// cpu.h - originally written and placed in the public domain by Wei Dai // updated for ARM by Jeffrey Walton //! \file cpu.h //! \brief Functions for CPU features and intrinsics //! \details The functions are used in X86/X32/X64 and ARM code paths #ifndef CRYPTOPP_CPU_H #define CRYPTOPP_CPU_H #include "config.h" // Issue 340 #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wconversion" # pragma GCC diagnostic ignored "-Wsign-conversion" #endif // ARM32 and ARM64 Headers #if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARM64) # if defined(__GNUC__) # include # endif # if defined(__ARM_NEON) || defined(_MSC_VER) # include # endif # if defined(__GNUC__) && !defined(__apple_build_version__) # if defined(__ARM_ACLE) || defined(__ARM_FEATURE_CRC32) || defined(__ARM_FEATURE_CRYPTO) # include # endif # endif #endif // ARM32 and ARM64 Headers // X86/X64/X32 Headers #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64 // GCC X86 super-include #if (CRYPTOPP_GCC_VERSION >= 40800) # include #endif #if (CRYPTOPP_MSC_VERSION >= 1400) # include #endif // Baseline include #if CRYPTOPP_BOOL_SSE2_INTRINSICS_AVAILABLE # include // __m64, __m128i, _mm_set_epi64x #endif #if CRYPTOPP_BOOL_SSSE3_INTRINSICS_AVAILABLE # include // _mm_shuffle_pi8, _mm_shuffle_epi8 #endif // tmmintrin.h #if CRYPTOPP_BOOL_SSE4_INTRINSICS_AVAILABLE # include // _mm_blend_epi16 # include // _mm_crc32_u{8|16|32} #endif // smmintrin.h #if CRYPTOPP_BOOL_AESNI_INTRINSICS_AVAILABLE # include // aesenc, aesdec, etc #endif // wmmintrin.h #if CRYPTOPP_BOOL_SSE_SHA_INTRINSICS_AVAILABLE # include // RDRAND, RDSEED, AVX, SHA #endif // immintrin.h #endif // X86/X64/X32 Headers // Applies to both X86/X32/X64 and ARM32/ARM64. And we've got MIPS devices on the way. #if defined(_MSC_VER) || defined(__BORLANDC__) # define CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY #else # define CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY #endif // Applies to both X86/X32/X64 and ARM32/ARM64 #if defined(CRYPTOPP_LLVM_CLANG_VERSION) || defined(CRYPTOPP_APPLE_CLANG_VERSION) || defined(CRYPTOPP_CLANG_INTEGRATED_ASSEMBLER) #define NEW_LINE "\n" #define INTEL_PREFIX ".intel_syntax;" #define INTEL_NOPREFIX ".intel_syntax;" #define ATT_PREFIX ".att_syntax;" #define ATT_NOPREFIX ".att_syntax;" #elif defined(__GNUC__) #define NEW_LINE #define INTEL_PREFIX ".intel_syntax prefix;" #define INTEL_NOPREFIX ".intel_syntax noprefix;" #define ATT_PREFIX ".att_syntax prefix;" #define ATT_NOPREFIX ".att_syntax noprefix;" #else #define NEW_LINE #define INTEL_PREFIX #define INTEL_NOPREFIX #define ATT_PREFIX #define ATT_NOPREFIX #endif #ifdef CRYPTOPP_GENERATE_X64_MASM #define CRYPTOPP_X86_ASM_AVAILABLE #define CRYPTOPP_BOOL_X64 1 #define CRYPTOPP_BOOL_SSE2_ASM_AVAILABLE 1 #define NAMESPACE_END #else NAMESPACE_BEGIN(CryptoPP) #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64 || CRYPTOPP_DOXYGEN_PROCESSING #define CRYPTOPP_CPUID_AVAILABLE // Hide from Doxygen #ifndef CRYPTOPP_DOXYGEN_PROCESSING // These should not be used directly extern CRYPTOPP_DLL bool g_x86DetectionDone; extern CRYPTOPP_DLL bool g_hasMMX; extern CRYPTOPP_DLL bool g_hasISSE; extern CRYPTOPP_DLL bool g_hasSSE2; extern CRYPTOPP_DLL bool g_hasSSSE3; extern CRYPTOPP_DLL bool g_hasSSE4; extern CRYPTOPP_DLL bool g_hasAESNI; extern CRYPTOPP_DLL bool g_hasCLMUL; extern CRYPTOPP_DLL bool g_hasSHA; extern CRYPTOPP_DLL bool g_isP4; extern CRYPTOPP_DLL bool g_hasRDRAND; extern CRYPTOPP_DLL bool g_hasRDSEED; extern CRYPTOPP_DLL bool g_hasPadlockRNG; extern CRYPTOPP_DLL bool g_hasPadlockACE; extern CRYPTOPP_DLL bool g_hasPadlockACE2; extern CRYPTOPP_DLL bool g_hasPadlockPHE; extern CRYPTOPP_DLL bool g_hasPadlockPMM; extern CRYPTOPP_DLL word32 g_cacheLineSize; CRYPTOPP_DLL void CRYPTOPP_API DetectX86Features(); CRYPTOPP_DLL bool CRYPTOPP_API CpuId(word32 input, word32 output[4]); #endif // CRYPTOPP_DOXYGEN_PROCESSING //! \brief Determines MMX availability //! \returns true if MMX is determined to be available, false otherwise //! \details MMX, SSE and SSE2 are core processor features for x86_64, and //! the function always returns true for the platform. inline bool HasMMX() { #if CRYPTOPP_BOOL_X64 return true; #else if (!g_x86DetectionDone) DetectX86Features(); return g_hasMMX; #endif } //! \brief Determines SSE availability //! \returns true if SSE is determined to be available, false otherwise //! \details MMX, SSE and SSE2 are core processor features for x86_64, and //! the function always returns true for the platform. inline bool HasISSE() { #if CRYPTOPP_BOOL_X64 return true; #else if (!g_x86DetectionDone) DetectX86Features(); return g_hasISSE; #endif } //! \brief Determines SSE2 availability //! \returns true if SSE2 is determined to be available, false otherwise //! \details MMX, SSE and SSE2 are core processor features for x86_64, and //! the function always returns true for the platform. inline bool HasSSE2() { #if CRYPTOPP_BOOL_X64 return true; #else if (!g_x86DetectionDone) DetectX86Features(); return g_hasSSE2; #endif } //! \brief Determines SSSE3 availability //! \returns true if SSSE3 is determined to be available, false otherwise //! \details HasSSSE3() is a runtime check performed using CPUID //! \note Some Clang compilers incorrectly omit SSSE3 even though its native to the processor. inline bool HasSSSE3() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasSSSE3; } //! \brief Determines SSE4 availability //! \returns true if SSE4.1 and SSE4.2 are determined to be available, false otherwise //! \details HasSSE4() is a runtime check performed using CPUID which requires both SSE4.1 and SSE4.2 inline bool HasSSE4() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasSSE4; } //! \brief Determines AES-NI availability //! \returns true if AES-NI is determined to be available, false otherwise //! \details HasAESNI() is a runtime check performed using CPUID inline bool HasAESNI() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasAESNI; } //! \brief Determines Carryless Multiply availability //! \returns true if pclmulqdq is determined to be available, false otherwise //! \details HasCLMUL() is a runtime check performed using CPUID inline bool HasCLMUL() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasCLMUL; } //! \brief Determines SHA availability //! \returns true if SHA is determined to be available, false otherwise //! \details HasSHA() is a runtime check performed using CPUID inline bool HasSHA() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasSHA; } //! \brief Determines if the CPU is an Intel P4 //! \returns true if the CPU is a P4, false otherwise //! \details IsP4() is a runtime check performed using CPUID inline bool IsP4() { if (!g_x86DetectionDone) DetectX86Features(); return g_isP4; } //! \brief Determines RDRAND availability //! \returns true if RDRAND is determined to be available, false otherwise //! \details HasRDRAND() is a runtime check performed using CPUID inline bool HasRDRAND() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasRDRAND; } //! \brief Determines RDSEED availability //! \returns true if RDSEED is determined to be available, false otherwise //! \details HasRDSEED() is a runtime check performed using CPUID inline bool HasRDSEED() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasRDSEED; } //! \brief Determines Padlock RNG availability //! \returns true if VIA Padlock RNG is determined to be available, false otherwise //! \details HasPadlockRNG() is a runtime check performed using CPUID inline bool HasPadlockRNG() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasPadlockRNG; } //! \brief Determines Padlock ACE availability //! \returns true if VIA Padlock ACE is determined to be available, false otherwise //! \details HasPadlockACE() is a runtime check performed using CPUID inline bool HasPadlockACE() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasPadlockACE; } //! \brief Determines Padlock ACE2 availability //! \returns true if VIA Padlock ACE2 is determined to be available, false otherwise //! \details HasPadlockACE2() is a runtime check performed using CPUID inline bool HasPadlockACE2() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasPadlockACE2; } //! \brief Determines Padlock PHE availability //! \returns true if VIA Padlock PHE is determined to be available, false otherwise //! \details HasPadlockPHE() is a runtime check performed using CPUID inline bool HasPadlockPHE() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasPadlockPHE; } //! \brief Determines Padlock PMM availability //! \returns true if VIA Padlock PMM is determined to be available, false otherwise //! \details HasPadlockPMM() is a runtime check performed using CPUID inline bool HasPadlockPMM() { if (!g_x86DetectionDone) DetectX86Features(); return g_hasPadlockPMM; } //! \brief Provides the cache line size //! \returns lower bound on the size of a cache line in bytes, if available //! \details GetCacheLineSize() returns the lower bound on the size of a cache line, if it //! is available. If the value is not available at runtime, then 32 is returned for a 32-bit //! processor and 64 is returned for a 64-bit processor. //! \details x86/x32/x64 uses CPUID to determine the value and its usually accurate. The ARM //! processor equivalent is a privileged instruction, so a compile time value is returned. inline int GetCacheLineSize() { if (!g_x86DetectionDone) DetectX86Features(); return g_cacheLineSize; } #elif (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARM64) extern bool g_ArmDetectionDone; extern bool g_hasNEON, g_hasPMULL, g_hasCRC32, g_hasAES, g_hasSHA1, g_hasSHA2; void CRYPTOPP_API DetectArmFeatures(); //! \brief Determine if an ARM processor has Advanced SIMD available //! \returns true if the hardware is capable of Advanced SIMD at runtime, false otherwise. //! \details Advanced SIMD instructions are available under Aarch64 (ARM-64) and Aarch32 (ARM-32). //! \details Runtime support requires compile time support. When compiling with GCC, you may //! need to compile with -mfpu=neon (32-bit) or -march=armv8-a //! (64-bit). Also see ARM's __ARM_NEON preprocessor macro. inline bool HasNEON() { if (!g_ArmDetectionDone) DetectArmFeatures(); return g_hasNEON; } //! \brief Determine if an ARM processor provides Polynomial Multiplication (long) //! \returns true if the hardware is capable of polynomial multiplications at runtime, false otherwise. //! \details The multiplication instructions are available under Aarch64 (ARM-64) and Aarch32 (ARM-32). //! \details Runtime support requires compile time support. When compiling with GCC, you may //! need to compile with -march=armv8-a+crypto; while Apple requires //! -arch arm64. Also see ARM's __ARM_FEATURE_CRYPTO preprocessor macro. inline bool HasPMULL() { if (!g_ArmDetectionDone) DetectArmFeatures(); return g_hasPMULL; } //! \brief Determine if an ARM processor has CRC32 available //! \returns true if the hardware is capable of CRC32 at runtime, false otherwise. //! \details CRC32 instructions provide access to the processor's CRC32 and CRC32-C instructions. //! They are provided by ARM C Language Extensions 2.0 (ACLE 2.0) and available under Aarch64 //! (ARM-64) and Aarch32 (ARM-32) running on Aarch64 (i.e., an AArch32 execution environment). //! \details Runtime support requires compile time support. When compiling with GCC, you may //! need to compile with -march=armv8-a+crc; while Apple requires //! -arch arm64. Also see ARM's __ARM_FEATURE_CRC32 preprocessor macro. inline bool HasCRC32() { if (!g_ArmDetectionDone) DetectArmFeatures(); return g_hasCRC32; } //! \brief Determine if an ARM processor has AES available //! \returns true if the hardware is capable of AES at runtime, false otherwise. //! \details AES is part of the Crypto extensions from ARM C Language Extensions 2.0 (ACLE 2.0) //! and available under Aarch64 (ARM-64) and Aarch32 (ARM-32) running on Aarch64 (i.e., an //! AArch32 execution environment). //! \details Runtime support requires compile time support. When compiling with GCC, you may //! need to compile with -march=armv8-a+crypto; while Apple requires //! -arch arm64. Also see ARM's __ARM_FEATURE_CRYPTO preprocessor macro. inline bool HasAES() { if (!g_ArmDetectionDone) DetectArmFeatures(); return g_hasAES; } //! \brief Determine if an ARM processor has SHA1 available //! \returns true if the hardware is capable of SHA1 at runtime, false otherwise. //! \details SHA1 is part of the Crypto extensions from ARM C Language Extensions 2.0 (ACLE 2.0) //! and available under Aarch64 (ARM-64) and Aarch32 (ARM-32) running on Aarch64 (i.e., an //! AArch32 execution environment). //! \details Runtime support requires compile time support. When compiling with GCC, you may //! need to compile with -march=armv8-a+crypto; while Apple requires //! -arch arm64. Also see ARM's __ARM_FEATURE_CRYPTO preprocessor macro. inline bool HasSHA1() { if (!g_ArmDetectionDone) DetectArmFeatures(); return g_hasSHA1; } //! \brief Determine if an ARM processor has SHA2 available //! \returns true if the hardware is capable of SHA2 at runtime, false otherwise. //! \details SHA2 is part of the Crypto extensions from ARM C Language Extensions 2.0 (ACLE 2.0) //! and available under Aarch64 (ARM-64) and Aarch32 (ARM-32) running on Aarch64 (i.e., an //! AArch32 execution environment). //! \details Runtime support requires compile time support. When compiling with GCC, you may //! need to compile with -march=armv8-a+crypto; while Apple requires //! -arch arm64. Also see ARM's __ARM_FEATURE_CRYPTO preprocessor macro. inline bool HasSHA2() { if (!g_ArmDetectionDone) DetectArmFeatures(); return g_hasSHA2; } //! \brief Provides the cache line size at runtime //! \returns true if the hardware is capable of CRC32 at runtime, false otherwise. //! \details GetCacheLineSize() provides is an estimate using CRYPTOPP_L1_CACHE_LINE_SIZE. //! The runtime instructions to query the processor are privileged. inline int GetCacheLineSize() { return CRYPTOPP_L1_CACHE_LINE_SIZE; } #else inline int GetCacheLineSize() { return CRYPTOPP_L1_CACHE_LINE_SIZE; } #endif // X86/X32/X64 and ARM #endif #if CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64 #ifdef CRYPTOPP_GENERATE_X64_MASM #define AS1(x) x*newline* #define AS2(x, y) x, y*newline* #define AS3(x, y, z) x, y, z*newline* #define ASS(x, y, a, b, c, d) x, y, a*64+b*16+c*4+d*newline* #define ASL(x) label##x:*newline* #define ASJ(x, y, z) x label##y*newline* #define ASC(x, y) x label##y*newline* #define AS_HEX(y) 0##y##h #elif defined(_MSC_VER) || defined(__BORLANDC__) #define CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY #define AS1(x) __asm {x} #define AS2(x, y) __asm {x, y} #define AS3(x, y, z) __asm {x, y, z} #define ASS(x, y, a, b, c, d) __asm {x, y, (a)*64+(b)*16+(c)*4+(d)} #define ASL(x) __asm {label##x:} #define ASJ(x, y, z) __asm {x label##y} #define ASC(x, y) __asm {x label##y} #define CRYPTOPP_NAKED __declspec(naked) #define AS_HEX(y) 0x##y #else #define CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY // define these in two steps to allow arguments to be expanded #define GNU_AS1(x) #x ";" NEW_LINE #define GNU_AS2(x, y) #x ", " #y ";" NEW_LINE #define GNU_AS3(x, y, z) #x ", " #y ", " #z ";" NEW_LINE #define GNU_ASL(x) "\n" #x ":" NEW_LINE #define GNU_ASJ(x, y, z) #x " " #y #z ";" NEW_LINE #define AS1(x) GNU_AS1(x) #define AS2(x, y) GNU_AS2(x, y) #define AS3(x, y, z) GNU_AS3(x, y, z) #define ASS(x, y, a, b, c, d) #x ", " #y ", " #a "*64+" #b "*16+" #c "*4+" #d ";" #define ASL(x) GNU_ASL(x) #define ASJ(x, y, z) GNU_ASJ(x, y, z) #define ASC(x, y) #x " " #y ";" #define CRYPTOPP_NAKED #define AS_HEX(y) 0x##y #endif #define IF0(y) #define IF1(y) y #ifdef CRYPTOPP_GENERATE_X64_MASM #define ASM_MOD(x, y) ((x) MOD (y)) #define XMMWORD_PTR XMMWORD PTR #else // GNU assembler doesn't seem to have mod operator #define ASM_MOD(x, y) ((x)-((x)/(y))*(y)) // GAS 2.15 doesn't support XMMWORD PTR. it seems necessary only for MASM #define XMMWORD_PTR #endif #if CRYPTOPP_BOOL_X86 #define AS_REG_1 ecx #define AS_REG_2 edx #define AS_REG_3 esi #define AS_REG_4 edi #define AS_REG_5 eax #define AS_REG_6 ebx #define AS_REG_7 ebp #define AS_REG_1d ecx #define AS_REG_2d edx #define AS_REG_3d esi #define AS_REG_4d edi #define AS_REG_5d eax #define AS_REG_6d ebx #define AS_REG_7d ebp #define WORD_SZ 4 #define WORD_REG(x) e##x #define WORD_PTR DWORD PTR #define AS_PUSH_IF86(x) AS1(push e##x) #define AS_POP_IF86(x) AS1(pop e##x) #define AS_JCXZ jecxz #elif CRYPTOPP_BOOL_X32 #define AS_REG_1 ecx #define AS_REG_2 edx #define AS_REG_3 r8d #define AS_REG_4 r9d #define AS_REG_5 eax #define AS_REG_6 r10d #define AS_REG_7 r11d #define AS_REG_1d ecx #define AS_REG_2d edx #define AS_REG_3d r8d #define AS_REG_4d r9d #define AS_REG_5d eax #define AS_REG_6d r10d #define AS_REG_7d r11d #define WORD_SZ 4 #define WORD_REG(x) e##x #define WORD_PTR DWORD PTR #define AS_PUSH_IF86(x) AS1(push r##x) #define AS_POP_IF86(x) AS1(pop r##x) #define AS_JCXZ jecxz #elif CRYPTOPP_BOOL_X64 #ifdef CRYPTOPP_GENERATE_X64_MASM #define AS_REG_1 rcx #define AS_REG_2 rdx #define AS_REG_3 r8 #define AS_REG_4 r9 #define AS_REG_5 rax #define AS_REG_6 r10 #define AS_REG_7 r11 #define AS_REG_1d ecx #define AS_REG_2d edx #define AS_REG_3d r8d #define AS_REG_4d r9d #define AS_REG_5d eax #define AS_REG_6d r10d #define AS_REG_7d r11d #else #define AS_REG_1 rdi #define AS_REG_2 rsi #define AS_REG_3 rdx #define AS_REG_4 rcx #define AS_REG_5 r8 #define AS_REG_6 r9 #define AS_REG_7 r10 #define AS_REG_1d edi #define AS_REG_2d esi #define AS_REG_3d edx #define AS_REG_4d ecx #define AS_REG_5d r8d #define AS_REG_6d r9d #define AS_REG_7d r10d #endif #define WORD_SZ 8 #define WORD_REG(x) r##x #define WORD_PTR QWORD PTR #define AS_PUSH_IF86(x) #define AS_POP_IF86(x) #define AS_JCXZ jrcxz #endif // helper macro for stream cipher output #define AS_XMM_OUTPUT4(labelPrefix, inputPtr, outputPtr, x0, x1, x2, x3, t, p0, p1, p2, p3, increment)\ AS2( test inputPtr, inputPtr)\ ASC( jz, labelPrefix##3)\ AS2( test inputPtr, 15)\ ASC( jnz, labelPrefix##7)\ AS2( pxor xmm##x0, [inputPtr+p0*16])\ AS2( pxor xmm##x1, [inputPtr+p1*16])\ AS2( pxor xmm##x2, [inputPtr+p2*16])\ AS2( pxor xmm##x3, [inputPtr+p3*16])\ AS2( add inputPtr, increment*16)\ ASC( jmp, labelPrefix##3)\ ASL(labelPrefix##7)\ AS2( movdqu xmm##t, [inputPtr+p0*16])\ AS2( pxor xmm##x0, xmm##t)\ AS2( movdqu xmm##t, [inputPtr+p1*16])\ AS2( pxor xmm##x1, xmm##t)\ AS2( movdqu xmm##t, [inputPtr+p2*16])\ AS2( pxor xmm##x2, xmm##t)\ AS2( movdqu xmm##t, [inputPtr+p3*16])\ AS2( pxor xmm##x3, xmm##t)\ AS2( add inputPtr, increment*16)\ ASL(labelPrefix##3)\ AS2( test outputPtr, 15)\ ASC( jnz, labelPrefix##8)\ AS2( movdqa [outputPtr+p0*16], xmm##x0)\ AS2( movdqa [outputPtr+p1*16], xmm##x1)\ AS2( movdqa [outputPtr+p2*16], xmm##x2)\ AS2( movdqa [outputPtr+p3*16], xmm##x3)\ ASC( jmp, labelPrefix##9)\ ASL(labelPrefix##8)\ AS2( movdqu [outputPtr+p0*16], xmm##x0)\ AS2( movdqu [outputPtr+p1*16], xmm##x1)\ AS2( movdqu [outputPtr+p2*16], xmm##x2)\ AS2( movdqu [outputPtr+p3*16], xmm##x3)\ ASL(labelPrefix##9)\ AS2( add outputPtr, increment*16) #endif // X86/X32/X64 NAMESPACE_END // Issue 340 #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE # pragma GCC diagnostic pop #endif #endif // CRYPTOPP_CPU_H