// filters.h - written and placed in the public domain by Wei Dai //! \file filters.h //! \brief Implementation of BufferedTransformation's attachment interface. #ifndef CRYPTOPP_FILTERS_H #define CRYPTOPP_FILTERS_H #include "cryptlib.h" #if CRYPTOPP_MSC_VERSION # pragma warning(push) # pragma warning(disable: 4127 4189 4514) #endif #include "cryptlib.h" #include "simple.h" #include "secblock.h" #include "misc.h" #include "smartptr.h" #include "queue.h" #include "algparam.h" #include "stdcpp.h" NAMESPACE_BEGIN(CryptoPP) //! \class Filter //! \brief Implementation of BufferedTransformation's attachment interface //! \details Filter is a cornerstone of the Pipeline trinitiy. Data flows from //! Sources, through Filters, and then terminates in Sinks. The difference //! between a Source and Filter is a Source \a pumps data, while a Filter does //! not. The difference between a Filter and a Sink is a Filter allows an //! attached transformation, while a Sink does not. //! \details See the discussion of BufferedTransformation in cryptlib.h for //! more details. class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Filter : public BufferedTransformation, public NotCopyable { public: #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 virtual ~Filter() {} #endif //! \name ATTACHMENT //@{ //! \brief Construct a Filter //! \param attachment an optional attached transformation //! \details attachment can be \p NULL. Filter(BufferedTransformation *attachment = NULL); //! \brief Determine if attachable //! \returns \p true if the object allows attached transformations, \p false otherwise. //! \note Source and Filter offer attached transformations; while Sink does not. bool Attachable() {return true;} //! \brief Retrieve attached transformation //! \returns pointer to a BufferedTransformation if there is an attached transformation, \p NULL otherwise. BufferedTransformation *AttachedTransformation(); //! \brief Retrieve attached transformation //! \returns pointer to a BufferedTransformation if there is an attached transformation, \p NULL otherwise. const BufferedTransformation *AttachedTransformation() const; //! \brief Replace an attached transformation //! \param newAttachment an optional attached transformation //! \details newAttachment can be a single filter, a chain of filters or \p NULL. //! Pass \p NULL to remove an existing BufferedTransformation or chain of filters void Detach(BufferedTransformation *newAttachment = NULL); //@} // See the documentation for BufferedTransformation in cryptlib.h size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true); size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const; // See the documentation for BufferedTransformation in cryptlib.h void Initialize(const NameValuePairs ¶meters=g_nullNameValuePairs, int propagation=-1); bool Flush(bool hardFlush, int propagation=-1, bool blocking=true); bool MessageSeriesEnd(int propagation=-1, bool blocking=true); protected: virtual BufferedTransformation * NewDefaultAttachment() const; void Insert(Filter *nextFilter); // insert filter after this one virtual bool ShouldPropagateMessageEnd() const {return true;} virtual bool ShouldPropagateMessageSeriesEnd() const {return true;} void PropagateInitialize(const NameValuePairs ¶meters, int propagation); //! \brief Forward processed data on to attached transformation //! \param outputSite unknown, system crash between keyboard and chair... //! \param inString the byte buffer to process //! \param length the size of the string, in bytes //! \param messageEnd means how many filters to signal MessageEnd() to, including this one //! \param blocking specifies whether the object should block when processing input //! \param channel the channel to process the data //! \returns the number of bytes that remain in the block (i.e., bytes not processed) size_t Output(int outputSite, const byte *inString, size_t length, int messageEnd, bool blocking, const std::string &channel=DEFAULT_CHANNEL); //! \brief Output multiple bytes that may be modified by callee. //! \param outputSite unknown, system crash between keyboard and chair... //! \param inString the byte buffer to process //! \param length the size of the string, in bytes //! \param messageEnd means how many filters to signal MessageEnd() to, including this one //! \param blocking specifies whether the object should block when processing input //! \param channel the channel to process the data //! \returns the number of bytes that remain in the block (i.e., bytes not processed) size_t OutputModifiable(int outputSite, byte *inString, size_t length, int messageEnd, bool blocking, const std::string &channel=DEFAULT_CHANNEL); //! \brief Signals the end of messages to the object //! \param outputSite unknown, system crash between keyboard and chair... //! \param propagation the number of attached transformations the MessageEnd() signal should be passed //! \param blocking specifies whether the object should block when processing input //! \param channel the channel to process the data //! \returns TODO //! \details propagation count includes this object. Setting propagation to 1 means this //! object only. Setting propagation to -1 means unlimited propagation. bool OutputMessageEnd(int outputSite, int propagation, bool blocking, const std::string &channel=DEFAULT_CHANNEL); //! \brief Flush buffered input and/or output, with signal propagation //! \param outputSite unknown, system crash between keyboard and chair... //! \param hardFlush is used to indicate whether all data should be flushed //! \param propagation the number of attached transformations the Flush() signal should be passed //! \param blocking specifies whether the object should block when processing input //! \param channel the channel to process the data //! \returns TODO //! \details propagation count includes this object. Setting propagation to 1 means this //! object only. Setting propagation to -1 means unlimited propagation. //! \note Hard flushes must be used with care. It means try to process and output everything, even if //! there may not be enough data to complete the action. For example, hard flushing a HexDecoder //! would cause an error if you do it after inputing an odd number of hex encoded characters. //! \note For some types of filters, like ZlibDecompressor, hard flushes can only //! be done at "synchronization points". These synchronization points are positions in the data //! stream that are created by hard flushes on the corresponding reverse filters, in this //! example ZlibCompressor. This is useful when zlib compressed data is moved across a //! network in packets and compression state is preserved across packets, as in the SSH2 protocol. bool OutputFlush(int outputSite, bool hardFlush, int propagation, bool blocking, const std::string &channel=DEFAULT_CHANNEL); //! \brief Marks the end of a series of messages, with signal propagation //! \param outputSite unknown, system crash between keyboard and chair... //! \param propagation the number of attached transformations the MessageSeriesEnd() signal should be passed //! \param blocking specifies whether the object should block when processing input //! \param channel the channel to process the data //! \returns TODO //! \details Each object that receives the signal will perform its processing, decrement //! propagation, and then pass the signal on to attached transformations if the value is not 0. //! \details propagation count includes this object. Setting propagation to 1 means this //! object only. Setting propagation to -1 means unlimited propagation. //! \note There should be a MessageEnd() immediately before MessageSeriesEnd(). bool OutputMessageSeriesEnd(int outputSite, int propagation, bool blocking, const std::string &channel=DEFAULT_CHANNEL); private: member_ptr m_attachment; protected: size_t m_inputPosition; int m_continueAt; }; //! \class FilterPutSpaceHelper //! \brief Create a working space in a BufferedTransformation struct CRYPTOPP_DLL FilterPutSpaceHelper { //! \brief Create a working space in a BufferedTransformation //! \param target BufferedTransformation for the working space //! \param channel channel for the working space //! \param minSize minimum size of the allocation, in bytes //! \param desiredSize preferred size of the allocation, in bytes //! \param bufferSize actual size of the allocation, in bytes //! \pre desiredSize >= minSize and bufferSize >= minSize. //! \details \p bufferSize is an IN and OUT parameter. If HelpCreatePutSpace() returns a non-NULL value, then //! bufferSize is valid and provides the size of the working space created for the caller. //! \details Internally, HelpCreatePutSpace() calls \ref BufferedTransformation::ChannelCreatePutSpace //! "ChannelCreatePutSpace()" using \p desiredSize. If the target returns \p desiredSize with a size less //! than \p minSize (i.e., the request could not be fulfilled), then an internal SecByteBlock //! called \p m_tempSpace is resized and used for the caller. byte *HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize, size_t desiredSize, size_t &bufferSize) { CRYPTOPP_ASSERT(desiredSize >= minSize && bufferSize >= minSize); if (m_tempSpace.size() < minSize) { byte *result = target.ChannelCreatePutSpace(channel, desiredSize); if (desiredSize >= minSize) { bufferSize = desiredSize; return result; } m_tempSpace.New(bufferSize); } bufferSize = m_tempSpace.size(); return m_tempSpace.begin(); } //! \brief Create a working space in a BufferedTransformation //! \param target the BufferedTransformation for the working space //! \param channel channel for the working space //! \param minSize minimum size of the allocation, in bytes //! \details Internally, the overload calls HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize, size_t desiredSize, size_t &bufferSize) using \p minSize for missing arguments. byte *HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize) {return HelpCreatePutSpace(target, channel, minSize, minSize, minSize);} //! \brief Create a working space in a BufferedTransformation //! \param target the BufferedTransformation for the working space //! \param channel channel for the working space //! \param minSize minimum size of the allocation, in bytes //! \param bufferSize the actual size of the allocation, in bytes //! \details Internally, the overload calls HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize, size_t desiredSize, size_t &bufferSize) using \p minSize for missing arguments. byte *HelpCreatePutSpace(BufferedTransformation &target, const std::string &channel, size_t minSize, size_t bufferSize) {return HelpCreatePutSpace(target, channel, minSize, minSize, bufferSize);} //! \brief Temporay working space SecByteBlock m_tempSpace; }; //! \class MeterFilter //! \brief Measure how many bytes and messages pass through the filter //! \details measure how many bytes and messages pass through the filter. The filter also serves as valve by //! maintaining a list of ranges to skip during processing. class CRYPTOPP_DLL MeterFilter : public Bufferless { public: //! \brief Construct a MeterFilter //! \param attachment an optional attached transformation //! \param transparent flag indicating if the filter should function transparently //! \details \p attachment can be \p NULL. The filter is transparent by default. If the filter is //! transparent, then PutMaybeModifiable() does not process a request and always returns 0. MeterFilter(BufferedTransformation *attachment=NULL, bool transparent=true) : m_transparent(transparent), m_currentMessageBytes(0), m_totalBytes(0) , m_currentSeriesMessages(0), m_totalMessages(0), m_totalMessageSeries(0) , m_begin(NULL), m_length(0) {Detach(attachment); ResetMeter();} //! \brief Set or change the transparent mode of this object //! \param transparent the new transparent mode void SetTransparent(bool transparent) {m_transparent = transparent;} //! \brief Adds a range to skip during processing //! \param message the message to apply the range //! \param position the 0-based index in the current stream //! \param size the length of the range //! \param sortNow flag indicating whether the range should be sorted //! \details Internally, MeterFilter maitains a deque of ranges to skip. As messages are processed, //! ranges of bytes are skipped according to the list of ranges. void AddRangeToSkip(unsigned int message, lword position, lword size, bool sortNow = true); //! \brief Resets the meter //! \details ResetMeter() reinitializes the meter by setting counters to 0 and removing previous //! skip ranges. void ResetMeter(); void IsolatedInitialize(const NameValuePairs ¶meters) {CRYPTOPP_UNUSED(parameters); ResetMeter();} lword GetCurrentMessageBytes() const {return m_currentMessageBytes;} lword GetTotalBytes() const {return m_totalBytes;} unsigned int GetCurrentSeriesMessages() const {return m_currentSeriesMessages;} unsigned int GetTotalMessages() const {return m_totalMessages;} unsigned int GetTotalMessageSeries() const {return m_totalMessageSeries;} byte * CreatePutSpace(size_t &size) {return AttachedTransformation()->CreatePutSpace(size);} size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking); size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking); bool IsolatedMessageSeriesEnd(bool blocking); private: size_t PutMaybeModifiable(byte *inString, size_t length, int messageEnd, bool blocking, bool modifiable); bool ShouldPropagateMessageEnd() const {return m_transparent;} bool ShouldPropagateMessageSeriesEnd() const {return m_transparent;} struct MessageRange { inline bool operator<(const MessageRange &b) const // BCB2006 workaround: this has to be a member function {return message < b.message || (message == b.message && position < b.position);} unsigned int message; lword position; lword size; }; bool m_transparent; lword m_currentMessageBytes, m_totalBytes; unsigned int m_currentSeriesMessages, m_totalMessages, m_totalMessageSeries; std::deque m_rangesToSkip; byte *m_begin; size_t m_length; }; //! \class TransparentFilter //! \brief A transparent MeterFilter //! \sa MeterFilter, OpaqueFilter class CRYPTOPP_DLL TransparentFilter : public MeterFilter { public: //! \brief Construct a TransparentFilter //! \param attachment an optional attached transformation TransparentFilter(BufferedTransformation *attachment=NULL) : MeterFilter(attachment, true) {} }; //! \class OpaqueFilter //! \brief A non-transparent MeterFilter //! \sa MeterFilter, TransparentFilter class CRYPTOPP_DLL OpaqueFilter : public MeterFilter { public: //! \brief Construct an OpaqueFilter //! \param attachment an optional attached transformation OpaqueFilter(BufferedTransformation *attachment=NULL) : MeterFilter(attachment, false) {} }; //! \class FilterWithBufferedInput //! \brief Divides an input stream into discrete blocks //! \details FilterWithBufferedInput divides the input stream into a first block, a number of //! middle blocks, and a last block. First and last blocks are optional, and middle blocks may //! be a stream instead (i.e. blockSize == 1). //! \sa AuthenticatedEncryptionFilter, AuthenticatedDecryptionFilter, HashVerificationFilter, //! SignatureVerificationFilter, StreamTransformationFilter class CRYPTOPP_DLL FilterWithBufferedInput : public Filter { public: #if !defined(CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562) //! default FilterWithBufferedInput for temporaries FilterWithBufferedInput(); #endif //! \brief Construct a FilterWithBufferedInput with an attached transformation //! \param attachment an attached transformation FilterWithBufferedInput(BufferedTransformation *attachment); //! \brief Construct a FilterWithBufferedInput with an attached transformation //! \param firstSize the size of the first block //! \param blockSize the size of middle blocks //! \param lastSize the size of the last block //! \param attachment an attached transformation //! \details \p firstSize and \p lastSize may be 0. \p blockSize must be at least 1. FilterWithBufferedInput(size_t firstSize, size_t blockSize, size_t lastSize, BufferedTransformation *attachment); void IsolatedInitialize(const NameValuePairs ¶meters); size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) { return PutMaybeModifiable(const_cast(inString), length, messageEnd, blocking, false); } size_t PutModifiable2(byte *inString, size_t length, int messageEnd, bool blocking) { return PutMaybeModifiable(inString, length, messageEnd, blocking, true); } //! \brief Flushes data buffered by this object, without signal propagation //! \param hardFlush indicates whether all data should be flushed //! \param blocking specifies whether the object should block when processing input //! \details IsolatedFlush() calls ForceNextPut() if hardFlush is true //! \note hardFlush must be used with care bool IsolatedFlush(bool hardFlush, bool blocking); //! \brief Flushes data buffered by this object //! \details The input buffer may contain more than blockSize bytes if lastSize != 0. //! ForceNextPut() forces a call to NextPut() if this is the case. void ForceNextPut(); protected: virtual bool DidFirstPut() const {return m_firstInputDone;} virtual size_t GetFirstPutSize() const {return m_firstSize;} virtual size_t GetBlockPutSize() const {return m_blockSize;} virtual size_t GetLastPutSize() const {return m_lastSize;} virtual void InitializeDerivedAndReturnNewSizes(const NameValuePairs ¶meters, size_t &firstSize, size_t &blockSize, size_t &lastSize) {CRYPTOPP_UNUSED(parameters); CRYPTOPP_UNUSED(firstSize); CRYPTOPP_UNUSED(blockSize); CRYPTOPP_UNUSED(lastSize); InitializeDerived(parameters);} virtual void InitializeDerived(const NameValuePairs ¶meters) {CRYPTOPP_UNUSED(parameters);} // FirstPut() is called if (firstSize != 0 and totalLength >= firstSize) // or (firstSize == 0 and (totalLength > 0 or a MessageEnd() is received)). // inString is m_firstSize in length. virtual void FirstPut(const byte *inString) =0; // NextPut() is called if totalLength >= firstSize+blockSize+lastSize virtual void NextPutSingle(const byte *inString) {CRYPTOPP_UNUSED(inString); CRYPTOPP_ASSERT(false);} // Same as NextPut() except length can be a multiple of blockSize // Either NextPut() or NextPutMultiple() must be overriden virtual void NextPutMultiple(const byte *inString, size_t length); // Same as NextPutMultiple(), but inString can be modified virtual void NextPutModifiable(byte *inString, size_t length) {NextPutMultiple(inString, length);} //! \brief Input the last block of data //! \param inString the input byte buffer //! \param length the size of the input buffer, in bytes //! \details LastPut() processes the last block of data and signals attached filters to do the same. //! LastPut() is always called. The pseudo algorithm for the logic is: //!
	//!     if totalLength < firstSize then length == totalLength
	//!     else if totalLength <= firstSize+lastSize then length == totalLength-firstSize
	//!     else lastSize <= length < lastSize+blockSize
	//! 
virtual void LastPut(const byte *inString, size_t length) =0; virtual void FlushDerived() {} protected: size_t PutMaybeModifiable(byte *begin, size_t length, int messageEnd, bool blocking, bool modifiable); void NextPutMaybeModifiable(byte *inString, size_t length, bool modifiable) { if (modifiable) NextPutModifiable(inString, length); else NextPutMultiple(inString, length); } // This function should no longer be used, put this here to cause a compiler error // if someone tries to override NextPut(). virtual int NextPut(const byte *inString, size_t length) {CRYPTOPP_UNUSED(inString); CRYPTOPP_UNUSED(length); CRYPTOPP_ASSERT(false); return 0;} class BlockQueue { public: void ResetQueue(size_t blockSize, size_t maxBlocks); byte *GetBlock(); byte *GetContigousBlocks(size_t &numberOfBytes); size_t GetAll(byte *outString); void Put(const byte *inString, size_t length); size_t CurrentSize() const {return m_size;} size_t MaxSize() const {return m_buffer.size();} private: SecByteBlock m_buffer; size_t m_blockSize, m_maxBlocks, m_size; byte *m_begin; }; size_t m_firstSize, m_blockSize, m_lastSize; bool m_firstInputDone; BlockQueue m_queue; }; //! \class FilterWithInputQueue //! \brief A filter that buffers input using a ByteQueue //! \details FilterWithInputQueue will buffer input using a ByteQueue. When the filter receives //! a \ref BufferedTransformation::MessageEnd() "MessageEnd()" signal it will pass the data //! on to its attached transformation. class CRYPTOPP_DLL FilterWithInputQueue : public Filter { public: //! \brief Construct a FilterWithInputQueue //! \param attachment an optional attached transformation FilterWithInputQueue(BufferedTransformation *attachment=NULL) : Filter(attachment) {} size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) { if (!blocking) throw BlockingInputOnly("FilterWithInputQueue"); m_inQueue.Put(inString, length); if (messageEnd) { IsolatedMessageEnd(blocking); Output(0, NULL, 0, messageEnd, blocking); } return 0; } protected: virtual bool IsolatedMessageEnd(bool blocking) =0; void IsolatedInitialize(const NameValuePairs ¶meters) {CRYPTOPP_UNUSED(parameters); m_inQueue.Clear();} ByteQueue m_inQueue; }; //! \struct BlockPaddingSchemeDef //! \brief Padding schemes used for block ciphers struct BlockPaddingSchemeDef { //! \enum BlockPaddingScheme //! \brief Padding schemes used for block ciphers. //! \details DEFAULT_PADDING means PKCS_PADDING if cipher.MandatoryBlockSize() > 1 && //! cipher.MinLastBlockSize() == 0, which holds for ECB or CBC mode. Otherwise, //! NO_PADDING for modes like OFB, CFB, CTR, CBC-CTS. //! \sa Block Cipher Padding for //! additional details. enum BlockPaddingScheme { //! \brief No padding added to a block NO_PADDING, //! \brief 0's padding added to a block ZEROS_PADDING, //! \brief PKCS #5 padding added to a block PKCS_PADDING, //! \brief 1 and 0's padding added to a block ONE_AND_ZEROS_PADDING, //! \brief Default padding scheme DEFAULT_PADDING }; }; //! \class StreamTransformationFilter //! \brief Filter wrapper for StreamTransformation //! \details Filter wrapper for StreamTransformation. The filter will optionally handle padding/unpadding when needed class CRYPTOPP_DLL StreamTransformationFilter : public FilterWithBufferedInput, public BlockPaddingSchemeDef, private FilterPutSpaceHelper { public: //! \brief Construct a StreamTransformationFilter //! \param c reference to a StreamTransformation //! \param attachment an optional attached transformation //! \param padding the \ref BlockPaddingSchemeDef "padding scheme" //! \param allowAuthenticatedSymmetricCipher flag indicating whether the filter should allow authenticated encryption schemes StreamTransformationFilter(StreamTransformation &c, BufferedTransformation *attachment = NULL, BlockPaddingScheme padding = DEFAULT_PADDING, bool allowAuthenticatedSymmetricCipher = false); std::string AlgorithmName() const {return m_cipher.AlgorithmName();} protected: void InitializeDerivedAndReturnNewSizes(const NameValuePairs ¶meters, size_t &firstSize, size_t &blockSize, size_t &lastSize); void FirstPut(const byte *inString); void NextPutMultiple(const byte *inString, size_t length); void NextPutModifiable(byte *inString, size_t length); void LastPut(const byte *inString, size_t length); static size_t LastBlockSize(StreamTransformation &c, BlockPaddingScheme padding); StreamTransformation &m_cipher; BlockPaddingScheme m_padding; unsigned int m_optimalBufferSize; }; #ifdef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY typedef StreamTransformationFilter StreamCipherFilter; #endif //! \class HashFilter //! \brief Filter wrapper for HashTransformation class CRYPTOPP_DLL HashFilter : public Bufferless, private FilterPutSpaceHelper { public: //! \brief Construct a HashFilter //! \param hm reference to a HashTransformation //! \param attachment an optional attached transformation //! \param putMessage flag indicating whether the original message should be passed to an attached transformation //! \param truncatedDigestSize the size of the digest //! \param messagePutChannel the channel on which the message should be output //! \param hashPutChannel the channel on which the digest should be output HashFilter(HashTransformation &hm, BufferedTransformation *attachment = NULL, bool putMessage=false, int truncatedDigestSize=-1, const std::string &messagePutChannel=DEFAULT_CHANNEL, const std::string &hashPutChannel=DEFAULT_CHANNEL); std::string AlgorithmName() const {return m_hashModule.AlgorithmName();} void IsolatedInitialize(const NameValuePairs ¶meters); size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking); byte * CreatePutSpace(size_t &size) {return m_hashModule.CreateUpdateSpace(size);} private: HashTransformation &m_hashModule; bool m_putMessage; unsigned int m_digestSize; byte *m_space; std::string m_messagePutChannel, m_hashPutChannel; }; //! \class HashVerificationFilter //! \brief Filter wrapper for HashTransformation class CRYPTOPP_DLL HashVerificationFilter : public FilterWithBufferedInput { public: //! \class HashVerificationFailed //! \brief Exception thrown when a data integrity check failure is encountered class HashVerificationFailed : public Exception { public: HashVerificationFailed() : Exception(DATA_INTEGRITY_CHECK_FAILED, "HashVerificationFilter: message hash or MAC not valid") {} }; //! \enum Flags //! \brief Flags controlling filter behavior. //! \details The flags are a bitmask and can be OR'd together. enum Flags { //! \brief Indicates the hash is at the end of the message (i.e., concatenation of message+hash) HASH_AT_END=0, //! \brief Indicates the hash is at the beginning of the message (i.e., concatenation of hash+message) HASH_AT_BEGIN=1, //! \brief Indicates the message should be passed to an attached transformation PUT_MESSAGE=2, //! \brief Indicates the hash should be passed to an attached transformation PUT_HASH=4, //! \brief Indicates the result of the verification should be passed to an attached transformation PUT_RESULT=8, //! \brief Indicates the filter should throw a HashVerificationFailed if a failure is encountered THROW_EXCEPTION=16, //! \brief Default flags using \p HASH_AT_BEGIN and \p PUT_RESULT DEFAULT_FLAGS = HASH_AT_BEGIN | PUT_RESULT }; //! \brief Construct a HashVerificationFilter //! \param hm reference to a HashTransformation //! \param attachment an optional attached transformation //! \param flags flags indicating behaviors for the filter //! \param truncatedDigestSize the size of the digest //! \details truncatedDigestSize = -1 indicates \ref HashTransformation::DigestSize() "DigestSize" should be used. HashVerificationFilter(HashTransformation &hm, BufferedTransformation *attachment = NULL, word32 flags = DEFAULT_FLAGS, int truncatedDigestSize=-1); std::string AlgorithmName() const {return m_hashModule.AlgorithmName();} bool GetLastResult() const {return m_verified;} protected: void InitializeDerivedAndReturnNewSizes(const NameValuePairs ¶meters, size_t &firstSize, size_t &blockSize, size_t &lastSize); void FirstPut(const byte *inString); void NextPutMultiple(const byte *inString, size_t length); void LastPut(const byte *inString, size_t length); private: friend class AuthenticatedDecryptionFilter; HashTransformation &m_hashModule; word32 m_flags; unsigned int m_digestSize; bool m_verified; SecByteBlock m_expectedHash; }; typedef HashVerificationFilter HashVerifier; // for backwards compatibility //! \class AuthenticatedEncryptionFilter //! \brief Filter wrapper for encrypting with AuthenticatedSymmetricCipher //! \details AuthenticatedEncryptionFilter() is a wrapper for encrypting with AuthenticatedSymmetricCipher(), //! optionally handling padding/unpadding when needed. //! \sa AuthenticatedDecryptionFilter, EAX, CCM, GCM, AuthenticatedSymmetricCipher //! \since Crypto++ 5.6.0 class CRYPTOPP_DLL AuthenticatedEncryptionFilter : public StreamTransformationFilter { public: //! \brief Construct a AuthenticatedEncryptionFilter //! \param c reference to a AuthenticatedSymmetricCipher //! \param attachment an optional attached transformation //! \param putAAD flag indicating whether the AAD should be passed to an attached transformation //! \param truncatedDigestSize the size of the digest //! \param macChannel the channel on which the MAC should be output //! \param padding the \ref BlockPaddingSchemeDef "padding scheme" //! \details truncatedDigestSize = -1 indicates \ref HashTransformation::DigestSize() "DigestSize" should be used. //! \since Crypto++ 5.6.0 AuthenticatedEncryptionFilter(AuthenticatedSymmetricCipher &c, BufferedTransformation *attachment = NULL, bool putAAD=false, int truncatedDigestSize=-1, const std::string &macChannel=DEFAULT_CHANNEL, BlockPaddingScheme padding = DEFAULT_PADDING); void IsolatedInitialize(const NameValuePairs ¶meters); byte * ChannelCreatePutSpace(const std::string &channel, size_t &size); size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking); //! \brief Input the last block of data //! \param inString the input byte buffer //! \param length the size of the input buffer, in bytes //! \details LastPut() processes the last block of data and signals attached filters to do the same. //! LastPut() is always called. The pseudo algorithm for the logic is: //!
	//!     if totalLength < firstSize then length == totalLength
	//!     else if totalLength <= firstSize+lastSize then length == totalLength-firstSize
	//!     else lastSize <= length < lastSize+blockSize
	//! 
void LastPut(const byte *inString, size_t length); protected: HashFilter m_hf; }; //! \class AuthenticatedDecryptionFilter //! \brief Filter wrapper for decrypting with AuthenticatedSymmetricCipher //! \details AuthenticatedDecryptionFilter() is a wrapper for decrypting with AuthenticatedSymmetricCipher(), //! optionally handling padding/unpadding when needed. //! \sa AuthenticatedEncryptionFilter, EAX, CCM, GCM, AuthenticatedSymmetricCipher //! \since Crypto++ 5.6.0 class CRYPTOPP_DLL AuthenticatedDecryptionFilter : public FilterWithBufferedInput, public BlockPaddingSchemeDef { public: //! \enum Flags //! \brief Flags controlling filter behavior. //! \details The flags are a bitmask and can be OR'd together. enum Flags { //! \brief Indicates the MAC is at the end of the message (i.e., concatenation of message+mac) MAC_AT_END=0, //! \brief Indicates the MAC is at the beginning of the message (i.e., concatenation of mac+message) MAC_AT_BEGIN=1, //! \brief Indicates the filter should throw a HashVerificationFailed if a failure is encountered THROW_EXCEPTION=16, //! \brief Default flags using \p THROW_EXCEPTION DEFAULT_FLAGS = THROW_EXCEPTION }; //! \brief Construct a AuthenticatedDecryptionFilter //! \param c reference to a AuthenticatedSymmetricCipher //! \param attachment an optional attached transformation //! \param flags flags indicating behaviors for the filter //! \param truncatedDigestSize the size of the digest //! \param padding the \ref BlockPaddingSchemeDef "padding scheme" //! \details Additional authenticated data should be given in channel "AAD". //! \details truncatedDigestSize = -1 indicates \ref HashTransformation::DigestSize() "DigestSize" should be used. //! \since Crypto++ 5.6.0 AuthenticatedDecryptionFilter(AuthenticatedSymmetricCipher &c, BufferedTransformation *attachment = NULL, word32 flags = DEFAULT_FLAGS, int truncatedDigestSize=-1, BlockPaddingScheme padding = DEFAULT_PADDING); std::string AlgorithmName() const {return m_hashVerifier.AlgorithmName();} byte * ChannelCreatePutSpace(const std::string &channel, size_t &size); size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking); bool GetLastResult() const {return m_hashVerifier.GetLastResult();} protected: void InitializeDerivedAndReturnNewSizes(const NameValuePairs ¶meters, size_t &firstSize, size_t &blockSize, size_t &lastSize); void FirstPut(const byte *inString); void NextPutMultiple(const byte *inString, size_t length); //! \brief Input the last block of data //! \param inString the input byte buffer //! \param length the size of the input buffer, in bytes //! \details LastPut() processes the last block of data and signals attached filters to do the same. //! LastPut() is always called. The pseudo algorithm for the logic is: //!
	//!     if totalLength < firstSize then length == totalLength
	//!     else if totalLength <= firstSize+lastSize then length == totalLength-firstSize
	//!     else lastSize <= length < lastSize+blockSize
	//! 
void LastPut(const byte *inString, size_t length); HashVerificationFilter m_hashVerifier; StreamTransformationFilter m_streamFilter; }; //! \class SignerFilter //! \brief Filter wrapper for PK_Signer class CRYPTOPP_DLL SignerFilter : public Unflushable { public: //! \brief Construct a SignerFilter //! \param rng a RandomNumberGenerator derived class //! \param signer a PK_Signer derived class //! \param attachment an optional attached transformation //! \param putMessage flag indicating whether the original message should be passed to an attached transformation SignerFilter(RandomNumberGenerator &rng, const PK_Signer &signer, BufferedTransformation *attachment = NULL, bool putMessage=false) : m_rng(rng), m_signer(signer), m_messageAccumulator(signer.NewSignatureAccumulator(rng)), m_putMessage(putMessage) {Detach(attachment);} std::string AlgorithmName() const {return m_signer.AlgorithmName();} void IsolatedInitialize(const NameValuePairs ¶meters); size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking); private: RandomNumberGenerator &m_rng; const PK_Signer &m_signer; member_ptr m_messageAccumulator; bool m_putMessage; SecByteBlock m_buf; }; //! \class SignatureVerificationFilter //! \brief Filter wrapper for PK_Verifier class CRYPTOPP_DLL SignatureVerificationFilter : public FilterWithBufferedInput { public: //! \brief Exception thrown when an invalid signature is encountered class SignatureVerificationFailed : public Exception { public: SignatureVerificationFailed() : Exception(DATA_INTEGRITY_CHECK_FAILED, "VerifierFilter: digital signature not valid") {} }; //! \enum Flags //! \brief Flags controlling filter behavior. //! \details The flags are a bitmask and can be OR'd together. enum Flags { //! \brief Indicates the signature is at the end of the message (i.e., concatenation of message+signature) SIGNATURE_AT_END=0, //! \brief Indicates the signature is at the beginning of the message (i.e., concatenation of signature+message) SIGNATURE_AT_BEGIN=1, //! \brief Indicates the message should be passed to an attached transformation PUT_MESSAGE=2, //! \brief Indicates the signature should be passed to an attached transformation PUT_SIGNATURE=4, //! \brief Indicates the result of the verification should be passed to an attached transformation PUT_RESULT=8, //! \brief Indicates the filter should throw a HashVerificationFailed if a failure is encountered THROW_EXCEPTION=16, //! \brief Default flags using \p SIGNATURE_AT_BEGIN and \p PUT_RESULT DEFAULT_FLAGS = SIGNATURE_AT_BEGIN | PUT_RESULT }; //! \brief Construct a SignatureVerificationFilter //! \param verifier a PK_Verifier derived class //! \param attachment an optional attached transformation //! \param flags flags indicating behaviors for the filter SignatureVerificationFilter(const PK_Verifier &verifier, BufferedTransformation *attachment = NULL, word32 flags = DEFAULT_FLAGS); std::string AlgorithmName() const {return m_verifier.AlgorithmName();} //! \brief Retrieves the result of the last verification //! \returns true if the signature on the previosus message was valid, false otherwise bool GetLastResult() const {return m_verified;} protected: void InitializeDerivedAndReturnNewSizes(const NameValuePairs ¶meters, size_t &firstSize, size_t &blockSize, size_t &lastSize); void FirstPut(const byte *inString); void NextPutMultiple(const byte *inString, size_t length); void LastPut(const byte *inString, size_t length); private: const PK_Verifier &m_verifier; member_ptr m_messageAccumulator; word32 m_flags; SecByteBlock m_signature; bool m_verified; }; typedef SignatureVerificationFilter VerifierFilter; // for backwards compatibility //! \class Redirector //! \brief Redirect input to another BufferedTransformation without owning it class CRYPTOPP_DLL Redirector : public CustomSignalPropagation { public: //! \enum Behavior //! \brief Controls signal propagation behavior enum Behavior { //! \brief Pass data only DATA_ONLY = 0x00, //! \brief Pass signals PASS_SIGNALS = 0x01, //! \brief Pass wait events PASS_WAIT_OBJECTS = 0x02, //! \brief Pass everything //! \details PASS_EVERYTHING is default PASS_EVERYTHING = PASS_SIGNALS | PASS_WAIT_OBJECTS }; //! \brief Construct a Redirector Redirector() : m_target(NULL), m_behavior(PASS_EVERYTHING) {} //! \brief Construct a Redirector //! \param target the destination BufferedTransformation //! \param behavior \ref Behavior "flags" specifying signal propagation Redirector(BufferedTransformation &target, Behavior behavior=PASS_EVERYTHING) : m_target(&target), m_behavior(behavior) {} //! \brief Redirect input to another BufferedTransformation //! \param target the destination BufferedTransformation void Redirect(BufferedTransformation &target) {m_target = ⌖} //! \brief Stop redirecting input void StopRedirection() {m_target = NULL;} Behavior GetBehavior() {return (Behavior) m_behavior;} void SetBehavior(Behavior behavior) {m_behavior=behavior;} bool GetPassSignals() const {return (m_behavior & PASS_SIGNALS) != 0;} void SetPassSignals(bool pass) { if (pass) m_behavior |= PASS_SIGNALS; else m_behavior &= ~(word32) PASS_SIGNALS; } bool GetPassWaitObjects() const {return (m_behavior & PASS_WAIT_OBJECTS) != 0;} void SetPassWaitObjects(bool pass) { if (pass) m_behavior |= PASS_WAIT_OBJECTS; else m_behavior &= ~(word32) PASS_WAIT_OBJECTS; } bool CanModifyInput() const {return m_target ? m_target->CanModifyInput() : false;} void Initialize(const NameValuePairs ¶meters, int propagation); byte * CreatePutSpace(size_t &size) { if (m_target) return m_target->CreatePutSpace(size); else { size = 0; return NULL; } } size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) {return m_target ? m_target->Put2(inString, length, GetPassSignals() ? messageEnd : 0, blocking) : 0;} bool Flush(bool hardFlush, int propagation=-1, bool blocking=true) {return m_target && GetPassSignals() ? m_target->Flush(hardFlush, propagation, blocking) : false;} bool MessageSeriesEnd(int propagation=-1, bool blocking=true) {return m_target && GetPassSignals() ? m_target->MessageSeriesEnd(propagation, blocking) : false;} byte * ChannelCreatePutSpace(const std::string &channel, size_t &size) { if (m_target) return m_target->ChannelCreatePutSpace(channel, size); else { size = 0; return NULL; } } size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking) {return m_target ? m_target->ChannelPut2(channel, begin, length, GetPassSignals() ? messageEnd : 0, blocking) : 0;} size_t ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking) {return m_target ? m_target->ChannelPutModifiable2(channel, begin, length, GetPassSignals() ? messageEnd : 0, blocking) : 0;} bool ChannelFlush(const std::string &channel, bool completeFlush, int propagation=-1, bool blocking=true) {return m_target && GetPassSignals() ? m_target->ChannelFlush(channel, completeFlush, propagation, blocking) : false;} bool ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1, bool blocking=true) {return m_target && GetPassSignals() ? m_target->ChannelMessageSeriesEnd(channel, propagation, blocking) : false;} unsigned int GetMaxWaitObjectCount() const { return m_target && GetPassWaitObjects() ? m_target->GetMaxWaitObjectCount() : 0; } void GetWaitObjects(WaitObjectContainer &container, CallStack const& callStack) { if (m_target && GetPassWaitObjects()) m_target->GetWaitObjects(container, callStack); } private: BufferedTransformation *m_target; word32 m_behavior; }; //! \class OutputProxy //! \brief Filter class that is a proxy for a sink //! \details Used By ProxyFilter class CRYPTOPP_DLL OutputProxy : public CustomSignalPropagation { public: //! \brief Construct an OutputProxy //! \param owner the owning transformation //! \param passSignal flag indicating if signals should be passed OutputProxy(BufferedTransformation &owner, bool passSignal) : m_owner(owner), m_passSignal(passSignal) {} //! \brief Retrieve passSignal flag //! \returns flag indicating if signals should be passed bool GetPassSignal() const {return m_passSignal;} //! \brief Set passSignal flag //! \param passSignal flag indicating if signals should be passed void SetPassSignal(bool passSignal) {m_passSignal = passSignal;} byte * CreatePutSpace(size_t &size) {return m_owner.AttachedTransformation()->CreatePutSpace(size);} size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) {return m_owner.AttachedTransformation()->Put2(inString, length, m_passSignal ? messageEnd : 0, blocking);} size_t PutModifiable2(byte *begin, size_t length, int messageEnd, bool blocking) {return m_owner.AttachedTransformation()->PutModifiable2(begin, length, m_passSignal ? messageEnd : 0, blocking);} void Initialize(const NameValuePairs ¶meters=g_nullNameValuePairs, int propagation=-1) {if (m_passSignal) m_owner.AttachedTransformation()->Initialize(parameters, propagation);} bool Flush(bool hardFlush, int propagation=-1, bool blocking=true) {return m_passSignal ? m_owner.AttachedTransformation()->Flush(hardFlush, propagation, blocking) : false;} bool MessageSeriesEnd(int propagation=-1, bool blocking=true) {return m_passSignal ? m_owner.AttachedTransformation()->MessageSeriesEnd(propagation, blocking) : false;} byte * ChannelCreatePutSpace(const std::string &channel, size_t &size) {return m_owner.AttachedTransformation()->ChannelCreatePutSpace(channel, size);} size_t ChannelPut2(const std::string &channel, const byte *begin, size_t length, int messageEnd, bool blocking) {return m_owner.AttachedTransformation()->ChannelPut2(channel, begin, length, m_passSignal ? messageEnd : 0, blocking);} size_t ChannelPutModifiable2(const std::string &channel, byte *begin, size_t length, int messageEnd, bool blocking) {return m_owner.AttachedTransformation()->ChannelPutModifiable2(channel, begin, length, m_passSignal ? messageEnd : 0, blocking);} bool ChannelFlush(const std::string &channel, bool completeFlush, int propagation=-1, bool blocking=true) {return m_passSignal ? m_owner.AttachedTransformation()->ChannelFlush(channel, completeFlush, propagation, blocking) : false;} bool ChannelMessageSeriesEnd(const std::string &channel, int propagation=-1, bool blocking=true) {return m_passSignal ? m_owner.AttachedTransformation()->ChannelMessageSeriesEnd(channel, propagation, blocking) : false;} private: BufferedTransformation &m_owner; bool m_passSignal; }; //! \class ProxyFilter //! \brief Base class for Filter classes that are proxies for a chain of other filters class CRYPTOPP_DLL ProxyFilter : public FilterWithBufferedInput { public: //! \brief Construct a ProxyFilter //! \param filter an output filter //! \param firstSize the first Put size //! \param lastSize the last Put size //! \param attachment an attached transformation ProxyFilter(BufferedTransformation *filter, size_t firstSize, size_t lastSize, BufferedTransformation *attachment); bool IsolatedFlush(bool hardFlush, bool blocking); //! \brief Sets the OutputProxy filter //! \param filter an OutputProxy filter void SetFilter(Filter *filter); void NextPutMultiple(const byte *s, size_t len); void NextPutModifiable(byte *inString, size_t length); protected: member_ptr m_filter; }; //! \class SimpleProxyFilter //! \brief Proxy filter that doesn't modify the underlying filter's input or output class CRYPTOPP_DLL SimpleProxyFilter : public ProxyFilter { public: //! \brief Construct a SimpleProxyFilter //! \param filter an output filter //! \param attachment an attached transformation SimpleProxyFilter(BufferedTransformation *filter, BufferedTransformation *attachment) : ProxyFilter(filter, 0, 0, attachment) {} void FirstPut(const byte * inString) {CRYPTOPP_UNUSED(inString);} //! \brief Input the last block of data //! \param inString the input byte buffer //! \param length the size of the input buffer, in bytes //! \details LastPut() processes the last block of data and signals attached filters to do the same. //! LastPut() is always called. The pseudo algorithm for the logic is: //!
	//!     if totalLength < firstSize then length == totalLength
	//!     else if totalLength <= firstSize+lastSize then length == totalLength-firstSize
	//!     else lastSize <= length < lastSize+blockSize
	//! 
void LastPut(const byte *inString, size_t length) {CRYPTOPP_UNUSED(inString), CRYPTOPP_UNUSED(length); m_filter->MessageEnd();} }; //! \class PK_EncryptorFilter //! \brief Filter wrapper for PK_Encryptor //! \details PK_DecryptorFilter is a proxy for the filter created by PK_Encryptor::CreateEncryptionFilter. //! This class provides symmetry with VerifierFilter. class CRYPTOPP_DLL PK_EncryptorFilter : public SimpleProxyFilter { public: //! \brief Construct a PK_EncryptorFilter //! \param rng a RandomNumberGenerator derived class //! \param encryptor a PK_Encryptor derived class //! \param attachment an optional attached transformation PK_EncryptorFilter(RandomNumberGenerator &rng, const PK_Encryptor &encryptor, BufferedTransformation *attachment = NULL) : SimpleProxyFilter(encryptor.CreateEncryptionFilter(rng), attachment) {} }; //! \class PK_DecryptorFilter //! \brief Filter wrapper for PK_Decryptor //! \details PK_DecryptorFilter is a proxy for the filter created by PK_Decryptor::CreateDecryptionFilter. //! This class provides symmetry with SignerFilter. class CRYPTOPP_DLL PK_DecryptorFilter : public SimpleProxyFilter { public: //! \brief Construct a PK_DecryptorFilter //! \param rng a RandomNumberGenerator derived class //! \param decryptor a PK_Decryptor derived class //! \param attachment an optional attached transformation PK_DecryptorFilter(RandomNumberGenerator &rng, const PK_Decryptor &decryptor, BufferedTransformation *attachment = NULL) : SimpleProxyFilter(decryptor.CreateDecryptionFilter(rng), attachment) {} }; //! \class StringSinkTemplate //! \brief Append input to a string object //! \tparam T std::basic_string type //! \details \ref StringSinkTemplate "StringSink" is a StringSinkTemplate typedef template class StringSinkTemplate : public Bufferless { public: // VC60 workaround: no T::char_type typedef typename T::traits_type::char_type char_type; //! \brief Construct a StringSinkTemplate //! \param output std::basic_string type StringSinkTemplate(T &output) : m_output(&output) {CRYPTOPP_ASSERT(sizeof(output[0])==1);} void IsolatedInitialize(const NameValuePairs ¶meters) {if (!parameters.GetValue("OutputStringPointer", m_output)) throw InvalidArgument("StringSink: OutputStringPointer not specified");} size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking) { CRYPTOPP_UNUSED(messageEnd); CRYPTOPP_UNUSED(blocking); if (length > 0) { typename T::size_type size = m_output->size(); if (length < size && size + length > m_output->capacity()) m_output->reserve(2*size); m_output->append((const char_type *)inString, (const char_type *)inString+length); } return 0; } private: T *m_output; }; CRYPTOPP_DLL_TEMPLATE_CLASS StringSinkTemplate; DOCUMENTED_TYPEDEF(StringSinkTemplate, StringSink); //! \class RandomNumberSink //! \brief Incorporates input into RNG as additional entropy class RandomNumberSink : public Bufferless { public: //! \brief Construct a RandomNumberSink RandomNumberSink() : m_rng(NULL) {} //! \brief Construct a RandomNumberSink //! \param rng a RandomNumberGenerator derived class RandomNumberSink(RandomNumberGenerator &rng) : m_rng(&rng) {} void IsolatedInitialize(const NameValuePairs ¶meters); size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking); private: RandomNumberGenerator *m_rng; }; //! \class ArraySink //! \brief Copy input to a memory buffer class CRYPTOPP_DLL ArraySink : public Bufferless { public: //! \brief Construct an ArraySink //! \param parameters a set of NameValuePairs to initialize this object //! \details Name::OutputBuffer() is a mandatory parameter using this constructor. ArraySink(const NameValuePairs ¶meters = g_nullNameValuePairs) : m_buf(NULL), m_size(0), m_total(0) {IsolatedInitialize(parameters);} //! \brief Construct an ArraySink //! \param buf pointer to a memory buffer //! \param size length of the memory buffer ArraySink(byte *buf, size_t size) : m_buf(buf), m_size(size), m_total(0) {} //! \brief Provides the size remaining in the Sink //! \returns size remaining in the Sink, in bytes size_t AvailableSize() {return SaturatingSubtract(m_size, m_total);} //! \brief Provides the number of bytes written to the Sink //! \returns number of bytes written to the Sink, in bytes lword TotalPutLength() {return m_total;} void IsolatedInitialize(const NameValuePairs ¶meters); byte * CreatePutSpace(size_t &size); size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking); protected: byte *m_buf; size_t m_size; lword m_total; }; //! \class ArrayXorSink //! \brief Xor input to a memory buffer class CRYPTOPP_DLL ArrayXorSink : public ArraySink { public: //! \brief Construct an ArrayXorSink //! \param buf pointer to a memory buffer //! \param size length of the memory buffer ArrayXorSink(byte *buf, size_t size) : ArraySink(buf, size) {} size_t Put2(const byte *inString, size_t length, int messageEnd, bool blocking); byte * CreatePutSpace(size_t &size) {return BufferedTransformation::CreatePutSpace(size);} }; //! \class StringStore //! \brief String-based implementation of Store interface class StringStore : public Store { public: //! \brief Construct a StringStore //! \param string pointer to a C-String StringStore(const char *string = NULL) {StoreInitialize(MakeParameters("InputBuffer", ConstByteArrayParameter(string)));} //! \brief Construct a StringStore //! \param string pointer to a memory buffer //! \param length size of the memory buffer StringStore(const byte *string, size_t length) {StoreInitialize(MakeParameters("InputBuffer", ConstByteArrayParameter(string, length)));} //! \brief Construct a StringStore //! \tparam T std::basic_string type //! \param string reference to a std::basic_string type template StringStore(const T &string) {StoreInitialize(MakeParameters("InputBuffer", ConstByteArrayParameter(string)));} CRYPTOPP_DLL size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true); CRYPTOPP_DLL size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const; private: CRYPTOPP_DLL void StoreInitialize(const NameValuePairs ¶meters); const byte *m_store; size_t m_length, m_count; }; //! RNG-based implementation of Source interface class CRYPTOPP_DLL RandomNumberStore : public Store { public: RandomNumberStore() : m_rng(NULL), m_length(0), m_count(0) {} RandomNumberStore(RandomNumberGenerator &rng, lword length) : m_rng(&rng), m_length(length), m_count(0) {} bool AnyRetrievable() const {return MaxRetrievable() != 0;} lword MaxRetrievable() const {return m_length-m_count;} size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true); size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const { CRYPTOPP_UNUSED(target); CRYPTOPP_UNUSED(begin); CRYPTOPP_UNUSED(end); CRYPTOPP_UNUSED(channel); CRYPTOPP_UNUSED(blocking); throw NotImplemented("RandomNumberStore: CopyRangeTo2() is not supported by this store"); } private: void StoreInitialize(const NameValuePairs ¶meters); RandomNumberGenerator *m_rng; lword m_length, m_count; }; //! empty store class CRYPTOPP_DLL NullStore : public Store { public: NullStore(lword size = ULONG_MAX) : m_size(size) {} void StoreInitialize(const NameValuePairs ¶meters) {CRYPTOPP_UNUSED(parameters);} lword MaxRetrievable() const {return m_size;} size_t TransferTo2(BufferedTransformation &target, lword &transferBytes, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true); size_t CopyRangeTo2(BufferedTransformation &target, lword &begin, lword end=LWORD_MAX, const std::string &channel=DEFAULT_CHANNEL, bool blocking=true) const; private: lword m_size; }; //! \class Source //! \brief Implementation of BufferedTransformation's attachment interface //! \details Source is a cornerstone of the Pipeline trinitiy. Data flows from //! Sources, through Filters, and then terminates in Sinks. The difference //! between a Source and Filter is a Source \a pumps data, while a Filter does //! not. The difference between a Filter and a Sink is a Filter allows an //! attached transformation, while a Sink does not. //! \details See the discussion of BufferedTransformation in cryptlib.h for //! more details. //! \sa Store and SourceTemplate class CRYPTOPP_DLL CRYPTOPP_NO_VTABLE Source : public InputRejecting { public: #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 virtual ~Source() {} #endif //! \brief Construct a Source //! \param attachment an optional attached transformation Source(BufferedTransformation *attachment = NULL) {Source::Detach(attachment);} //! \name PIPELINE //@{ //! \brief Pump data to attached transformation //! \param pumpMax the maximpum number of bytes to pump //! \returns the number of bytes that remain in the block (i.e., bytes not processed) //! \details Internally, Pump() calls Pump2(). //! \note pumpMax is a \p lword, which is a 64-bit value that typically uses \p LWORD_MAX. The default //! argument is a \p size_t that uses \p SIZE_MAX, and it can be 32-bits or 64-bits. lword Pump(lword pumpMax=(size_t)SIZE_MAX) {Pump2(pumpMax); return pumpMax;} //! \brief Pump messages to attached transformation //! \param count the maximpum number of messages to pump //! \returns TODO //! \details Internally, PumpMessages() calls PumpMessages2(). unsigned int PumpMessages(unsigned int count=UINT_MAX) {PumpMessages2(count); return count;} //! \brief Pump all data to attached transformation //! \details Internally, PumpAll() calls PumpAll2(). void PumpAll() {PumpAll2();} //! \brief Pump data to attached transformation //! \param byteCount the maximpum number of bytes to pump //! \param blocking specifies whether the object should block when processing input //! \returns the number of bytes that remain in the block (i.e., bytes not processed) //! \details byteCount is an \a IN and \a OUT parameter. When the call is made, byteCount is the //! requested size of the pump. When the call returns, byteCount is the number of bytes that //! were pumped. virtual size_t Pump2(lword &byteCount, bool blocking=true) =0; //! \brief Pump messages to attached transformation //! \param messageCount the maximpum number of messages to pump //! \param blocking specifies whether the object should block when processing input //! \details messageCount is an IN and OUT parameter. virtual size_t PumpMessages2(unsigned int &messageCount, bool blocking=true) =0; //! \brief Pump all data to attached transformation //! \param blocking specifies whether the object should block when processing input //! \returns the number of bytes that remain in the block (i.e., bytes not processed) virtual size_t PumpAll2(bool blocking=true); //! \brief Determines if the Source is exhausted //! \returns true if the source has been exhausted virtual bool SourceExhausted() const =0; //@} protected: void SourceInitialize(bool pumpAll, const NameValuePairs ¶meters) { IsolatedInitialize(parameters); if (pumpAll) PumpAll(); } }; //! \class SourceTemplate //! \brief Transform a Store into a Source //! \tparam T the class or type template class SourceTemplate : public Source { public: //! \brief Construct a SourceTemplate //! \tparam T the class or type //! \param attachment an attached transformation SourceTemplate(BufferedTransformation *attachment) : Source(attachment) {} void IsolatedInitialize(const NameValuePairs ¶meters) {m_store.IsolatedInitialize(parameters);} size_t Pump2(lword &byteCount, bool blocking=true) {return m_store.TransferTo2(*AttachedTransformation(), byteCount, DEFAULT_CHANNEL, blocking);} size_t PumpMessages2(unsigned int &messageCount, bool blocking=true) {return m_store.TransferMessagesTo2(*AttachedTransformation(), messageCount, DEFAULT_CHANNEL, blocking);} size_t PumpAll2(bool blocking=true) {return m_store.TransferAllTo2(*AttachedTransformation(), DEFAULT_CHANNEL, blocking);} bool SourceExhausted() const {return !m_store.AnyRetrievable() && !m_store.AnyMessages();} void SetAutoSignalPropagation(int propagation) {m_store.SetAutoSignalPropagation(propagation);} int GetAutoSignalPropagation() const {return m_store.GetAutoSignalPropagation();} protected: T m_store; }; //! \class SourceTemplate //! \brief String-based implementation of the Source interface class CRYPTOPP_DLL StringSource : public SourceTemplate { public: //! \brief Construct a StringSource //! \param attachment an optional attached transformation StringSource(BufferedTransformation *attachment = NULL) : SourceTemplate(attachment) {} //! \brief Construct a StringSource //! \param string C-String //! \param pumpAll C-String //! \param attachment an optional attached transformation StringSource(const char *string, bool pumpAll, BufferedTransformation *attachment = NULL) : SourceTemplate(attachment) {SourceInitialize(pumpAll, MakeParameters("InputBuffer", ConstByteArrayParameter(string)));} //! binary byte array as source StringSource(const byte *string, size_t length, bool pumpAll, BufferedTransformation *attachment = NULL) : SourceTemplate(attachment) {SourceInitialize(pumpAll, MakeParameters("InputBuffer", ConstByteArrayParameter(string, length)));} //! std::string as source StringSource(const std::string &string, bool pumpAll, BufferedTransformation *attachment = NULL) : SourceTemplate(attachment) {SourceInitialize(pumpAll, MakeParameters("InputBuffer", ConstByteArrayParameter(string)));} }; // Use the third constructor for an array source DOCUMENTED_TYPEDEF(StringSource, ArraySource); //! RNG-based implementation of Source interface class CRYPTOPP_DLL RandomNumberSource : public SourceTemplate { public: RandomNumberSource(RandomNumberGenerator &rng, int length, bool pumpAll, BufferedTransformation *attachment = NULL) : SourceTemplate(attachment) {SourceInitialize(pumpAll, MakeParameters("RandomNumberGeneratorPointer", &rng)("RandomNumberStoreSize", length));} }; NAMESPACE_END #if CRYPTOPP_MSC_VERSION # pragma warning(pop) #endif #endif