// nbtheory.h - originally written and placed in the public domain by Wei Dai /// \file nbtheory.h /// \brief Classes and functions for number theoretic operations #ifndef CRYPTOPP_NBTHEORY_H #define CRYPTOPP_NBTHEORY_H #include "cryptlib.h" #include "integer.h" #include "algparam.h" NAMESPACE_BEGIN(CryptoPP) /// \brief The Small Prime table /// \param size number of elements in the table /// \return prime table with /p size elements /// \details GetPrimeTable() obtains pointer to small prime table and provides the size of the table. /// /p size is an out parameter. CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size); // ************ primality testing **************** /// \brief Generates a provable prime /// \param rng a RandomNumberGenerator to produce random material /// \param bits the number of bits in the prime number /// \return Integer() meeting Maurer's tests for primality CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits); /// \brief Generates a provable prime /// \param rng a RandomNumberGenerator to produce random material /// \param bits the number of bits in the prime number /// \return Integer() meeting Mihailescu's tests for primality /// \details Mihailescu's methods performs a search using algorithmic progressions. CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits); /// \brief Tests whether a number is a small prime /// \param p a candidate prime to test /// \return true if p is a small prime, false otherwise /// \details Internally, the library maintains a table of the first 32719 prime numbers /// in sorted order. IsSmallPrime searches the table and returns true if p is /// in the table. CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p); /// \brief Tests whether a number is divisible by a small prime /// \return true if p is divisible by some prime less than bound. /// \details TrialDivision() returns true if p is divisible by some prime less /// than bound. bound should not be greater than the largest entry in the /// prime table, which is 32719. CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound); /// \brief Tests whether a number is divisible by a small prime /// \return true if p is NOT divisible by small primes. /// \details SmallDivisorsTest() returns true if p is NOT divisible by some /// prime less than 32719. CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p); /// \brief Determine if a number is probably prime /// \param n the number to test /// \param b the base to exponentiate /// \return true if the number n is probably prime, false otherwise. /// \details IsFermatProbablePrime raises b to the n-1 power and checks if /// the result is congruent to 1 modulo n. /// \details These is no reason to use IsFermatProbablePrime, use IsStrongProbablePrime or /// IsStrongLucasProbablePrime instead. /// \sa IsStrongProbablePrime, IsStrongLucasProbablePrime CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b); /// \brief Determine if a number is probably prime /// \param n the number to test /// \return true if the number n is probably prime, false otherwise. /// \details These is no reason to use IsLucasProbablePrime, use IsStrongProbablePrime or /// IsStrongLucasProbablePrime instead. /// \sa IsStrongProbablePrime, IsStrongLucasProbablePrime CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n); /// \brief Determine if a number is probably prime /// \param n the number to test /// \param b the base to exponentiate /// \return true if the number n is probably prime, false otherwise. CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b); /// \brief Determine if a number is probably prime /// \param n the number to test /// \return true if the number n is probably prime, false otherwise. CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n); /// \brief Determine if a number is probably prime /// \param rng a RandomNumberGenerator to produce random material /// \param n the number to test /// \param rounds the number of tests to perform /// \details This is the Rabin-Miller primality test, i.e. repeating the strong probable prime /// test for several rounds with random bases /// \sa Trial divisions before /// Miller-Rabin checks? on Crypto Stack Exchange CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds); /// \brief Verifies a number is probably prime /// \param p a candidate prime to test /// \return true if p is a probable prime, false otherwise /// \details IsPrime() is suitable for testing candidate primes when creating them. Internally, /// IsPrime() utilizes SmallDivisorsTest(), IsStrongProbablePrime() and IsStrongLucasProbablePrime(). CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p); /// \brief Verifies a number is probably prime /// \param rng a RandomNumberGenerator for randomized testing /// \param p a candidate prime to test /// \param level the level of thoroughness of testing /// \return true if p is a strong probable prime, false otherwise /// \details VerifyPrime() is suitable for testing candidate primes created by others. Internally, /// VerifyPrime() utilizes IsPrime() and one-round RabinMillerTest(). If the candidate passes and /// level is greater than 1, then 10 round RabinMillerTest() primality testing is performed. CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1); /// \brief Application callback to signal suitability of a candidate prime class CRYPTOPP_DLL PrimeSelector { public: virtual ~PrimeSelector() {} const PrimeSelector *GetSelectorPointer() const {return this;} virtual bool IsAcceptable(const Integer &candidate) const =0; }; /// \brief Finds a random prime of special form /// \param p an Integer reference to receive the prime /// \param max the maximum value /// \param equiv the equivalence class based on the parameter mod /// \param mod the modulus used to reduce the equivalence class /// \param pSelector pointer to a PrimeSelector function for the application to signal suitability /// \return true if and only if FirstPrime() finds a prime and returns the prime through p. If FirstPrime() /// returns false, then no such prime exists and the value of p is undefined /// \details FirstPrime() uses a fast sieve to find the first probable prime /// in {x | p<=x<=max and x%mod==equiv} CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector); CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max); CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength); // ********** other number theoretic functions ************ /// \brief Calculate the greatest common divisor /// \param a the first term /// \param b the second term /// \return the greatest common divisor if one exists, 0 otherwise. inline Integer GCD(const Integer &a, const Integer &b) {return Integer::Gcd(a,b);} /// \brief Determine relative primality /// \param a the first term /// \param b the second term /// \return true if a and b are relatively prime, false otherwise. inline bool RelativelyPrime(const Integer &a, const Integer &b) {return Integer::Gcd(a,b) == Integer::One();} /// \brief Calculate the least common multiple /// \param a the first term /// \param b the second term /// \return the least common multiple of a and b. inline Integer LCM(const Integer &a, const Integer &b) {return a/Integer::Gcd(a,b)*b;} /// \brief Calculate multiplicative inverse /// \param a the number to test /// \param b the modulus /// \return an Integer (a ^ -1) % n or 0 if none exists. /// \details EuclideanMultiplicativeInverse returns the multiplicative inverse of the Integer /// *a modulo the Integer b. If no Integer exists then Integer 0 is returned. inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b) {return a.InverseMod(b);} /// \brief Chinese Remainder Theorem /// \param xp the first number, mod p /// \param p the first prime modulus /// \param xq the second number, mod q /// \param q the second prime modulus /// \param u inverse of p mod q /// \return the CRT value of the parameters /// \details CRT uses the Chinese Remainder Theorem to calculate x given /// x mod p and x mod q, and u the inverse of p mod q. CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u); /// \brief Calculate the Jacobi symbol /// \param a the first term /// \param b the second term /// \return the Jacobi symbol. /// \details Jacobi symbols are calculated using the following rules: /// -# if b is prime, then Jacobi(a, b), then return 0 /// -# if a%b==0 AND a is quadratic residue mod b, then return 1 /// -# return -1 otherwise /// \details Refer to a number theory book for what Jacobi symbol means when b is not prime. CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b); /// \brief Calculate the Lucas value /// \return the Lucas value /// \details Lucas() calculates the Lucas function V_e(p, 1) mod n. CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n); /// \brief Calculate the inverse Lucas value /// \return the inverse Lucas value /// \details InverseLucas() calculates x such that m==Lucas(e, x, p*q), /// p q primes, u is inverse of p mod q. CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u); /// \brief Modular multiplication /// \param x the first term /// \param y the second term /// \param m the modulus /// \return an Integer (x * y) % m. inline Integer ModularMultiplication(const Integer &x, const Integer &y, const Integer &m) {return a_times_b_mod_c(x, y, m);} /// \brief Modular exponentiation /// \param x the base /// \param e the exponent /// \param m the modulus /// \return an Integer (a ^ b) % m. inline Integer ModularExponentiation(const Integer &x, const Integer &e, const Integer &m) {return a_exp_b_mod_c(x, e, m);} /// \brief Extract a modular square root /// \param a the number to extract square root /// \param p the prime modulus /// \return the modular square root if it exists /// \details ModularSquareRoot returns x such that x*x%p == a, p prime CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p); /// \brief Extract a modular root /// \return a modular root if it exists /// \details ModularRoot returns x such that a==ModularExponentiation(x, e, p*q), /// p q primes, and e relatively prime to (p-1)*(q-1), /// dp=d%(p-1), dq=d%(q-1), (d is inverse of e mod (p-1)*(q-1)) /// and u=inverse of p mod q. CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u); /// \brief Solve a Modular Quadratic Equation /// \param r1 the first residue /// \param r2 the second residue /// \param a the first coefficient /// \param b the second coefficient /// \param c the third constant /// \param p the prime modulus /// \return true if solutions exist /// \details SolveModularQuadraticEquation() finds r1 and r2 such that ax^2 + /// bx + c == 0 (mod p) for x in {r1, r2}, p prime. CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p); /// \brief Estimate work factor /// \param bitlength the size of the number, in bits /// \return the estimated work factor, in operations /// \details DiscreteLogWorkFactor returns log base 2 of estimated number of operations to /// calculate discrete log or factor a number. CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength); /// \brief Estimate work factor /// \param bitlength the size of the number, in bits /// \return the estimated work factor, in operations /// \details FactoringWorkFactor returns log base 2 of estimated number of operations to /// calculate discrete log or factor a number. CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength); // ******************************************************** /// \brief Generator of prime numbers of special forms class CRYPTOPP_DLL PrimeAndGenerator { public: /// \brief Construct a PrimeAndGenerator PrimeAndGenerator() {} /// \brief Construct a PrimeAndGenerator /// \param delta +1 or -1 /// \param rng a RandomNumberGenerator derived class /// \param pbits the number of bits in the prime p /// \details PrimeAndGenerator() generates a random prime p of the form 2*q+delta, where delta is 1 or -1 and q is /// also prime. Internally the constructor calls Generate(delta, rng, pbits, pbits-1). /// \pre pbits > 5 /// \warning This PrimeAndGenerator() is slow because primes of this form are harder to find. PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits) {Generate(delta, rng, pbits, pbits-1);} /// \brief Construct a PrimeAndGenerator /// \param delta +1 or -1 /// \param rng a RandomNumberGenerator derived class /// \param pbits the number of bits in the prime p /// \param qbits the number of bits in the prime q /// \details PrimeAndGenerator() generates a random prime p of the form 2*r*q+delta, where q is also prime. /// Internally the constructor calls Generate(delta, rng, pbits, qbits). /// \pre qbits > 4 && pbits > qbits PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits) {Generate(delta, rng, pbits, qbits);} /// \brief Generate a Prime and Generator /// \param delta +1 or -1 /// \param rng a RandomNumberGenerator derived class /// \param pbits the number of bits in the prime p /// \param qbits the number of bits in the prime q /// \details Generate() generates a random prime p of the form 2*r*q+delta, where q is also prime. void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits); /// \brief Retrieve first prime /// \return Prime() returns the prime p. const Integer& Prime() const {return p;} /// \brief Retrieve second prime /// \return SubPrime() returns the prime q. const Integer& SubPrime() const {return q;} /// \brief Retrieve the generator /// \return Generator() returns the generator g. const Integer& Generator() const {return g;} private: Integer p, q, g; }; NAMESPACE_END #endif