// ecp.cpp - originally written and placed in the public domain by Wei Dai #include "pch.h" #ifndef CRYPTOPP_IMPORTS #include "ecp.h" #include "asn.h" #include "integer.h" #include "nbtheory.h" #include "modarith.h" #include "filters.h" #include "algebra.cpp" ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::ECP; using CryptoPP::Integer; using CryptoPP::ModularArithmetic; #if defined(HAVE_GCC_INIT_PRIORITY) #define INIT_ATTRIBUTE __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 50))) const ECP::Point g_identity INIT_ATTRIBUTE = ECP::Point(); #elif defined(HAVE_MSC_INIT_PRIORITY) #pragma warning(disable: 4075) #pragma init_seg(".CRT$XCU") const ECP::Point g_identity; #pragma warning(default: 4075) #elif defined(HAVE_XLC_INIT_PRIORITY) #pragma priority(290) const ECP::Point g_identity; #endif inline ECP::Point ToMontgomery(const ModularArithmetic &mr, const ECP::Point &P) { return P.identity ? P : ECP::Point(mr.ConvertIn(P.x), mr.ConvertIn(P.y)); } inline ECP::Point FromMontgomery(const ModularArithmetic &mr, const ECP::Point &P) { return P.identity ? P : ECP::Point(mr.ConvertOut(P.x), mr.ConvertOut(P.y)); } inline Integer IdentityToInteger(bool val) { return val ? Integer::One() : Integer::Zero(); } struct ProjectivePoint { ProjectivePoint() {} ProjectivePoint(const Integer &x, const Integer &y, const Integer &z) : x(x), y(y), z(z) {} Integer x, y, z; }; ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) ECP::ECP(const ECP &ecp, bool convertToMontgomeryRepresentation) { if (convertToMontgomeryRepresentation && !ecp.GetField().IsMontgomeryRepresentation()) { m_fieldPtr.reset(new MontgomeryRepresentation(ecp.GetField().GetModulus())); m_a = GetField().ConvertIn(ecp.m_a); m_b = GetField().ConvertIn(ecp.m_b); } else operator=(ecp); } ECP::ECP(BufferedTransformation &bt) : m_fieldPtr(new Field(bt)) { BERSequenceDecoder seq(bt); GetField().BERDecodeElement(seq, m_a); GetField().BERDecodeElement(seq, m_b); // skip optional seed if (!seq.EndReached()) { SecByteBlock seed; unsigned int unused; BERDecodeBitString(seq, seed, unused); } seq.MessageEnd(); } void ECP::DEREncode(BufferedTransformation &bt) const { GetField().DEREncode(bt); DERSequenceEncoder seq(bt); GetField().DEREncodeElement(seq, m_a); GetField().DEREncodeElement(seq, m_b); seq.MessageEnd(); } bool ECP::DecodePoint(ECP::Point &P, const byte *encodedPoint, size_t encodedPointLen) const { StringStore store(encodedPoint, encodedPointLen); return DecodePoint(P, store, encodedPointLen); } bool ECP::DecodePoint(ECP::Point &P, BufferedTransformation &bt, size_t encodedPointLen) const { byte type; if (encodedPointLen < 1 || !bt.Get(type)) return false; switch (type) { case 0: P.identity = true; return true; case 2: case 3: { if (encodedPointLen != EncodedPointSize(true)) return false; Integer p = FieldSize(); P.identity = false; P.x.Decode(bt, GetField().MaxElementByteLength()); P.y = ((P.x*P.x+m_a)*P.x+m_b) % p; if (Jacobi(P.y, p) !=1) return false; P.y = ModularSquareRoot(P.y, p); if ((type & 1) != P.y.GetBit(0)) P.y = p-P.y; return true; } case 4: { if (encodedPointLen != EncodedPointSize(false)) return false; unsigned int len = GetField().MaxElementByteLength(); P.identity = false; P.x.Decode(bt, len); P.y.Decode(bt, len); return true; } default: return false; } } void ECP::EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const { if (P.identity) NullStore().TransferTo(bt, EncodedPointSize(compressed)); else if (compressed) { bt.Put((byte)(2U + P.y.GetBit(0))); P.x.Encode(bt, GetField().MaxElementByteLength()); } else { unsigned int len = GetField().MaxElementByteLength(); bt.Put(4U); // uncompressed P.x.Encode(bt, len); P.y.Encode(bt, len); } } void ECP::EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const { ArraySink sink(encodedPoint, EncodedPointSize(compressed)); EncodePoint(sink, P, compressed); CRYPTOPP_ASSERT(sink.TotalPutLength() == EncodedPointSize(compressed)); } ECP::Point ECP::BERDecodePoint(BufferedTransformation &bt) const { SecByteBlock str; BERDecodeOctetString(bt, str); Point P; if (!DecodePoint(P, str, str.size())) BERDecodeError(); return P; } void ECP::DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const { SecByteBlock str(EncodedPointSize(compressed)); EncodePoint(str, P, compressed); DEREncodeOctetString(bt, str); } bool ECP::ValidateParameters(RandomNumberGenerator &rng, unsigned int level) const { Integer p = FieldSize(); bool pass = p.IsOdd(); pass = pass && !m_a.IsNegative() && m_a
= 1) pass = pass && ((4*m_a*m_a*m_a+27*m_b*m_b)%p).IsPositive(); if (level >= 2) pass = pass && VerifyPrime(rng, p); return pass; } bool ECP::VerifyPoint(const Point &P) const { const FieldElement &x = P.x, &y = P.y; Integer p = FieldSize(); return P.identity || (!x.IsNegative() && x
().Ref();
#endif
}
const ECP::Point& ECP::Inverse(const Point &P) const
{
if (P.identity)
return P;
else
{
m_R.identity = false;
m_R.x = P.x;
m_R.y = GetField().Inverse(P.y);
return m_R;
}
}
const ECP::Point& ECP::Add(const Point &P, const Point &Q) const
{
if (P.identity) return Q;
if (Q.identity) return P;
if (GetField().Equal(P.x, Q.x))
return GetField().Equal(P.y, Q.y) ? Double(P) : Identity();
FieldElement t = GetField().Subtract(Q.y, P.y);
t = GetField().Divide(t, GetField().Subtract(Q.x, P.x));
FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), Q.x);
m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
m_R.x.swap(x);
m_R.identity = false;
return m_R;
}
const ECP::Point& ECP::Double(const Point &P) const
{
if (P.identity || P.y==GetField().Identity()) return Identity();
FieldElement t = GetField().Square(P.x);
t = GetField().Add(GetField().Add(GetField().Double(t), t), m_a);
t = GetField().Divide(t, GetField().Double(P.y));
FieldElement x = GetField().Subtract(GetField().Subtract(GetField().Square(t), P.x), P.x);
m_R.y = GetField().Subtract(GetField().Multiply(t, GetField().Subtract(P.x, x)), P.y);
m_R.x.swap(x);
m_R.identity = false;
return m_R;
}
template