the ByteOrder of the array to be processed /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian /// integers with curve25519, Poly1305 and Microsoft CAPI. Integer(const byte *encodedInteger, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER); /// \brief Convert from a big-endian array /// \param bt BufferedTransformation object with big-endian byte array /// \param byteCount length of the byte array /// \param sign enumeration indicating Signedness /// \param order the ByteOrder of the data to be processed /// \details Byte order was added at Crypto++ 5.7 to allow use of little-endian /// integers with curve25519, Poly1305 and Microsoft CAPI. Integer(BufferedTransformation &bt, size_t byteCount, Signedness sign=UNSIGNED, ByteOrder order = BIG_ENDIAN_ORDER); /// \brief Convert from a BER encoded byte array /// \param bt BufferedTransformation object with BER encoded byte array explicit Integer(BufferedTransformation &bt); /// \brief Create a random integer /// \param rng RandomNumberGenerator used to generate material /// \param bitCount the number of bits in the resulting integer /// \details The random integer created is uniformly distributed over [0, 2bitCount]. Integer(RandomNumberGenerator &rng, size_t bitCount); /// \brief Integer representing 0 /// \return an Integer representing 0 /// \details Zero() avoids calling constructors for frequently used integers static const Integer & CRYPTOPP_API Zero(); /// \brief Integer representing 1 /// \return an Integer representing 1 /// \details One() avoids calling constructors for frequently used integers static const Integer & CRYPTOPP_API One(); /// \brief Integer representing 2 /// \return an Integer representing 2 /// \details Two() avoids calling constructors for frequently used integers static const Integer & CRYPTOPP_API Two(); /// \brief Create a random integer of special form /// \param rng RandomNumberGenerator used to generate material /// \param min the minimum value /// \param max the maximum value /// \param rnType RandomNumberType to specify the type /// \param equiv the equivalence class based on the parameter \p mod /// \param mod the modulus used to reduce the equivalence class /// \throw RandomNumberNotFound if the set is empty. /// \details Ideally, the random integer created should be uniformly distributed /// over {x | min \<= x \<= max and \p x is of rnType and x \% mod == equiv}. /// However the actual distribution may not be uniform because sequential /// search is used to find an appropriate number from a random starting /// point. /// \details May return (with very small probability) a pseudoprime when a prime /// is requested and max \> lastSmallPrime*lastSmallPrime. \p lastSmallPrime /// is declared in nbtheory.h. Integer(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType=ANY, const Integer &equiv=Zero(), const Integer &mod=One()); /// \brief Exponentiates to a power of 2 /// \return the Integer 2e /// \sa a_times_b_mod_c() and a_exp_b_mod_c() static Integer CRYPTOPP_API Power2(size_t e); //@} /// \name ENCODE/DECODE //@{ /// \brief Minimum number of bytes to encode this integer /// \param sign enumeration indicating Signedness /// \note The MinEncodedSize() of 0 is 1. size_t MinEncodedSize(Signedness sign=UNSIGNED) const; /// \brief Encode in big-endian format /// \param output big-endian byte array /// \param outputLen length of the byte array /// \param sign enumeration indicating Signedness /// \details Unsigned means encode absolute value, signed means encode two's complement if negative. /// \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a /// minimum size). An exact size is useful, for example, when encoding to a field element size. void Encode(byte *output, size_t outputLen, Signedness sign=UNSIGNED) const; /// \brief Encode in big-endian format /// \param bt BufferedTransformation object /// \param outputLen length of the encoding /// \param sign enumeration indicating Signedness /// \details Unsigned means encode absolute value, signed means encode two's complement if negative. /// \details outputLen can be used to ensure an Integer is encoded to an exact size (rather than a /// minimum size). An exact size is useful, for example, when encoding to a field element size. void Encode(BufferedTransformation &bt, size_t outputLen, Signedness sign=UNSIGNED) const; /// \brief Encode in DER format /// \param bt BufferedTransformation object /// \details Encodes the Integer using Distinguished Encoding Rules /// The result is placed into a BufferedTransformation object void DEREncode(BufferedTransformation &bt) const; /// \brief Encode absolute value as big-endian octet string /// \param bt BufferedTransformation object /// \param length the number of mytes to decode void DEREncodeAsOctetString(BufferedTransformation &bt, size_t length) const; /// \brief Encode absolute value in OpenPGP format /// \param output big-endian byte array /// \param bufferSize length of the byte array /// \return length of the output /// \details OpenPGPEncode places result into the buffer and returns the /// number of bytes used for the encoding size_t OpenPGPEncode(byte *output, size_t bufferSize) const; /// \brief Encode absolute value in OpenPGP format /// \param bt BufferedTransformation object /// \return length of the output /// \details OpenPGPEncode places result into a BufferedTransformation object and returns the /// number of bytes used for the encoding size_t OpenPGPEncode(BufferedTransformation &bt) const; /// \brief Decode from big-endian byte array /// \param input big-endian byte array /// \param inputLen length of the byte array /// \param sign enumeration indicating Signedness void Decode(const byte *input, size_t inputLen, Signedness sign=UNSIGNED); /// \brief Decode nonnegative value from big-endian byte array /// \param bt BufferedTransformation object /// \param inputLen length of the byte array /// \param sign enumeration indicating Signedness /// \note bt.MaxRetrievable() \>= inputLen. void Decode(BufferedTransformation &bt, size_t inputLen, Signedness sign=UNSIGNED); /// \brief Decode from BER format /// \param input big-endian byte array /// \param inputLen length of the byte array void BERDecode(const byte *input, size_t inputLen); /// \brief Decode from BER format /// \param bt BufferedTransformation object void BERDecode(BufferedTransformation &bt); /// \brief Decode nonnegative value from big-endian octet string /// \param bt BufferedTransformation object /// \param length length of the byte array void BERDecodeAsOctetString(BufferedTransformation &bt, size_t length); /// \brief Exception thrown when an error is encountered decoding an OpenPGP integer class OpenPGPDecodeErr : public Exception { public: OpenPGPDecodeErr() : Exception(INVALID_DATA_FORMAT, "OpenPGP decode error") {} }; /// \brief Decode from OpenPGP format /// \param input big-endian byte array /// \param inputLen length of the byte array void OpenPGPDecode(const byte *input, size_t inputLen); /// \brief Decode from OpenPGP format /// \param bt BufferedTransformation object void OpenPGPDecode(BufferedTransformation &bt); //@} /// \name ACCESSORS //@{ /// \brief Determines if the Integer is convertable to Long /// \return true if *this can be represented as a signed long /// \sa ConvertToLong() bool IsConvertableToLong() const; /// \brief Convert the Integer to Long /// \return equivalent signed long if possible, otherwise undefined /// \sa IsConvertableToLong() signed long ConvertToLong() const; /// \brief Determines the number of bits required to represent the Integer /// \return number of significant bits /// \details BitCount is calculated as floor(log2(abs(*this))) + 1. unsigned int BitCount() const; /// \brief Determines the number of bytes required to represent the Integer /// \return number of significant bytes /// \details ByteCount is calculated as ceiling(BitCount()/8). unsigned int ByteCount() const; /// \brief Determines the number of words required to represent the Integer /// \return number of significant words /// \details WordCount is calculated as ceiling(ByteCount()/sizeof(word)). unsigned int WordCount() const; /// \brief Provides the i-th bit of the Integer /// \return the i-th bit, i=0 being the least significant bit bool GetBit(size_t i) const; /// \brief Provides the i-th byte of the Integer /// \return the i-th byte byte GetByte(size_t i) const; /// \brief Provides the low order bits of the Integer /// \return n lowest bits of *this >> i lword GetBits(size_t i, size_t n) const; /// \brief Determines if the Integer is 0 /// \return true if the Integer is 0, false otherwise bool IsZero() const {return !*this;} /// \brief Determines if the Integer is non-0 /// \return true if the Integer is non-0, false otherwise bool NotZero() const {return !IsZero();} /// \brief Determines if the Integer is negative /// \return true if the Integer is negative, false otherwise bool IsNegative() const {return sign == NEGATIVE;} /// \brief Determines if the Integer is non-negative /// \return true if the Integer is non-negative, false otherwise bool NotNegative() const {return !IsNegative();} /// \brief Determines if the Integer is positive /// \return true if the Integer is positive, false otherwise bool IsPositive() const {return NotNegative() && NotZero();} /// \brief Determines if the Integer is non-positive /// \return true if the Integer is non-positive, false otherwise bool NotPositive() const {return !IsPositive();} /// \brief Determines if the Integer is even parity /// \return true if the Integer is even, false otherwise bool IsEven() const {return GetBit(0) == 0;} /// \brief Determines if the Integer is odd parity /// \return true if the Integer is odd, false otherwise bool IsOdd() const {return GetBit(0) == 1;} //@} /// \name MANIPULATORS //@{ /// \brief Assignment /// \param t the other Integer /// \return the result of assignment Integer& operator=(const Integer& t); /// \brief Addition Assignment /// \param t the other Integer /// \return the result of *this + t Integer& operator+=(const Integer& t); /// \brief Subtraction Assignment /// \param t the other Integer /// \return the result of *this - t Integer& operator-=(const Integer& t); /// \brief Multiplication Assignment /// \param t the other Integer /// \return the result of *this * t /// \sa a_times_b_mod_c() and a_exp_b_mod_c() Integer& operator*=(const Integer& t) {return *this = Times(t);} /// \brief Division Assignment /// \param t the other Integer /// \return the result of *this / t Integer& operator/=(const Integer& t) {return *this = DividedBy(t);} /// \brief Remainder Assignment /// \param t the other Integer /// \return the result of *this % t /// \sa a_times_b_mod_c() and a_exp_b_mod_c() Integer& operator%=(const Integer& t) {return *this = Modulo(t);} /// \brief Division Assignment /// \param t the other word /// \return the result of *this / t Integer& operator/=(word t) {return *this = DividedBy(t);} /// \brief Remainder Assignment /// \param t the other word /// \return the result of *this % t /// \sa a_times_b_mod_c() and a_exp_b_mod_c() Integer& operator%=(word t) {return *this = Integer(POSITIVE, 0, Modulo(t));} /// \brief Left-shift Assignment /// \param n number of bits to shift /// \return reference to this Integer Integer& operator<<=(size_t n); /// \brief Right-shift Assignment /// \param n number of bits to shift /// \return reference to this Integer Integer& operator>>=(size_t n); /// \brief Bitwise AND Assignment /// \param t the other Integer /// \return the result of *this & t /// \details operator&=() performs a bitwise AND on *this. Missing bits are truncated /// at the most significant bit positions, so the result is as small as the /// smaller of the operands. /// \details Internally, Crypto++ uses a sign-magnitude representation. The library /// does not attempt to interpret bits, and the result is always POSITIVE. If needed, /// the integer should be converted to a 2's compliment representation before performing /// the operation. /// \since Crypto++ 6.0 Integer& operator&=(const Integer& t); /// \brief Bitwise OR Assignment /// \param t the second Integer /// \return the result of *this | t /// \details operator|=() performs a bitwise OR on *this. Missing bits are shifted in /// at the most significant bit positions, so the result is as large as the /// larger of the operands. /// \details Internally, Crypto++ uses a sign-magnitude representation. The library /// does not attempt to interpret bits, and the result is always POSITIVE. If needed, /// the integer should be converted to a 2's compliment representation before performing /// the operation. /// \since Crypto++ 6.0 Integer& operator|=(const Integer& t); /// \brief Bitwise XOR Assignment /// \param t the other Integer /// \return the result of *this ^ t /// \details operator^=() performs a bitwise XOR on *this. Missing bits are shifted /// in at the most significant bit positions, so the result is as large as the /// larger of the operands. /// \details Internally, Crypto++ uses a sign-magnitude representation. The library /// does not attempt to interpret bits, and the result is always POSITIVE. If needed, /// the integer should be converted to a 2's compliment representation before performing /// the operation. /// \since Crypto++ 6.0 Integer& operator^=(const Integer& t); /// \brief Set this Integer to random integer /// \param rng RandomNumberGenerator used to generate material /// \param bitCount the number of bits in the resulting integer /// \details The random integer created is uniformly distributed over [0, 2bitCount]. /// \note If \p bitCount is 0, then this Integer is set to 0 (and not 0 or 1). void Randomize(RandomNumberGenerator &rng, size_t bitCount); /// \brief Set this Integer to random integer /// \param rng RandomNumberGenerator used to generate material /// \param min the minimum value /// \param max the maximum value /// \details The random integer created is uniformly distributed over [min, max]. void Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max); /// \brief Set this Integer to random integer of special form /// \param rng RandomNumberGenerator used to generate material /// \param min the minimum value /// \param max the maximum value /// \param rnType RandomNumberType to specify the type /// \param equiv the equivalence class based on the parameter \p mod /// \param mod the modulus used to reduce the equivalence class /// \throw RandomNumberNotFound if the set is empty. /// \details Ideally, the random integer created should be uniformly distributed /// over {x | min \<= x \<= max and \p x is of rnType and x \% mod == equiv}. /// However the actual distribution may not be uniform because sequential /// search is used to find an appropriate number from a random starting /// point. /// \details May return (with very small probability) a pseudoprime when a prime /// is requested and max \> lastSmallPrime*lastSmallPrime. \p lastSmallPrime /// is declared in nbtheory.h. bool Randomize(RandomNumberGenerator &rng, const Integer &min, const Integer &max, RandomNumberType rnType, const Integer &equiv=Zero(), const Integer &mod=One()); /// \brief Generate a random number /// \param rng RandomNumberGenerator used to generate material /// \param params additional parameters that cannot be passed directly to the function /// \return true if a random number was generated, false otherwise /// \details GenerateRandomNoThrow attempts to generate a random number according to the /// parameters specified in params. The function does not throw RandomNumberNotFound. /// \details The example below generates a prime number using NameValuePairs that Integer /// class recognizes. The names are not provided in argnames.h. ///
		///    AutoSeededRandomPool prng;
		///    AlgorithmParameters params = MakeParameters("BitLength", 2048)
		///                                               ("RandomNumberType", Integer::PRIME);
		///    Integer x;
		///    if (x.GenerateRandomNoThrow(prng, params) == false)
		///        throw std::runtime_error("Failed to generate prime number");
		/// 
bool GenerateRandomNoThrow(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs); /// \brief Generate a random number /// \param rng RandomNumberGenerator used to generate material /// \param params additional parameters that cannot be passed directly to the function /// \throw RandomNumberNotFound if a random number is not found /// \details GenerateRandom attempts to generate a random number according to the /// parameters specified in params. /// \details The example below generates a prime number using NameValuePairs that Integer /// class recognizes. The names are not provided in argnames.h. ///
		///    AutoSeededRandomPool prng;
		///    AlgorithmParameters params = MakeParameters("BitLength", 2048)
		///                                               ("RandomNumberType", Integer::PRIME);
		///    Integer x;
		///    try { x.GenerateRandom(prng, params); }
		///    catch (RandomNumberNotFound&) { x = -1; }
		/// 
void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶ms = g_nullNameValuePairs) { if (!GenerateRandomNoThrow(rng, params)) throw RandomNumberNotFound(); } /// \brief Set the n-th bit to value /// \details 0-based numbering. void SetBit(size_t n, bool value=1); /// \brief Set the n-th byte to value /// \details 0-based numbering. void SetByte(size_t n, byte value); /// \brief Reverse the Sign of the Integer void Negate(); /// \brief Sets the Integer to positive void SetPositive() {sign = POSITIVE;} /// \brief Sets the Integer to negative void SetNegative() {if (!!(*this)) sign = NEGATIVE;} /// \brief Swaps this Integer with another Integer void swap(Integer &a); //@} /// \name UNARY OPERATORS //@{ /// \brief Negation bool operator!() const; /// \brief Addition Integer operator+() const {return *this;} /// \brief Subtraction Integer operator-() const; /// \brief Pre-increment Integer& operator++(); /// \brief Pre-decrement Integer& operator--(); /// \brief Post-increment Integer operator++(int) {Integer temp = *this; ++*this; return temp;} /// \brief Post-decrement Integer operator--(int) {Integer temp = *this; --*this; return temp;} //@} /// \name BINARY OPERATORS //@{ /// \brief Perform signed comparison /// \param a the Integer to compare /// \retval -1 if *this < a /// \retval 0 if *this = a /// \retval 1 if *this > a int Compare(const Integer& a) const; /// \brief Addition Integer Plus(const Integer &b) const; /// \brief Subtraction Integer Minus(const Integer &b) const; /// \brief Multiplication /// \sa a_times_b_mod_c() and a_exp_b_mod_c() Integer Times(const Integer &b) const; /// \brief Division Integer DividedBy(const Integer &b) const; /// \brief Remainder /// \sa a_times_b_mod_c() and a_exp_b_mod_c() Integer Modulo(const Integer &b) const; /// \brief Division Integer DividedBy(word b) const; /// \brief Remainder /// \sa a_times_b_mod_c() and a_exp_b_mod_c() word Modulo(word b) const; /// \brief Bitwise AND /// \param t the other Integer /// \return the result of *this & t /// \details And() performs a bitwise AND on the operands. Missing bits are truncated /// at the most significant bit positions, so the result is as small as the /// smaller of the operands. /// \details Internally, Crypto++ uses a sign-magnitude representation. The library /// does not attempt to interpret bits, and the result is always POSITIVE. If needed, /// the integer should be converted to a 2's compliment representation before performing /// the operation. /// \since Crypto++ 6.0 Integer And(const Integer& t) const; /// \brief Bitwise OR /// \param t the other Integer /// \return the result of *this | t /// \details Or() performs a bitwise OR on the operands. Missing bits are shifted in /// at the most significant bit positions, so the result is as large as the /// larger of the operands. /// \details Internally, Crypto++ uses a sign-magnitude representation. The library /// does not attempt to interpret bits, and the result is always POSITIVE. If needed, /// the integer should be converted to a 2's compliment representation before performing /// the operation. /// \since Crypto++ 6.0 Integer Or(const Integer& t) const; /// \brief Bitwise XOR /// \param t the other Integer /// \return the result of *this ^ t /// \details Xor() performs a bitwise XOR on the operands. Missing bits are shifted in /// at the most significant bit positions, so the result is as large as the /// larger of the operands. /// \details Internally, Crypto++ uses a sign-magnitude representation. The library /// does not attempt to interpret bits, and the result is always POSITIVE. If needed, /// the integer should be converted to a 2's compliment representation before performing /// the operation. /// \since Crypto++ 6.0 Integer Xor(const Integer& t) const; /// \brief Right-shift Integer operator>>(size_t n) const {return Integer(*this)>>=n;} /// \brief Left-shift Integer operator<<(size_t n) const {return Integer(*this)<<=n;} //@} /// \name OTHER ARITHMETIC FUNCTIONS //@{ /// \brief Retrieve the absolute value of this integer Integer AbsoluteValue() const; /// \brief Add this integer to itself Integer Doubled() const {return Plus(*this);} /// \brief Multiply this integer by itself /// \sa a_times_b_mod_c() and a_exp_b_mod_c() Integer Squared() const {return Times(*this);} /// \brief Extract square root /// \details if negative return 0, else return floor of square root Integer SquareRoot() const; /// \brief Determine whether this integer is a perfect square bool IsSquare() const; /// \brief Determine if 1 or -1 /// \return true if this integer is 1 or -1, false otherwise bool IsUnit() const; /// \brief Calculate multiplicative inverse /// \return MultiplicativeInverse inverse if 1 or -1, otherwise return 0. Integer MultiplicativeInverse() const; /// \brief Extended Division /// \param r a reference for the remainder /// \param q a reference for the quotient /// \param a reference to the dividend /// \param d reference to the divisor /// \details Divide calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)). static void CRYPTOPP_API Divide(Integer &r, Integer &q, const Integer &a, const Integer &d); /// \brief Extended Division /// \param r a reference for the remainder /// \param q a reference for the quotient /// \param a reference to the dividend /// \param d reference to the divisor /// \details Divide calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)). /// This overload uses a faster division algorithm because the divisor is short. static void CRYPTOPP_API Divide(word &r, Integer &q, const Integer &a, word d); /// \brief Extended Division /// \param r a reference for the remainder /// \param q a reference for the quotient /// \param a reference to the dividend /// \param n reference to the divisor /// \details DivideByPowerOf2 calculates r and q such that (a == d*q + r) && (0 <= r < abs(d)). /// It returns same result as Divide(r, q, a, Power2(n)), but faster. /// This overload uses a faster division algorithm because the divisor is a power of 2. static void CRYPTOPP_API DivideByPowerOf2(Integer &r, Integer &q, const Integer &a, unsigned int n); /// \brief Calculate greatest common divisor /// \param a reference to the first number /// \param n reference to the secind number /// \return the greatest common divisor a and n. static Integer CRYPTOPP_API Gcd(const Integer &a, const Integer &n); /// \brief Calculate multiplicative inverse /// \param n reference to the modulus /// \return an Integer *this % n. /// \details InverseMod returns the multiplicative inverse of the Integer *this /// modulo the Integer n. If no Integer exists then Integer 0 is returned. /// \sa a_times_b_mod_c() and a_exp_b_mod_c() Integer InverseMod(const Integer &n) const; /// \brief Calculate multiplicative inverse /// \param n the modulus /// \return a word *this % n. /// \details InverseMod returns the multiplicative inverse of the Integer *this /// modulo the word n. If no Integer exists then word 0 is returned. /// \sa a_times_b_mod_c() and a_exp_b_mod_c() word InverseMod(word n) const; //@} /// \name INPUT/OUTPUT //@{ /// \brief Extraction operator /// \param in reference to a std::istream /// \param a reference to an Integer /// \return reference to a std::istream reference friend CRYPTOPP_DLL std::istream& CRYPTOPP_API operator>>(std::istream& in, Integer &a); /// \brief Insertion operator /// \param out reference to a std::ostream /// \param a a constant reference to an Integer /// \return reference to a std::ostream reference /// \details The output integer responds to hex, std::oct, std::hex, std::upper and /// std::lower. The output includes the suffix \a h (for hex), \a . (\a dot, for dec) /// and \a o (for octal). There is currently no way to suppress the suffix. /// \details If you want to print an Integer without the suffix or using an arbitrary base, then /// use IntToString(). /// \sa IntToString friend CRYPTOPP_DLL std::ostream& CRYPTOPP_API operator<<(std::ostream& out, const Integer &a); //@} /// \brief Modular multiplication /// \param x reference to the first term /// \param y reference to the second term /// \param m reference to the modulus /// \return an Integer (a * b) % m. CRYPTOPP_DLL friend Integer CRYPTOPP_API a_times_b_mod_c(const Integer &x, const Integer& y, const Integer& m); /// \brief Modular exponentiation /// \param x reference to the base /// \param e reference to the exponent /// \param m reference to the modulus /// \return an Integer (a ^ b) % m. CRYPTOPP_DLL friend Integer CRYPTOPP_API a_exp_b_mod_c(const Integer &x, const Integer& e, const Integer& m); protected: // http://github.com/weidai11/cryptopp/issues/602 Integer InverseModNext(const Integer &n) const; private: Integer(word value, size_t length); int PositiveCompare(const Integer &t) const; IntegerSecBlock reg; Sign sign; #ifndef CRYPTOPP_DOXYGEN_PROCESSING friend class ModularArithmetic; friend class MontgomeryRepresentation; friend class HalfMontgomeryRepresentation; friend void PositiveAdd(Integer &sum, const Integer &a, const Integer &b); friend void PositiveSubtract(Integer &diff, const Integer &a, const Integer &b); friend void PositiveMultiply(Integer &product, const Integer &a, const Integer &b); friend void PositiveDivide(Integer &remainder, Integer "ient, const Integer ÷nd, const Integer &divisor); #endif }; /// \brief Comparison inline bool operator==(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)==0;} /// \brief Comparison inline bool operator!=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)!=0;} /// \brief Comparison inline bool operator> (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)> 0;} /// \brief Comparison inline bool operator>=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)>=0;} /// \brief Comparison inline bool operator< (const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)< 0;} /// \brief Comparison inline bool operator<=(const CryptoPP::Integer& a, const CryptoPP::Integer& b) {return a.Compare(b)<=0;} /// \brief Addition inline CryptoPP::Integer operator+(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Plus(b);} /// \brief Subtraction inline CryptoPP::Integer operator-(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Minus(b);} /// \brief Multiplication /// \sa a_times_b_mod_c() and a_exp_b_mod_c() inline CryptoPP::Integer operator*(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Times(b);} /// \brief Division inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.DividedBy(b);} /// \brief Remainder /// \sa a_times_b_mod_c() and a_exp_b_mod_c() inline CryptoPP::Integer operator%(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Modulo(b);} /// \brief Division inline CryptoPP::Integer operator/(const CryptoPP::Integer &a, CryptoPP::word b) {return a.DividedBy(b);} /// \brief Remainder /// \sa a_times_b_mod_c() and a_exp_b_mod_c() inline CryptoPP::word operator%(const CryptoPP::Integer &a, CryptoPP::word b) {return a.Modulo(b);} /// \brief Bitwise AND /// \param a the first Integer /// \param b the second Integer /// \return the result of a & b /// \details operator&() performs a bitwise AND on the operands. Missing bits are truncated /// at the most significant bit positions, so the result is as small as the /// smaller of the operands. /// \details Internally, Crypto++ uses a sign-magnitude representation. The library /// does not attempt to interpret bits, and the result is always POSITIVE. If needed, /// the integer should be converted to a 2's compliment representation before performing /// the operation. /// \since Crypto++ 6.0 inline CryptoPP::Integer operator&(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.And(b);} /// \brief Bitwise OR /// \param a the first Integer /// \param b the second Integer /// \return the result of a | b /// \details operator|() performs a bitwise OR on the operands. Missing bits are shifted in /// at the most significant bit positions, so the result is as large as the /// larger of the operands. /// \details Internally, Crypto++ uses a sign-magnitude representation. The library /// does not attempt to interpret bits, and the result is always POSITIVE. If needed, /// the integer should be converted to a 2's compliment representation before performing /// the operation. /// \since Crypto++ 6.0 inline CryptoPP::Integer operator|(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Or(b);} /// \brief Bitwise XOR /// \param a the first Integer /// \param b the second Integer /// \return the result of a ^ b /// \details operator^() performs a bitwise XOR on the operands. Missing bits are shifted /// in at the most significant bit positions, so the result is as large as the /// larger of the operands. /// \details Internally, Crypto++ uses a sign-magnitude representation. The library /// does not attempt to interpret bits, and the result is always POSITIVE. If needed, /// the integer should be converted to a 2's compliment representation before performing /// the operation. /// \since Crypto++ 6.0 inline CryptoPP::Integer operator^(const CryptoPP::Integer &a, const CryptoPP::Integer &b) {return a.Xor(b);} NAMESPACE_END #ifndef __BORLANDC__ NAMESPACE_BEGIN(std) inline void swap(CryptoPP::Integer &a, CryptoPP::Integer &b) { a.swap(b); } NAMESPACE_END #endif #endif