// donna_64.cpp - written and placed in public domain by Jeffrey Walton // Crypto++ specific implementation wrapped around Andrew // Moon's public domain curve25519-donna and ed25519-donna, // https://github.com/floodyberry/curve25519-donna and // https://github.com/floodyberry/ed25519-donna. // The curve25519 and ed25519 source files multiplex different repos and // architectures using namespaces. The repos are Andrew Moon's // curve25519-donna and ed25519-donna. The architectures are 32-bit, 64-bit // and SSE. For example, 32-bit x25519 uses symbols from Donna::X25519 and // Donna::Arch32. // A fair amount of duplication happens below, but we could not directly // use curve25519 for both x25519 and ed25519. A close examination reveals // slight differences in the implementation. For example, look at the // two curve25519_sub functions. // If needed, see Moon's commit "Go back to ignoring 256th bit [sic]", // https://github.com/floodyberry/curve25519-donna/commit/57a683d18721a658 #include "pch.h" #include "config.h" #include "donna.h" #include "secblock.h" #include "sha.h" #include "misc.h" #include "cpu.h" #include #include #if CRYPTOPP_GCC_DIAGNOSTIC_AVAILABLE # pragma GCC diagnostic ignored "-Wunused-function" #endif #if CRYPTOPP_MSC_VERSION # pragma warning(disable: 4244) #endif // Squash MS LNK4221 and libtool warnings extern const char DONNA64_FNAME[] = __FILE__; ANONYMOUS_NAMESPACE_BEGIN // Can't use GetAlignmentOf() because of C++11 and constexpr // Can use 'const unsigned int' because of MSVC 2013 #if (CRYPTOPP_BOOL_X86 || CRYPTOPP_BOOL_X32 || CRYPTOPP_BOOL_X64) # define ALIGN_SPEC 16 #else # define ALIGN_SPEC 8 #endif ANONYMOUS_NAMESPACE_END #if defined(CRYPTOPP_CURVE25519_64BIT) #include "donna_64.h" ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word64; using CryptoPP::GetWord; using CryptoPP::PutWord; using CryptoPP::LITTLE_ENDIAN_ORDER; inline word64 U8TO64_LE(const byte* p) { return GetWord(false, LITTLE_ENDIAN_ORDER, p); } inline void U64TO8_LE(byte* p, word64 w) { PutWord(false, LITTLE_ENDIAN_ORDER, p, w); } ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Donna) NAMESPACE_BEGIN(X25519) ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::sword32; using CryptoPP::word64; using CryptoPP::sword64; using CryptoPP::GetBlock; using CryptoPP::LittleEndian; // Bring in all the symbols from the 64-bit header using namespace CryptoPP::Donna::Arch64; /* out = in */ inline void curve25519_copy(bignum25519 out, const bignum25519 in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; out[4] = in[4]; } /* out = a + b */ inline void curve25519_add(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; } /* out = a - b */ inline void curve25519_sub(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + two54m152 - b[0]; out[1] = a[1] + two54m8 - b[1]; out[2] = a[2] + two54m8 - b[2]; out[3] = a[3] + two54m8 - b[3]; out[4] = a[4] + two54m8 - b[4]; } /* out = (in * scalar) */ inline void curve25519_scalar_product(bignum25519 out, const bignum25519 in, const word64 scalar) { word128 a; word64 c; #if defined(CRYPTOPP_WORD128_AVAILABLE) a = ((word128) in[0]) * scalar; out[0] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); a = ((word128) in[1]) * scalar + c; out[1] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); a = ((word128) in[2]) * scalar + c; out[2] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); a = ((word128) in[3]) * scalar + c; out[3] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); a = ((word128) in[4]) * scalar + c; out[4] = (word64)a & reduce_mask_51; c = (word64)(a >> 51); out[0] += c * 19; #else mul64x64_128(a, in[0], scalar) out[0] = lo128(a) & reduce_mask_51; shr128(c, a, 51); mul64x64_128(a, in[1], scalar) add128_64(a, c) out[1] = lo128(a) & reduce_mask_51; shr128(c, a, 51); mul64x64_128(a, in[2], scalar) add128_64(a, c) out[2] = lo128(a) & reduce_mask_51; shr128(c, a, 51); mul64x64_128(a, in[3], scalar) add128_64(a, c) out[3] = lo128(a) & reduce_mask_51; shr128(c, a, 51); mul64x64_128(a, in[4], scalar) add128_64(a, c) out[4] = lo128(a) & reduce_mask_51; shr128(c, a, 51); out[0] += c * 19; #endif } /* out = a * b */ inline void curve25519_mul(bignum25519 out, const bignum25519 a, const bignum25519 b) { #if !defined(CRYPTOPP_WORD128_AVAILABLE) word128 mul; #endif word128 t[5]; word64 r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c; r0 = b[0]; r1 = b[1]; r2 = b[2]; r3 = b[3]; r4 = b[4]; s0 = a[0]; s1 = a[1]; s2 = a[2]; s3 = a[3]; s4 = a[4]; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] = ((word128) r0) * s0; t[1] = ((word128) r0) * s1 + ((word128) r1) * s0; t[2] = ((word128) r0) * s2 + ((word128) r2) * s0 + ((word128) r1) * s1; t[3] = ((word128) r0) * s3 + ((word128) r3) * s0 + ((word128) r1) * s2 + ((word128) r2) * s1; t[4] = ((word128) r0) * s4 + ((word128) r4) * s0 + ((word128) r3) * s1 + ((word128) r1) * s3 + ((word128) r2) * s2; #else mul64x64_128(t[0], r0, s0) mul64x64_128(t[1], r0, s1) mul64x64_128(mul, r1, s0) add128(t[1], mul) mul64x64_128(t[2], r0, s2) mul64x64_128(mul, r2, s0) add128(t[2], mul) mul64x64_128(mul, r1, s1) add128(t[2], mul) mul64x64_128(t[3], r0, s3) mul64x64_128(mul, r3, s0) add128(t[3], mul) mul64x64_128(mul, r1, s2) add128(t[3], mul) mul64x64_128(mul, r2, s1) add128(t[3], mul) mul64x64_128(t[4], r0, s4) mul64x64_128(mul, r4, s0) add128(t[4], mul) mul64x64_128(mul, r3, s1) add128(t[4], mul) mul64x64_128(mul, r1, s3) add128(t[4], mul) mul64x64_128(mul, r2, s2) add128(t[4], mul) #endif r1 *= 19; r2 *= 19; r3 *= 19; r4 *= 19; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] += ((word128) r4) * s1 + ((word128) r1) * s4 + ((word128) r2) * s3 + ((word128) r3) * s2; t[1] += ((word128) r4) * s2 + ((word128) r2) * s4 + ((word128) r3) * s3; t[2] += ((word128) r4) * s3 + ((word128) r3) * s4; t[3] += ((word128) r4) * s4; #else mul64x64_128(mul, r4, s1) add128(t[0], mul) mul64x64_128(mul, r1, s4) add128(t[0], mul) mul64x64_128(mul, r2, s3) add128(t[0], mul) mul64x64_128(mul, r3, s2) add128(t[0], mul) mul64x64_128(mul, r4, s2) add128(t[1], mul) mul64x64_128(mul, r2, s4) add128(t[1], mul) mul64x64_128(mul, r3, s3) add128(t[1], mul) mul64x64_128(mul, r4, s3) add128(t[2], mul) mul64x64_128(mul, r3, s4) add128(t[2], mul) mul64x64_128(mul, r4, s4) add128(t[3], mul) #endif r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51); add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51); add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51); add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51); add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51; r1 += c; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; } /* out = in^(2 * count) */ inline void curve25519_square_times(bignum25519 out, const bignum25519 in, word64 count) { #if !defined(CRYPTOPP_WORD128_AVAILABLE) word128 mul; #endif word128 t[5]; word64 r0,r1,r2,r3,r4,c; word64 d0,d1,d2,d4,d419; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; do { d0 = r0 * 2; d1 = r1 * 2; d2 = r2 * 2 * 19; d419 = r4 * 19; d4 = d419 * 2; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 )); t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19)); t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 )); t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 )); t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 )); #else mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul) mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul) mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul) mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul) mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul) #endif r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51); add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51); add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51); add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51); add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51; r1 += c; } while(--count); out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; } inline void curve25519_square(bignum25519 out, const bignum25519 in) { #if !defined(CRYPTOPP_WORD128_AVAILABLE) word128 mul; #endif word128 t[5]; word64 r0,r1,r2,r3,r4,c; word64 d0,d1,d2,d4,d419; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; d0 = r0 * 2; d1 = r1 * 2; d2 = r2 * 2 * 19; d419 = r4 * 19; d4 = d419 * 2; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 )); t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19)); t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 )); t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 )); t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 )); #else mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul) mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul) mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul) mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul) mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul) #endif r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51); add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51); add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51); add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51); add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51; r1 += c; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; } /* Take a little-endian, 32-byte number and expand it into polynomial form */ inline void curve25519_expand(bignum25519 out, const byte *in) { word64 x0,x1,x2,x3; GetBlock block(in); block(x0)(x1)(x2)(x3); out[0] = x0 & reduce_mask_51; x0 = (x0 >> 51) | (x1 << 13); out[1] = x0 & reduce_mask_51; x1 = (x1 >> 38) | (x2 << 26); out[2] = x1 & reduce_mask_51; x2 = (x2 >> 25) | (x3 << 39); out[3] = x2 & reduce_mask_51; x3 = (x3 >> 12); out[4] = x3 & reduce_mask_51; /* ignore the top bit */ } /* Take a fully reduced polynomial form number and contract it into a * little-endian, 32-byte array */ inline void curve25519_contract(byte *out, const bignum25519 input) { word64 t[5]; word64 f, i; t[0] = input[0]; t[1] = input[1]; t[2] = input[2]; t[3] = input[3]; t[4] = input[4]; #define curve25519_contract_carry() \ t[1] += t[0] >> 51; t[0] &= reduce_mask_51; \ t[2] += t[1] >> 51; t[1] &= reduce_mask_51; \ t[3] += t[2] >> 51; t[2] &= reduce_mask_51; \ t[4] += t[3] >> 51; t[3] &= reduce_mask_51; #define curve25519_contract_carry_full() curve25519_contract_carry() \ t[0] += 19 * (t[4] >> 51); t[4] &= reduce_mask_51; #define curve25519_contract_carry_final() curve25519_contract_carry() \ t[4] &= reduce_mask_51; curve25519_contract_carry_full() curve25519_contract_carry_full() /* now t is between 0 and 2^255-1, properly carried. */ /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */ t[0] += 19; curve25519_contract_carry_full() /* now between 19 and 2^255-1 in both cases, and offset by 19. */ t[0] += 0x8000000000000 - 19; t[1] += 0x8000000000000 - 1; t[2] += 0x8000000000000 - 1; t[3] += 0x8000000000000 - 1; t[4] += 0x8000000000000 - 1; /* now between 2^255 and 2^256-20, and offset by 2^255. */ curve25519_contract_carry_final() #define write51full(n,shift) \ f = ((t[n] >> shift) | (t[n+1] << (51 - shift))); \ for (i = 0; i < 8; i++, f >>= 8) *out++ = (byte)f; #define write51(n) write51full(n,13*n) write51(0) write51(1) write51(2) write51(3) #undef curve25519_contract_carry #undef curve25519_contract_carry_full #undef curve25519_contract_carry_final #undef write51full #undef write51 } /* * Swap the contents of [qx] and [qpx] iff @swap is non-zero */ inline void curve25519_swap_conditional(bignum25519 x, bignum25519 qpx, word64 iswap) { const word64 swap = (word64)(-(sword64)iswap); word64 x0,x1,x2,x3,x4; x0 = swap & (x[0] ^ qpx[0]); x[0] ^= x0; qpx[0] ^= x0; x1 = swap & (x[1] ^ qpx[1]); x[1] ^= x1; qpx[1] ^= x1; x2 = swap & (x[2] ^ qpx[2]); x[2] ^= x2; qpx[2] ^= x2; x3 = swap & (x[3] ^ qpx[3]); x[3] ^= x3; qpx[3] ^= x3; x4 = swap & (x[4] ^ qpx[4]); x[4] ^= x4; qpx[4] ^= x4; } /* * In: b = 2^5 - 2^0 * Out: b = 2^250 - 2^0 */ void curve25519_pow_two5mtwo0_two250mtwo0(bignum25519 b) { ALIGN(ALIGN_SPEC) bignum25519 t0,c; /* 2^5 - 2^0 */ /* b */ /* 2^10 - 2^5 */ curve25519_square_times(t0, b, 5); /* 2^10 - 2^0 */ curve25519_mul(b, t0, b); /* 2^20 - 2^10 */ curve25519_square_times(t0, b, 10); /* 2^20 - 2^0 */ curve25519_mul(c, t0, b); /* 2^40 - 2^20 */ curve25519_square_times(t0, c, 20); /* 2^40 - 2^0 */ curve25519_mul(t0, t0, c); /* 2^50 - 2^10 */ curve25519_square_times(t0, t0, 10); /* 2^50 - 2^0 */ curve25519_mul(b, t0, b); /* 2^100 - 2^50 */ curve25519_square_times(t0, b, 50); /* 2^100 - 2^0 */ curve25519_mul(c, t0, b); /* 2^200 - 2^100 */ curve25519_square_times(t0, c, 100); /* 2^200 - 2^0 */ curve25519_mul(t0, t0, c); /* 2^250 - 2^50 */ curve25519_square_times(t0, t0, 50); /* 2^250 - 2^0 */ curve25519_mul(b, t0, b); } /* * z^(p - 2) = z(2^255 - 21) */ void curve25519_recip(bignum25519 out, const bignum25519 z) { ALIGN(ALIGN_SPEC) bignum25519 a, t0, b; /* 2 */ curve25519_square(a, z); /* a = 2 */ /* 8 */ curve25519_square_times(t0, a, 2); /* 9 */ curve25519_mul(b, t0, z); /* b = 9 */ /* 11 */ curve25519_mul(a, b, a); /* a = 11 */ /* 22 */ curve25519_square(t0, a); /* 2^5 - 2^0 = 31 */ curve25519_mul(b, t0, b); /* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b); /* 2^255 - 2^5 */ curve25519_square_times(b, b, 5); /* 2^255 - 21 */ curve25519_mul(out, b, a); } ANONYMOUS_NAMESPACE_END NAMESPACE_END // X25519 NAMESPACE_END // Donna NAMESPACE_END // CryptoPP //******************************* ed25519 *******************************// NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Donna) NAMESPACE_BEGIN(Ed25519) ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::sword32; using CryptoPP::word64; using CryptoPP::sword64; using CryptoPP::GetBlock; using CryptoPP::LittleEndian; using CryptoPP::SHA512; // Bring in all the symbols from the 64-bit header using namespace CryptoPP::Donna::Arch64; /* out = in */ inline void curve25519_copy(bignum25519 out, const bignum25519 in) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; out[3] = in[3]; out[4] = in[4]; } /* out = a + b */ inline void curve25519_add(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; } /* out = a + b, where a and/or b are the result of a basic op (add,sub) */ inline void curve25519_add_after_basic(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + b[0]; out[1] = a[1] + b[1]; out[2] = a[2] + b[2]; out[3] = a[3] + b[3]; out[4] = a[4] + b[4]; } inline void curve25519_add_reduce(bignum25519 out, const bignum25519 a, const bignum25519 b) { word64 c; out[0] = a[0] + b[0] ; c = (out[0] >> 51); out[0] &= reduce_mask_51; out[1] = a[1] + b[1] + c; c = (out[1] >> 51); out[1] &= reduce_mask_51; out[2] = a[2] + b[2] + c; c = (out[2] >> 51); out[2] &= reduce_mask_51; out[3] = a[3] + b[3] + c; c = (out[3] >> 51); out[3] &= reduce_mask_51; out[4] = a[4] + b[4] + c; c = (out[4] >> 51); out[4] &= reduce_mask_51; out[0] += c * 19; } /* out = a - b */ inline void curve25519_sub(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + twoP0 - b[0]; out[1] = a[1] + twoP1234 - b[1]; out[2] = a[2] + twoP1234 - b[2]; out[3] = a[3] + twoP1234 - b[3]; out[4] = a[4] + twoP1234 - b[4]; } /* out = a - b, where a and/or b are the result of a basic op (add,sub) */ inline void curve25519_sub_after_basic(bignum25519 out, const bignum25519 a, const bignum25519 b) { out[0] = a[0] + fourP0 - b[0]; out[1] = a[1] + fourP1234 - b[1]; out[2] = a[2] + fourP1234 - b[2]; out[3] = a[3] + fourP1234 - b[3]; out[4] = a[4] + fourP1234 - b[4]; } inline void curve25519_sub_reduce(bignum25519 out, const bignum25519 a, const bignum25519 b) { word64 c; out[0] = a[0] + fourP0 - b[0] ; c = (out[0] >> 51); out[0] &= reduce_mask_51; out[1] = a[1] + fourP1234 - b[1] + c; c = (out[1] >> 51); out[1] &= reduce_mask_51; out[2] = a[2] + fourP1234 - b[2] + c; c = (out[2] >> 51); out[2] &= reduce_mask_51; out[3] = a[3] + fourP1234 - b[3] + c; c = (out[3] >> 51); out[3] &= reduce_mask_51; out[4] = a[4] + fourP1234 - b[4] + c; c = (out[4] >> 51); out[4] &= reduce_mask_51; out[0] += c * 19; } /* out = -a */ inline void curve25519_neg(bignum25519 out, const bignum25519 a) { word64 c; out[0] = twoP0 - a[0] ; c = (out[0] >> 51); out[0] &= reduce_mask_51; out[1] = twoP1234 - a[1] + c; c = (out[1] >> 51); out[1] &= reduce_mask_51; out[2] = twoP1234 - a[2] + c; c = (out[2] >> 51); out[2] &= reduce_mask_51; out[3] = twoP1234 - a[3] + c; c = (out[3] >> 51); out[3] &= reduce_mask_51; out[4] = twoP1234 - a[4] + c; c = (out[4] >> 51); out[4] &= reduce_mask_51; out[0] += c * 19; } /* out = a * b */ inline void curve25519_mul(bignum25519 out, const bignum25519 in2, const bignum25519 in) { #if !defined(CRYPTOPP_WORD128_AVAILABLE) word128 mul; #endif word128 t[5]; word64 r0,r1,r2,r3,r4,s0,s1,s2,s3,s4,c; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; s0 = in2[0]; s1 = in2[1]; s2 = in2[2]; s3 = in2[3]; s4 = in2[4]; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] = ((word128) r0) * s0; t[1] = ((word128) r0) * s1 + ((word128) r1) * s0; t[2] = ((word128) r0) * s2 + ((word128) r2) * s0 + ((word128) r1) * s1; t[3] = ((word128) r0) * s3 + ((word128) r3) * s0 + ((word128) r1) * s2 + ((word128) r2) * s1; t[4] = ((word128) r0) * s4 + ((word128) r4) * s0 + ((word128) r3) * s1 + ((word128) r1) * s3 + ((word128) r2) * s2; #else mul64x64_128(t[0], r0, s0) mul64x64_128(t[1], r0, s1) mul64x64_128(mul, r1, s0) add128(t[1], mul) mul64x64_128(t[2], r0, s2) mul64x64_128(mul, r2, s0) add128(t[2], mul) mul64x64_128(mul, r1, s1) add128(t[2], mul) mul64x64_128(t[3], r0, s3) mul64x64_128(mul, r3, s0) add128(t[3], mul) mul64x64_128(mul, r1, s2) add128(t[3], mul) mul64x64_128(mul, r2, s1) add128(t[3], mul) mul64x64_128(t[4], r0, s4) mul64x64_128(mul, r4, s0) add128(t[4], mul) mul64x64_128(mul, r3, s1) add128(t[4], mul) mul64x64_128(mul, r1, s3) add128(t[4], mul) mul64x64_128(mul, r2, s2) add128(t[4], mul) #endif r1 *= 19; r2 *= 19; r3 *= 19; r4 *= 19; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] += ((word128) r4) * s1 + ((word128) r1) * s4 + ((word128) r2) * s3 + ((word128) r3) * s2; t[1] += ((word128) r4) * s2 + ((word128) r2) * s4 + ((word128) r3) * s3; t[2] += ((word128) r4) * s3 + ((word128) r3) * s4; t[3] += ((word128) r4) * s4; #else mul64x64_128(mul, r4, s1) add128(t[0], mul) mul64x64_128(mul, r1, s4) add128(t[0], mul) mul64x64_128(mul, r2, s3) add128(t[0], mul) mul64x64_128(mul, r3, s2) add128(t[0], mul) mul64x64_128(mul, r4, s2) add128(t[1], mul) mul64x64_128(mul, r2, s4) add128(t[1], mul) mul64x64_128(mul, r3, s3) add128(t[1], mul) mul64x64_128(mul, r4, s3) add128(t[2], mul) mul64x64_128(mul, r3, s4) add128(t[2], mul) mul64x64_128(mul, r4, s4) add128(t[3], mul) #endif r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51); add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51); add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51); add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51); add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51; r1 += c; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; } void curve25519_mul_noinline(bignum25519 out, const bignum25519 in2, const bignum25519 in) { curve25519_mul(out, in2, in); } /* out = in^(2 * count) */ void curve25519_square_times(bignum25519 out, const bignum25519 in, word64 count) { #if !defined(CRYPTOPP_WORD128_AVAILABLE) word128 mul; #endif word128 t[5]; word64 r0,r1,r2,r3,r4,c; word64 d0,d1,d2,d4,d419; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; do { d0 = r0 * 2; d1 = r1 * 2; d2 = r2 * 2 * 19; d419 = r4 * 19; d4 = d419 * 2; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 )); t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19)); t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 )); t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 )); t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 )); #else mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul) mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul) mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul) mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul) mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul) #endif r0 = lo128(t[0]) & reduce_mask_51; r1 = lo128(t[1]) & reduce_mask_51; shl128(c, t[0], 13); r1 += c; r2 = lo128(t[2]) & reduce_mask_51; shl128(c, t[1], 13); r2 += c; r3 = lo128(t[3]) & reduce_mask_51; shl128(c, t[2], 13); r3 += c; r4 = lo128(t[4]) & reduce_mask_51; shl128(c, t[3], 13); r4 += c; shl128(c, t[4], 13); r0 += c * 19; c = r0 >> 51; r0 &= reduce_mask_51; r1 += c ; c = r1 >> 51; r1 &= reduce_mask_51; r2 += c ; c = r2 >> 51; r2 &= reduce_mask_51; r3 += c ; c = r3 >> 51; r3 &= reduce_mask_51; r4 += c ; c = r4 >> 51; r4 &= reduce_mask_51; r0 += c * 19; } while(--count); out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; } inline void curve25519_square(bignum25519 out, const bignum25519 in) { #if !defined(CRYPTOPP_WORD128_AVAILABLE) word128 mul; #endif word128 t[5]; word64 r0,r1,r2,r3,r4,c; word64 d0,d1,d2,d4,d419; r0 = in[0]; r1 = in[1]; r2 = in[2]; r3 = in[3]; r4 = in[4]; d0 = r0 * 2; d1 = r1 * 2; d2 = r2 * 2 * 19; d419 = r4 * 19; d4 = d419 * 2; #if defined(CRYPTOPP_WORD128_AVAILABLE) t[0] = ((word128) r0) * r0 + ((word128) d4) * r1 + (((word128) d2) * (r3 )); t[1] = ((word128) d0) * r1 + ((word128) d4) * r2 + (((word128) r3) * (r3 * 19)); t[2] = ((word128) d0) * r2 + ((word128) r1) * r1 + (((word128) d4) * (r3 )); t[3] = ((word128) d0) * r3 + ((word128) d1) * r2 + (((word128) r4) * (d419 )); t[4] = ((word128) d0) * r4 + ((word128) d1) * r3 + (((word128) r2) * (r2 )); #else mul64x64_128(t[0], r0, r0) mul64x64_128(mul, d4, r1) add128(t[0], mul) mul64x64_128(mul, d2, r3) add128(t[0], mul) mul64x64_128(t[1], d0, r1) mul64x64_128(mul, d4, r2) add128(t[1], mul) mul64x64_128(mul, r3, r3 * 19) add128(t[1], mul) mul64x64_128(t[2], d0, r2) mul64x64_128(mul, r1, r1) add128(t[2], mul) mul64x64_128(mul, d4, r3) add128(t[2], mul) mul64x64_128(t[3], d0, r3) mul64x64_128(mul, d1, r2) add128(t[3], mul) mul64x64_128(mul, r4, d419) add128(t[3], mul) mul64x64_128(t[4], d0, r4) mul64x64_128(mul, d1, r3) add128(t[4], mul) mul64x64_128(mul, r2, r2) add128(t[4], mul) #endif r0 = lo128(t[0]) & reduce_mask_51; shr128(c, t[0], 51); add128_64(t[1], c) r1 = lo128(t[1]) & reduce_mask_51; shr128(c, t[1], 51); add128_64(t[2], c) r2 = lo128(t[2]) & reduce_mask_51; shr128(c, t[2], 51); add128_64(t[3], c) r3 = lo128(t[3]) & reduce_mask_51; shr128(c, t[3], 51); add128_64(t[4], c) r4 = lo128(t[4]) & reduce_mask_51; shr128(c, t[4], 51); r0 += c * 19; c = r0 >> 51; r0 = r0 & reduce_mask_51; r1 += c; out[0] = r0; out[1] = r1; out[2] = r2; out[3] = r3; out[4] = r4; } /* Take a little-endian, 32-byte number and expand it into polynomial form */ inline void curve25519_expand(bignum25519 out, const byte *in) { word64 x0,x1,x2,x3; GetBlock block(in); block(x0)(x1)(x2)(x3); out[0] = x0 & reduce_mask_51; x0 = (x0 >> 51) | (x1 << 13); out[1] = x0 & reduce_mask_51; x1 = (x1 >> 38) | (x2 << 26); out[2] = x1 & reduce_mask_51; x2 = (x2 >> 25) | (x3 << 39); out[3] = x2 & reduce_mask_51; x3 = (x3 >> 12); out[4] = x3 & reduce_mask_51; } /* Take a fully reduced polynomial form number and contract it into a * little-endian, 32-byte array */ inline void curve25519_contract(byte *out, const bignum25519 input) { word64 t[5]; word64 f, i; t[0] = input[0]; t[1] = input[1]; t[2] = input[2]; t[3] = input[3]; t[4] = input[4]; #define curve25519_contract_carry() \ t[1] += t[0] >> 51; t[0] &= reduce_mask_51; \ t[2] += t[1] >> 51; t[1] &= reduce_mask_51; \ t[3] += t[2] >> 51; t[2] &= reduce_mask_51; \ t[4] += t[3] >> 51; t[3] &= reduce_mask_51; #define curve25519_contract_carry_full() curve25519_contract_carry() \ t[0] += 19 * (t[4] >> 51); t[4] &= reduce_mask_51; #define curve25519_contract_carry_final() curve25519_contract_carry() \ t[4] &= reduce_mask_51; curve25519_contract_carry_full() curve25519_contract_carry_full() /* now t is between 0 and 2^255-1, properly carried. */ /* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */ t[0] += 19; curve25519_contract_carry_full() /* now between 19 and 2^255-1 in both cases, and offset by 19. */ t[0] += (reduce_mask_51 + 1) - 19; t[1] += (reduce_mask_51 + 1) - 1; t[2] += (reduce_mask_51 + 1) - 1; t[3] += (reduce_mask_51 + 1) - 1; t[4] += (reduce_mask_51 + 1) - 1; /* now between 2^255 and 2^256-20, and offset by 2^255. */ curve25519_contract_carry_final() #define write51full(n,shift) \ f = ((t[n] >> shift) | (t[n+1] << (51 - shift))); \ for (i = 0; i < 8; i++, f >>= 8) *out++ = (byte)f; #define write51(n) write51full(n,13*n) write51(0) write51(1) write51(2) write51(3) } #if !defined(ED25519_GCC_64BIT_CHOOSE) /* out = (flag) ? in : out */ inline void curve25519_move_conditional_bytes(byte out[96], const byte in[96], word64 flag) { // TODO: enable this code path once we can test and benchmark it. // It is about 24 insns shorter, it avoids punning which may be UB, // and it is guaranteed constant time. #if defined(__GNUC__) && defined(__x86_64__) && 0 const word32 iter = 96/sizeof(word64); word64* outq = reinterpret_cast(out); const word64* inq = reinterpret_cast(in); word64 idx=0, val; __asm__ __volatile__ ( ".att_syntax ;\n" "cmpq $0, %[flag] ;\n" // compare, set ZERO flag "movq %[iter], %%rcx ;\n" // load iteration count "1: ;\n" " movq (%[idx],%[out]), %[val] ;\n" // val = out[idx] " cmovnzq (%[idx],%[in]), %[val] ;\n" // copy in[idx] to val if NZ " movq %[val], (%[idx],%[out]) ;\n" // out[idx] = val " leaq 8(%[idx]), %[idx] ;\n" // increment index " loopnz 1b ;\n" // does not affect flags : [out] "+S" (outq), [in] "+D" (inq), [idx] "+b" (idx), [val] "=r" (val) : [flag] "g" (flag), [iter] "I" (iter) : "rcx", "memory", "cc" ); #else const word64 nb = flag - 1, b = ~nb; const word64 *inq = (const word64 *)(const void*)in; word64 *outq = (word64 *)(void *)out; outq[0] = (outq[0] & nb) | (inq[0] & b); outq[1] = (outq[1] & nb) | (inq[1] & b); outq[2] = (outq[2] & nb) | (inq[2] & b); outq[3] = (outq[3] & nb) | (inq[3] & b); outq[4] = (outq[4] & nb) | (inq[4] & b); outq[5] = (outq[5] & nb) | (inq[5] & b); outq[6] = (outq[6] & nb) | (inq[6] & b); outq[7] = (outq[7] & nb) | (inq[7] & b); outq[8] = (outq[8] & nb) | (inq[8] & b); outq[9] = (outq[9] & nb) | (inq[9] & b); outq[10] = (outq[10] & nb) | (inq[10] & b); outq[11] = (outq[11] & nb) | (inq[11] & b); #endif } /* if (iswap) swap(a, b) */ inline void curve25519_swap_conditional(bignum25519 a, bignum25519 b, word64 iswap) { const word64 swap = (word64)(-(sword64)iswap); word64 x0,x1,x2,x3,x4; x0 = swap & (a[0] ^ b[0]); a[0] ^= x0; b[0] ^= x0; x1 = swap & (a[1] ^ b[1]); a[1] ^= x1; b[1] ^= x1; x2 = swap & (a[2] ^ b[2]); a[2] ^= x2; b[2] ^= x2; x3 = swap & (a[3] ^ b[3]); a[3] ^= x3; b[3] ^= x3; x4 = swap & (a[4] ^ b[4]); a[4] ^= x4; b[4] ^= x4; } #endif /* ED25519_GCC_64BIT_CHOOSE */ // ************************************************************************************ inline void ed25519_hash(byte *hash, const byte *in, size_t inlen) { SHA512().CalculateDigest(hash, in, inlen); } inline void ed25519_extsk(hash_512bits extsk, const byte sk[32]) { ed25519_hash(extsk, sk, 32); extsk[0] &= 248; extsk[31] &= 127; extsk[31] |= 64; } void UpdateFromStream(HashTransformation& hash, std::istream& stream) { SecByteBlock block(4096); while (stream.read((char*)block.begin(), block.size())) hash.Update(block, block.size()); std::streamsize rem = stream.gcount(); if (rem) hash.Update(block, rem); block.SetMark(0); } void ed25519_hram(hash_512bits hram, const byte RS[64], const byte pk[32], const byte *m, size_t mlen) { SHA512 hash; hash.Update(RS, 32); hash.Update(pk, 32); hash.Update(m, mlen); hash.Final(hram); } void ed25519_hram(hash_512bits hram, const byte RS[64], const byte pk[32], std::istream& stream) { SHA512 hash; hash.Update(RS, 32); hash.Update(pk, 32); UpdateFromStream(hash, stream); hash.Final(hram); } bignum256modm_element_t lt_modm(bignum256modm_element_t a, bignum256modm_element_t b) { return (a - b) >> 63; } void reduce256_modm(bignum256modm r) { bignum256modm t; bignum256modm_element_t b = 0, pb, mask; /* t = r - m */ pb = 0; pb += modm_m[0]; b = lt_modm(r[0], pb); t[0] = (r[0] - pb + (b << 56)); pb = b; pb += modm_m[1]; b = lt_modm(r[1], pb); t[1] = (r[1] - pb + (b << 56)); pb = b; pb += modm_m[2]; b = lt_modm(r[2], pb); t[2] = (r[2] - pb + (b << 56)); pb = b; pb += modm_m[3]; b = lt_modm(r[3], pb); t[3] = (r[3] - pb + (b << 56)); pb = b; pb += modm_m[4]; b = lt_modm(r[4], pb); t[4] = (r[4] - pb + (b << 32)); /* keep r if r was smaller than m */ mask = b - 1; r[0] ^= mask & (r[0] ^ t[0]); r[1] ^= mask & (r[1] ^ t[1]); r[2] ^= mask & (r[2] ^ t[2]); r[3] ^= mask & (r[3] ^ t[3]); r[4] ^= mask & (r[4] ^ t[4]); } void barrett_reduce256_modm(bignum256modm r, const bignum256modm q1, const bignum256modm r1) { bignum256modm q3, r2; word128 c, mul; bignum256modm_element_t f, b, pb; /* q1 = x >> 248 = 264 bits = 5 56 bit elements q2 = mu * q1 q3 = (q2 / 256(32+1)) = q2 / (2^8)^(32+1) = q2 >> 264 */ mul64x64_128(c, modm_mu[0], q1[3]) mul64x64_128(mul, modm_mu[3], q1[0]) add128(c, mul) mul64x64_128(mul, modm_mu[1], q1[2]) add128(c, mul) mul64x64_128(mul, modm_mu[2], q1[1]) add128(c, mul) shr128(f, c, 56); mul64x64_128(c, modm_mu[0], q1[4]) add128_64(c, f) mul64x64_128(mul, modm_mu[4], q1[0]) add128(c, mul) mul64x64_128(mul, modm_mu[3], q1[1]) add128(c, mul) mul64x64_128(mul, modm_mu[1], q1[3]) add128(c, mul) mul64x64_128(mul, modm_mu[2], q1[2]) add128(c, mul) f = lo128(c); q3[0] = (f >> 40) & 0xffff; shr128(f, c, 56); mul64x64_128(c, modm_mu[4], q1[1]) add128_64(c, f) mul64x64_128(mul, modm_mu[1], q1[4]) add128(c, mul) mul64x64_128(mul, modm_mu[2], q1[3]) add128(c, mul) mul64x64_128(mul, modm_mu[3], q1[2]) add128(c, mul) f = lo128(c); q3[0] |= (f << 16) & 0xffffffffffffff; q3[1] = (f >> 40) & 0xffff; shr128(f, c, 56); mul64x64_128(c, modm_mu[4], q1[2]) add128_64(c, f) mul64x64_128(mul, modm_mu[2], q1[4]) add128(c, mul) mul64x64_128(mul, modm_mu[3], q1[3]) add128(c, mul) f = lo128(c); q3[1] |= (f << 16) & 0xffffffffffffff; q3[2] = (f >> 40) & 0xffff; shr128(f, c, 56); mul64x64_128(c, modm_mu[4], q1[3]) add128_64(c, f) mul64x64_128(mul, modm_mu[3], q1[4]) add128(c, mul) f = lo128(c); q3[2] |= (f << 16) & 0xffffffffffffff; q3[3] = (f >> 40) & 0xffff; shr128(f, c, 56); mul64x64_128(c, modm_mu[4], q1[4]) add128_64(c, f) f = lo128(c); q3[3] |= (f << 16) & 0xffffffffffffff; q3[4] = (f >> 40) & 0xffff; shr128(f, c, 56); q3[4] |= (f << 16); mul64x64_128(c, modm_m[0], q3[0]) r2[0] = lo128(c) & 0xffffffffffffff; shr128(f, c, 56); mul64x64_128(c, modm_m[0], q3[1]) add128_64(c, f) mul64x64_128(mul, modm_m[1], q3[0]) add128(c, mul) r2[1] = lo128(c) & 0xffffffffffffff; shr128(f, c, 56); mul64x64_128(c, modm_m[0], q3[2]) add128_64(c, f) mul64x64_128(mul, modm_m[2], q3[0]) add128(c, mul) mul64x64_128(mul, modm_m[1], q3[1]) add128(c, mul) r2[2] = lo128(c) & 0xffffffffffffff; shr128(f, c, 56); mul64x64_128(c, modm_m[0], q3[3]) add128_64(c, f) mul64x64_128(mul, modm_m[3], q3[0]) add128(c, mul) mul64x64_128(mul, modm_m[1], q3[2]) add128(c, mul) mul64x64_128(mul, modm_m[2], q3[1]) add128(c, mul) r2[3] = lo128(c) & 0xffffffffffffff; shr128(f, c, 56); mul64x64_128(c, modm_m[0], q3[4]) add128_64(c, f) mul64x64_128(mul, modm_m[4], q3[0]) add128(c, mul) mul64x64_128(mul, modm_m[3], q3[1]) add128(c, mul) mul64x64_128(mul, modm_m[1], q3[3]) add128(c, mul) mul64x64_128(mul, modm_m[2], q3[2]) add128(c, mul) r2[4] = lo128(c) & 0x0000ffffffffff; pb = 0; pb += r2[0]; b = lt_modm(r1[0], pb); r[0] = (r1[0] - pb + (b << 56)); pb = b; pb += r2[1]; b = lt_modm(r1[1], pb); r[1] = (r1[1] - pb + (b << 56)); pb = b; pb += r2[2]; b = lt_modm(r1[2], pb); r[2] = (r1[2] - pb + (b << 56)); pb = b; pb += r2[3]; b = lt_modm(r1[3], pb); r[3] = (r1[3] - pb + (b << 56)); pb = b; pb += r2[4]; b = lt_modm(r1[4], pb); r[4] = (r1[4] - pb + (b << 40)); reduce256_modm(r); reduce256_modm(r); } void add256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) { bignum256modm_element_t c; c = x[0] + y[0]; r[0] = c & 0xffffffffffffff; c >>= 56; c += x[1] + y[1]; r[1] = c & 0xffffffffffffff; c >>= 56; c += x[2] + y[2]; r[2] = c & 0xffffffffffffff; c >>= 56; c += x[3] + y[3]; r[3] = c & 0xffffffffffffff; c >>= 56; c += x[4] + y[4]; r[4] = c; reduce256_modm(r); } void mul256_modm(bignum256modm r, const bignum256modm x, const bignum256modm y) { bignum256modm q1, r1; word128 c, mul; bignum256modm_element_t f; mul64x64_128(c, x[0], y[0]) f = lo128(c); r1[0] = f & 0xffffffffffffff; shr128(f, c, 56); mul64x64_128(c, x[0], y[1]) add128_64(c, f) mul64x64_128(mul, x[1], y[0]) add128(c, mul) f = lo128(c); r1[1] = f & 0xffffffffffffff; shr128(f, c, 56); mul64x64_128(c, x[0], y[2]) add128_64(c, f) mul64x64_128(mul, x[2], y[0]) add128(c, mul) mul64x64_128(mul, x[1], y[1]) add128(c, mul) f = lo128(c); r1[2] = f & 0xffffffffffffff; shr128(f, c, 56); mul64x64_128(c, x[0], y[3]) add128_64(c, f) mul64x64_128(mul, x[3], y[0]) add128(c, mul) mul64x64_128(mul, x[1], y[2]) add128(c, mul) mul64x64_128(mul, x[2], y[1]) add128(c, mul) f = lo128(c); r1[3] = f & 0xffffffffffffff; shr128(f, c, 56); mul64x64_128(c, x[0], y[4]) add128_64(c, f) mul64x64_128(mul, x[4], y[0]) add128(c, mul) mul64x64_128(mul, x[3], y[1]) add128(c, mul) mul64x64_128(mul, x[1], y[3]) add128(c, mul) mul64x64_128(mul, x[2], y[2]) add128(c, mul) f = lo128(c); r1[4] = f & 0x0000ffffffffff; q1[0] = (f >> 24) & 0xffffffff; shr128(f, c, 56); mul64x64_128(c, x[4], y[1]) add128_64(c, f) mul64x64_128(mul, x[1], y[4]) add128(c, mul) mul64x64_128(mul, x[2], y[3]) add128(c, mul) mul64x64_128(mul, x[3], y[2]) add128(c, mul) f = lo128(c); q1[0] |= (f << 32) & 0xffffffffffffff; q1[1] = (f >> 24) & 0xffffffff; shr128(f, c, 56); mul64x64_128(c, x[4], y[2]) add128_64(c, f) mul64x64_128(mul, x[2], y[4]) add128(c, mul) mul64x64_128(mul, x[3], y[3]) add128(c, mul) f = lo128(c); q1[1] |= (f << 32) & 0xffffffffffffff; q1[2] = (f >> 24) & 0xffffffff; shr128(f, c, 56); mul64x64_128(c, x[4], y[3]) add128_64(c, f) mul64x64_128(mul, x[3], y[4]) add128(c, mul) f = lo128(c); q1[2] |= (f << 32) & 0xffffffffffffff; q1[3] = (f >> 24) & 0xffffffff; shr128(f, c, 56); mul64x64_128(c, x[4], y[4]) add128_64(c, f) f = lo128(c); q1[3] |= (f << 32) & 0xffffffffffffff; q1[4] = (f >> 24) & 0xffffffff; shr128(f, c, 56); q1[4] |= (f << 32); barrett_reduce256_modm(r, q1, r1); } void expand256_modm(bignum256modm out, const byte *in, size_t len) { byte work[64] = {0}; bignum256modm_element_t x[16]; bignum256modm q1; std::memcpy(work, in, len); x[0] = U8TO64_LE(work + 0); x[1] = U8TO64_LE(work + 8); x[2] = U8TO64_LE(work + 16); x[3] = U8TO64_LE(work + 24); x[4] = U8TO64_LE(work + 32); x[5] = U8TO64_LE(work + 40); x[6] = U8TO64_LE(work + 48); x[7] = U8TO64_LE(work + 56); /* r1 = (x mod 256^(32+1)) = x mod (2^8)(31+1) = x & ((1 << 264) - 1) */ out[0] = ( x[0]) & 0xffffffffffffff; out[1] = ((x[ 0] >> 56) | (x[ 1] << 8)) & 0xffffffffffffff; out[2] = ((x[ 1] >> 48) | (x[ 2] << 16)) & 0xffffffffffffff; out[3] = ((x[ 2] >> 40) | (x[ 3] << 24)) & 0xffffffffffffff; out[4] = ((x[ 3] >> 32) | (x[ 4] << 32)) & 0x0000ffffffffff; /* under 252 bits, no need to reduce */ if (len < 32) return; /* q1 = x >> 248 = 264 bits */ q1[0] = ((x[ 3] >> 56) | (x[ 4] << 8)) & 0xffffffffffffff; q1[1] = ((x[ 4] >> 48) | (x[ 5] << 16)) & 0xffffffffffffff; q1[2] = ((x[ 5] >> 40) | (x[ 6] << 24)) & 0xffffffffffffff; q1[3] = ((x[ 6] >> 32) | (x[ 7] << 32)) & 0xffffffffffffff; q1[4] = ((x[ 7] >> 24) ); barrett_reduce256_modm(out, q1, out); } void expand_raw256_modm(bignum256modm out, const byte in[32]) { bignum256modm_element_t x[4]; x[0] = U8TO64_LE(in + 0); x[1] = U8TO64_LE(in + 8); x[2] = U8TO64_LE(in + 16); x[3] = U8TO64_LE(in + 24); out[0] = ( x[0]) & 0xffffffffffffff; out[1] = ((x[ 0] >> 56) | (x[ 1] << 8)) & 0xffffffffffffff; out[2] = ((x[ 1] >> 48) | (x[ 2] << 16)) & 0xffffffffffffff; out[3] = ((x[ 2] >> 40) | (x[ 3] << 24)) & 0xffffffffffffff; out[4] = ((x[ 3] >> 32) ) & 0x000000ffffffff; } void contract256_modm(byte out[32], const bignum256modm in) { U64TO8_LE(out + 0, (in[0] ) | (in[1] << 56)); U64TO8_LE(out + 8, (in[1] >> 8) | (in[2] << 48)); U64TO8_LE(out + 16, (in[2] >> 16) | (in[3] << 40)); U64TO8_LE(out + 24, (in[3] >> 24) | (in[4] << 32)); } void contract256_window4_modm(signed char r[64], const bignum256modm in) { char carry; signed char *quads = r; bignum256modm_element_t i, j, v, m; for (i = 0; i < 5; i++) { v = in[i]; m = (i == 4) ? 8 : 14; for (j = 0; j < m; j++) { *quads++ = (v & 15); v >>= 4; } } /* making it signed */ carry = 0; for(i = 0; i < 63; i++) { r[i] += carry; r[i+1] += (r[i] >> 4); r[i] &= 15; carry = (r[i] >> 3); r[i] -= (carry << 4); } r[63] += carry; } void contract256_slidingwindow_modm(signed char r[256], const bignum256modm s, int windowsize) { int i,j,k,b; int m = (1 << (windowsize - 1)) - 1, soplen = 256; signed char *bits = r; bignum256modm_element_t v; /* first put the binary expansion into r */ for (i = 0; i < 4; i++) { v = s[i]; for (j = 0; j < 56; j++, v >>= 1) *bits++ = (v & 1); } v = s[4]; for (j = 0; j < 32; j++, v >>= 1) *bits++ = (v & 1); /* Making it sliding window */ for (j = 0; j < soplen; j++) { if (!r[j]) continue; for (b = 1; (b < (soplen - j)) && (b <= 6); b++) { if ((r[j] + (r[j + b] << b)) <= m) { r[j] += r[j + b] << b; r[j + b] = 0; } else if ((r[j] - (r[j + b] << b)) >= -m) { r[j] -= r[j + b] << b; for (k = j + b; k < soplen; k++) { if (!r[k]) { r[k] = 1; break; } r[k] = 0; } } else if (r[j + b]) { break; } } } } /* * In: b = 2^5 - 2^0 * Out: b = 2^250 - 2^0 */ void curve25519_pow_two5mtwo0_two250mtwo0(bignum25519 b) { ALIGN(ALIGN_SPEC) bignum25519 t0,c; /* 2^5 - 2^0 */ /* b */ /* 2^10 - 2^5 */ curve25519_square_times(t0, b, 5); /* 2^10 - 2^0 */ curve25519_mul_noinline(b, t0, b); /* 2^20 - 2^10 */ curve25519_square_times(t0, b, 10); /* 2^20 - 2^0 */ curve25519_mul_noinline(c, t0, b); /* 2^40 - 2^20 */ curve25519_square_times(t0, c, 20); /* 2^40 - 2^0 */ curve25519_mul_noinline(t0, t0, c); /* 2^50 - 2^10 */ curve25519_square_times(t0, t0, 10); /* 2^50 - 2^0 */ curve25519_mul_noinline(b, t0, b); /* 2^100 - 2^50 */ curve25519_square_times(t0, b, 50); /* 2^100 - 2^0 */ curve25519_mul_noinline(c, t0, b); /* 2^200 - 2^100 */ curve25519_square_times(t0, c, 100); /* 2^200 - 2^0 */ curve25519_mul_noinline(t0, t0, c); /* 2^250 - 2^50 */ curve25519_square_times(t0, t0, 50); /* 2^250 - 2^0 */ curve25519_mul_noinline(b, t0, b); } /* * z^(p - 2) = z(2^255 - 21) */ void curve25519_recip(bignum25519 out, const bignum25519 z) { ALIGN(ALIGN_SPEC) bignum25519 a,t0,b; /* 2 */ curve25519_square_times(a, z, 1); /* a = 2 */ /* 8 */ curve25519_square_times(t0, a, 2); /* 9 */ curve25519_mul_noinline(b, t0, z); /* b = 9 */ /* 11 */ curve25519_mul_noinline(a, b, a); /* a = 11 */ /* 22 */ curve25519_square_times(t0, a, 1); /* 2^5 - 2^0 = 31 */ curve25519_mul_noinline(b, t0, b); /* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b); /* 2^255 - 2^5 */ curve25519_square_times(b, b, 5); /* 2^255 - 21 */ curve25519_mul_noinline(out, b, a); } /* * z^((p-5)/8) = z^(2^252 - 3) */ void curve25519_pow_two252m3(bignum25519 two252m3, const bignum25519 z) { ALIGN(ALIGN_SPEC) bignum25519 b,c,t0; /* 2 */ curve25519_square_times(c, z, 1); /* c = 2 */ /* 8 */ curve25519_square_times(t0, c, 2); /* t0 = 8 */ /* 9 */ curve25519_mul_noinline(b, t0, z); /* b = 9 */ /* 11 */ curve25519_mul_noinline(c, b, c); /* c = 11 */ /* 22 */ curve25519_square_times(t0, c, 1); /* 2^5 - 2^0 = 31 */ curve25519_mul_noinline(b, t0, b); /* 2^250 - 2^0 */ curve25519_pow_two5mtwo0_two250mtwo0(b); /* 2^252 - 2^2 */ curve25519_square_times(b, b, 2); /* 2^252 - 3 */ curve25519_mul_noinline(two252m3, b, z); } inline void ge25519_p1p1_to_partial(ge25519 *r, const ge25519_p1p1 *p) { curve25519_mul(r->x, p->x, p->t); curve25519_mul(r->y, p->y, p->z); curve25519_mul(r->z, p->z, p->t); } inline void ge25519_p1p1_to_full(ge25519 *r, const ge25519_p1p1 *p) { curve25519_mul(r->x, p->x, p->t); curve25519_mul(r->y, p->y, p->z); curve25519_mul(r->z, p->z, p->t); curve25519_mul(r->t, p->x, p->y); } void ge25519_full_to_pniels(ge25519_pniels *p, const ge25519 *r) { curve25519_sub(p->ysubx, r->y, r->x); curve25519_add(p->xaddy, r->y, r->x); curve25519_copy(p->z, r->z); curve25519_mul(p->t2d, r->t, ge25519_ec2d); } void ge25519_add_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519 *q) { bignum25519 a,b,c,d,t,u; curve25519_sub(a, p->y, p->x); curve25519_add(b, p->y, p->x); curve25519_sub(t, q->y, q->x); curve25519_add(u, q->y, q->x); curve25519_mul(a, a, t); curve25519_mul(b, b, u); curve25519_mul(c, p->t, q->t); curve25519_mul(c, c, ge25519_ec2d); curve25519_mul(d, p->z, q->z); curve25519_add(d, d, d); curve25519_sub(r->x, b, a); curve25519_add(r->y, b, a); curve25519_add_after_basic(r->z, d, c); curve25519_sub_after_basic(r->t, d, c); } void ge25519_double_p1p1(ge25519_p1p1 *r, const ge25519 *p) { bignum25519 a,b,c; curve25519_square(a, p->x); curve25519_square(b, p->y); curve25519_square(c, p->z); curve25519_add_reduce(c, c, c); curve25519_add(r->x, p->x, p->y); curve25519_square(r->x, r->x); curve25519_add(r->y, b, a); curve25519_sub(r->z, b, a); curve25519_sub_after_basic(r->x, r->x, r->y); curve25519_sub_after_basic(r->t, c, r->z); } void ge25519_nielsadd2_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_niels *q, byte signbit) { const bignum25519 *qb = (const bignum25519 *)q; bignum25519 *rb = (bignum25519 *)r; bignum25519 a,b,c; curve25519_sub(a, p->y, p->x); curve25519_add(b, p->y, p->x); curve25519_mul(a, a, qb[signbit]); /* x for +, y for - */ curve25519_mul(r->x, b, qb[signbit^1]); /* y for +, x for - */ curve25519_add(r->y, r->x, a); curve25519_sub(r->x, r->x, a); curve25519_mul(c, p->t, q->t2d); curve25519_add_reduce(r->t, p->z, p->z); curve25519_copy(r->z, r->t); curve25519_add(rb[2+signbit], rb[2+signbit], c); /* z for +, t for - */ curve25519_sub(rb[2+(signbit^1)], rb[2+(signbit^1)], c); /* t for +, z for - */ } void ge25519_pnielsadd_p1p1(ge25519_p1p1 *r, const ge25519 *p, const ge25519_pniels *q, byte signbit) { const bignum25519 *qb = (const bignum25519 *)q; bignum25519 *rb = (bignum25519 *)r; bignum25519 a,b,c; curve25519_sub(a, p->y, p->x); curve25519_add(b, p->y, p->x); curve25519_mul(a, a, qb[signbit]); /* ysubx for +, xaddy for - */ curve25519_mul(r->x, b, qb[signbit^1]); /* xaddy for +, ysubx for - */ curve25519_add(r->y, r->x, a); curve25519_sub(r->x, r->x, a); curve25519_mul(c, p->t, q->t2d); curve25519_mul(r->t, p->z, q->z); curve25519_add_reduce(r->t, r->t, r->t); curve25519_copy(r->z, r->t); curve25519_add(rb[2+signbit], rb[2+signbit], c); /* z for +, t for - */ curve25519_sub(rb[2+(signbit^1)], rb[2+(signbit^1)], c); /* t for +, z for - */ } void ge25519_double_partial(ge25519 *r, const ge25519 *p) { ge25519_p1p1 t; ge25519_double_p1p1(&t, p); ge25519_p1p1_to_partial(r, &t); } void ge25519_double(ge25519 *r, const ge25519 *p) { ge25519_p1p1 t; ge25519_double_p1p1(&t, p); ge25519_p1p1_to_full(r, &t); } void ge25519_add(ge25519 *r, const ge25519 *p, const ge25519 *q) { ge25519_p1p1 t; ge25519_add_p1p1(&t, p, q); ge25519_p1p1_to_full(r, &t); } void ge25519_nielsadd2(ge25519 *r, const ge25519_niels *q) { bignum25519 a,b,c,e,f,g,h; curve25519_sub(a, r->y, r->x); curve25519_add(b, r->y, r->x); curve25519_mul(a, a, q->ysubx); curve25519_mul(e, b, q->xaddy); curve25519_add(h, e, a); curve25519_sub(e, e, a); curve25519_mul(c, r->t, q->t2d); curve25519_add(f, r->z, r->z); curve25519_add_after_basic(g, f, c); curve25519_sub_after_basic(f, f, c); curve25519_mul(r->x, e, f); curve25519_mul(r->y, h, g); curve25519_mul(r->z, g, f); curve25519_mul(r->t, e, h); } void ge25519_pnielsadd(ge25519_pniels *r, const ge25519 *p, const ge25519_pniels *q) { bignum25519 a,b,c,x,y,z,t; curve25519_sub(a, p->y, p->x); curve25519_add(b, p->y, p->x); curve25519_mul(a, a, q->ysubx); curve25519_mul(x, b, q->xaddy); curve25519_add(y, x, a); curve25519_sub(x, x, a); curve25519_mul(c, p->t, q->t2d); curve25519_mul(t, p->z, q->z); curve25519_add(t, t, t); curve25519_add_after_basic(z, t, c); curve25519_sub_after_basic(t, t, c); curve25519_mul(r->xaddy, x, t); curve25519_mul(r->ysubx, y, z); curve25519_mul(r->z, z, t); curve25519_mul(r->t2d, x, y); curve25519_copy(y, r->ysubx); curve25519_sub(r->ysubx, r->ysubx, r->xaddy); curve25519_add(r->xaddy, r->xaddy, y); curve25519_mul(r->t2d, r->t2d, ge25519_ec2d); } void ge25519_pack(byte r[32], const ge25519 *p) { bignum25519 tx, ty, zi; byte parity[32]; curve25519_recip(zi, p->z); curve25519_mul(tx, p->x, zi); curve25519_mul(ty, p->y, zi); curve25519_contract(r, ty); curve25519_contract(parity, tx); r[31] ^= ((parity[0] & 1) << 7); } int ed25519_verify(const byte *x, const byte *y, size_t len) { size_t differentbits = 0; while (len--) differentbits |= (*x++ ^ *y++); return (int) (1 & ((differentbits - 1) >> 8)); } int ge25519_unpack_negative_vartime(ge25519 *r, const byte p[32]) { const byte zero[32] = {0}; const bignum25519 one = {1}; byte parity = p[31] >> 7; byte check[32]; bignum25519 t, root, num, den, d3; curve25519_expand(r->y, p); curve25519_copy(r->z, one); curve25519_square(num, r->y); /* x = y^2 */ curve25519_mul(den, num, ge25519_ecd); /* den = dy^2 */ curve25519_sub_reduce(num, num, r->z); /* x = y^1 - 1 */ curve25519_add(den, den, r->z); /* den = dy^2 + 1 */ /* Computation of sqrt(num/den) */ /* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */ curve25519_square(t, den); curve25519_mul(d3, t, den); curve25519_square(r->x, d3); curve25519_mul(r->x, r->x, den); curve25519_mul(r->x, r->x, num); curve25519_pow_two252m3(r->x, r->x); /* 2. computation of r->x = num * den^3 * (num*den^7)^((p-5)/8) */ curve25519_mul(r->x, r->x, d3); curve25519_mul(r->x, r->x, num); /* 3. Check if either of the roots works: */ curve25519_square(t, r->x); curve25519_mul(t, t, den); curve25519_sub_reduce(root, t, num); curve25519_contract(check, root); if (!ed25519_verify(check, zero, 32)) { curve25519_add_reduce(t, t, num); curve25519_contract(check, t); if (!ed25519_verify(check, zero, 32)) return 0; curve25519_mul(r->x, r->x, ge25519_sqrtneg1); } curve25519_contract(check, r->x); if ((check[0] & 1) == parity) { curve25519_copy(t, r->x); curve25519_neg(r->x, t); } curve25519_mul(r->t, r->x, r->y); return 1; } /* computes [s1]p1 + [s2]basepoint */ void ge25519_double_scalarmult_vartime(ge25519 *r, const ge25519 *p1, const bignum256modm s1, const bignum256modm s2) { signed char slide1[256], slide2[256]; ge25519_pniels pre1[S1_TABLE_SIZE]; ge25519 d1; ge25519_p1p1 t; sword32 i; contract256_slidingwindow_modm(slide1, s1, S1_SWINDOWSIZE); contract256_slidingwindow_modm(slide2, s2, S2_SWINDOWSIZE); ge25519_double(&d1, p1); ge25519_full_to_pniels(pre1, p1); for (i = 0; i < S1_TABLE_SIZE - 1; i++) ge25519_pnielsadd(&pre1[i+1], &d1, &pre1[i]); /* set neutral */ std::memset(r, 0, sizeof(ge25519)); r->y[0] = 1; r->z[0] = 1; i = 255; while ((i >= 0) && !(slide1[i] | slide2[i])) i--; for (; i >= 0; i--) { ge25519_double_p1p1(&t, r); if (slide1[i]) { ge25519_p1p1_to_full(r, &t); ge25519_pnielsadd_p1p1(&t, r, &pre1[abs(slide1[i]) / 2], (byte)slide1[i] >> 7); } if (slide2[i]) { ge25519_p1p1_to_full(r, &t); ge25519_nielsadd2_p1p1(&t, r, &ge25519_niels_sliding_multiples[abs(slide2[i]) / 2], (byte)slide2[i] >> 7); } ge25519_p1p1_to_partial(r, &t); } } #if !defined(HAVE_GE25519_SCALARMULT_BASE_CHOOSE_NIELS) word32 ge25519_windowb_equal(word32 b, word32 c) { return ((b ^ c) - 1) >> 31; } void ge25519_scalarmult_base_choose_niels(ge25519_niels *t, const byte table[256][96], word32 pos, signed char b) { bignum25519 neg; word32 sign = (word32)((byte)b >> 7); word32 mask = ~(sign - 1); word32 u = (b + mask) ^ mask; word32 i; /* ysubx, xaddy, t2d in packed form. initialize to ysubx = 1, xaddy = 1, t2d = 0 */ byte packed[96] = {0}; packed[0] = 1; packed[32] = 1; for (i = 0; i < 8; i++) curve25519_move_conditional_bytes(packed, table[(pos * 8) + i], ge25519_windowb_equal(u, i + 1)); /* expand in to t */ curve25519_expand(t->ysubx, packed + 0); curve25519_expand(t->xaddy, packed + 32); curve25519_expand(t->t2d , packed + 64); /* adjust for sign */ curve25519_swap_conditional(t->ysubx, t->xaddy, sign); curve25519_neg(neg, t->t2d); curve25519_swap_conditional(t->t2d, neg, sign); } #endif /* HAVE_GE25519_SCALARMULT_BASE_CHOOSE_NIELS */ /* computes [s]basepoint */ void ge25519_scalarmult_base_niels(ge25519 *r, const byte basepoint_table[256][96], const bignum256modm s) { signed char b[64]; word32 i; ge25519_niels t; contract256_window4_modm(b, s); ge25519_scalarmult_base_choose_niels(&t, basepoint_table, 0, b[1]); curve25519_sub_reduce(r->x, t.xaddy, t.ysubx); curve25519_add_reduce(r->y, t.xaddy, t.ysubx); std::memset(r->z, 0, sizeof(bignum25519)); curve25519_copy(r->t, t.t2d); r->z[0] = 2; for (i = 3; i < 64; i += 2) { ge25519_scalarmult_base_choose_niels(&t, basepoint_table, i / 2, b[i]); ge25519_nielsadd2(r, &t); } ge25519_double_partial(r, r); ge25519_double_partial(r, r); ge25519_double_partial(r, r); ge25519_double(r, r); ge25519_scalarmult_base_choose_niels(&t, basepoint_table, 0, b[0]); curve25519_mul(t.t2d, t.t2d, ge25519_ecd); ge25519_nielsadd2(r, &t); for(i = 2; i < 64; i += 2) { ge25519_scalarmult_base_choose_niels(&t, basepoint_table, i / 2, b[i]); ge25519_nielsadd2(r, &t); } } ANONYMOUS_NAMESPACE_END NAMESPACE_END // Ed25519 NAMESPACE_END // Donna NAMESPACE_END // CryptoPP //***************************** curve25519 *****************************// NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Donna) int curve25519_mult_CXX(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32]) { using namespace CryptoPP::Donna::X25519; FixedSizeSecBlock e; for (size_t i = 0;i < 32;++i) e[i] = secretKey[i]; e[0] &= 0xf8; e[31] &= 0x7f; e[31] |= 0x40; bignum25519 nqpqx = {1}, nqpqz = {0}, nqz = {1}, nqx; bignum25519 q, qx, qpqx, qqx, zzz, zmone; size_t bit, lastbit; curve25519_expand(q, othersKey); curve25519_copy(nqx, q); /* bit 255 is always 0, and bit 254 is always 1, so skip bit 255 and start pre-swapped on bit 254 */ lastbit = 1; /* we are doing bits 254..3 in the loop, but are swapping in bits 253..2 */ for (int i = 253; i >= 2; i--) { curve25519_add(qx, nqx, nqz); curve25519_sub(nqz, nqx, nqz); curve25519_add(qpqx, nqpqx, nqpqz); curve25519_sub(nqpqz, nqpqx, nqpqz); curve25519_mul(nqpqx, qpqx, nqz); curve25519_mul(nqpqz, qx, nqpqz); curve25519_add(qqx, nqpqx, nqpqz); curve25519_sub(nqpqz, nqpqx, nqpqz); curve25519_square(nqpqz, nqpqz); curve25519_square(nqpqx, qqx); curve25519_mul(nqpqz, nqpqz, q); curve25519_square(qx, qx); curve25519_square(nqz, nqz); curve25519_mul(nqx, qx, nqz); curve25519_sub(nqz, qx, nqz); curve25519_scalar_product(zzz, nqz, 121665); curve25519_add(zzz, zzz, qx); curve25519_mul(nqz, nqz, zzz); bit = (e[i/8] >> (i & 7)) & 1; curve25519_swap_conditional(nqx, nqpqx, bit ^ lastbit); curve25519_swap_conditional(nqz, nqpqz, bit ^ lastbit); lastbit = bit; } /* the final 3 bits are always zero, so we only need to double */ for (int i = 0; i < 3; i++) { curve25519_add(qx, nqx, nqz); curve25519_sub(nqz, nqx, nqz); curve25519_square(qx, qx); curve25519_square(nqz, nqz); curve25519_mul(nqx, qx, nqz); curve25519_sub(nqz, qx, nqz); curve25519_scalar_product(zzz, nqz, 121665); curve25519_add(zzz, zzz, qx); curve25519_mul(nqz, nqz, zzz); } curve25519_recip(zmone, nqz); curve25519_mul(nqz, nqx, zmone); curve25519_contract(sharedKey, nqz); return 0; } int curve25519_mult(byte publicKey[32], const byte secretKey[32]) { using namespace CryptoPP::Donna::X25519; #if (CRYPTOPP_CURVE25519_SSE2) if (HasSSE2()) return curve25519_mult_SSE2(publicKey, secretKey, basePoint); else #endif return curve25519_mult_CXX(publicKey, secretKey, basePoint); } int curve25519_mult(byte sharedKey[32], const byte secretKey[32], const byte othersKey[32]) { #if (CRYPTOPP_CURVE25519_SSE2) if (HasSSE2()) return curve25519_mult_SSE2(sharedKey, secretKey, othersKey); else #endif return curve25519_mult_CXX(sharedKey, secretKey, othersKey); } NAMESPACE_END // Donna NAMESPACE_END // CryptoPP //******************************* ed25519 *******************************// NAMESPACE_BEGIN(CryptoPP) NAMESPACE_BEGIN(Donna) int ed25519_publickey_CXX(byte publicKey[32], const byte secretKey[32]) { using namespace CryptoPP::Donna::Ed25519; bignum256modm a; ALIGN(ALIGN_SPEC) ge25519 A; hash_512bits extsk; /* A = aB */ ed25519_extsk(extsk, secretKey); expand256_modm(a, extsk, 32); ge25519_scalarmult_base_niels(&A, ge25519_niels_base_multiples, a); ge25519_pack(publicKey, &A); return 0; } int ed25519_publickey(byte publicKey[32], const byte secretKey[32]) { return ed25519_publickey_CXX(publicKey, secretKey); } int ed25519_sign_CXX(std::istream& stream, const byte sk[32], const byte pk[32], byte RS[64]) { using namespace CryptoPP::Donna::Ed25519; bignum256modm r, S, a; ALIGN(ALIGN_SPEC) ge25519 R; hash_512bits extsk, hashr, hram; // Unfortunately we need to read the stream twice. The first time calculates // 'r = H(aExt[32..64], m)'. The second time calculates 'S = H(R,A,m)'. There // is a data dependency due to hashing 'RS' with 'R = [r]B' that does not // allow us to read the stream once. std::streampos where = stream.tellg(); ed25519_extsk(extsk, sk); /* r = H(aExt[32..64], m) */ SHA512 hash; hash.Update(extsk + 32, 32); UpdateFromStream(hash, stream); hash.Final(hashr); expand256_modm(r, hashr, 64); /* R = rB */ ge25519_scalarmult_base_niels(&R, ge25519_niels_base_multiples, r); ge25519_pack(RS, &R); // Reset stream for the second digest stream.clear(); stream.seekg(where); /* S = H(R,A,m).. */ ed25519_hram(hram, RS, pk, stream); expand256_modm(S, hram, 64); /* S = H(R,A,m)a */ expand256_modm(a, extsk, 32); mul256_modm(S, S, a); /* S = (r + H(R,A,m)a) */ add256_modm(S, S, r); /* S = (r + H(R,A,m)a) mod L */ contract256_modm(RS + 32, S); return 0; } int ed25519_sign_CXX(const byte *m, size_t mlen, const byte sk[32], const byte pk[32], byte RS[64]) { using namespace CryptoPP::Donna::Ed25519; bignum256modm r, S, a; ALIGN(ALIGN_SPEC) ge25519 R; hash_512bits extsk, hashr, hram; ed25519_extsk(extsk, sk); /* r = H(aExt[32..64], m) */ SHA512 hash; hash.Update(extsk + 32, 32); hash.Update(m, mlen); hash.Final(hashr); expand256_modm(r, hashr, 64); /* R = rB */ ge25519_scalarmult_base_niels(&R, ge25519_niels_base_multiples, r); ge25519_pack(RS, &R); /* S = H(R,A,m).. */ ed25519_hram(hram, RS, pk, m, mlen); expand256_modm(S, hram, 64); /* S = H(R,A,m)a */ expand256_modm(a, extsk, 32); mul256_modm(S, S, a); /* S = (r + H(R,A,m)a) */ add256_modm(S, S, r); /* S = (r + H(R,A,m)a) mod L */ contract256_modm(RS + 32, S); return 0; } int ed25519_sign(std::istream& stream, const byte secretKey[32], const byte publicKey[32], byte signature[64]) { return ed25519_sign_CXX(stream, secretKey, publicKey, signature); } int ed25519_sign(const byte* message, size_t messageLength, const byte secretKey[32], const byte publicKey[32], byte signature[64]) { return ed25519_sign_CXX(message, messageLength, secretKey, publicKey, signature); } int ed25519_sign_open_CXX(const byte *m, size_t mlen, const byte pk[32], const byte RS[64]) { using namespace CryptoPP::Donna::Ed25519; ALIGN(ALIGN_SPEC) ge25519 R, A; hash_512bits hash; bignum256modm hram, S; byte checkR[32]; if ((RS[63] & 224) || !ge25519_unpack_negative_vartime(&A, pk)) return -1; /* hram = H(R,A,m) */ ed25519_hram(hash, RS, pk, m, mlen); expand256_modm(hram, hash, 64); /* S */ expand256_modm(S, RS + 32, 32); /* SB - H(R,A,m)A */ ge25519_double_scalarmult_vartime(&R, &A, hram, S); ge25519_pack(checkR, &R); /* check that R = SB - H(R,A,m)A */ return ed25519_verify(RS, checkR, 32) ? 0 : -1; } int ed25519_sign_open_CXX(std::istream& stream, const byte pk[32], const byte RS[64]) { using namespace CryptoPP::Donna::Ed25519; ALIGN(ALIGN_SPEC) ge25519 R, A; hash_512bits hash; bignum256modm hram, S; byte checkR[32]; if ((RS[63] & 224) || !ge25519_unpack_negative_vartime(&A, pk)) return -1; /* hram = H(R,A,m) */ ed25519_hram(hash, RS, pk, stream); expand256_modm(hram, hash, 64); /* S */ expand256_modm(S, RS + 32, 32); /* SB - H(R,A,m)A */ ge25519_double_scalarmult_vartime(&R, &A, hram, S); ge25519_pack(checkR, &R); /* check that R = SB - H(R,A,m)A */ return ed25519_verify(RS, checkR, 32) ? 0 : -1; } int ed25519_sign_open(std::istream& stream, const byte publicKey[32], const byte signature[64]) { return ed25519_sign_open_CXX(stream, publicKey, signature); } int ed25519_sign_open(const byte *message, size_t messageLength, const byte publicKey[32], const byte signature[64]) { return ed25519_sign_open_CXX(message, messageLength, publicKey, signature); } NAMESPACE_END // Donna NAMESPACE_END // CryptoPP #endif // CRYPTOPP_CURVE25519_64BIT