// chacha_simd.cpp - written and placed in the public domain by // Jack Lloyd and Jeffrey Walton // // This source file uses intrinsics and built-ins to gain access to // SSE2, ARM NEON and ARMv8a, Power7 and Altivec instructions. A separate // source file is needed because additional CXXFLAGS are required to enable // the appropriate instructions sets in some build configurations. // // SSE2 implementation based on Botan's chacha_sse2.cpp. Many thanks // to Jack Lloyd and the Botan team for allowing us to use it. // // The SSE2 implementation is kind of unusual among Crypto++ algorithms. // We guard on CRYTPOPP_SSE2_AVAILABLE and use HasSSE2() at runtime. However, // if the compiler says a target machine has SSSE3 or XOP available (say, by // way of -march=native), then we can pull another 150 to 800 MB/s out of // ChaCha. To capture SSSE3 and XOP we use the compiler defines __SSSE3__ and // __XOP__ and forgo runtime tests. // // Runtime tests for HasSSSE3() and HasXop() are too expensive to make a // sub-case of SSE2. The rotates are on a critical path and the runtime tests // crush performance. // // Here are some relative numbers for ChaCha8: // * Intel Skylake, 3.0 GHz: SSE2 at 2160 MB/s; SSSE3 at 2310 MB/s. // * AMD Bulldozer, 3.3 GHz: SSE2 at 1680 MB/s; XOP at 2510 MB/s. #include "pch.h" #include "config.h" #include "chacha.h" #include "misc.h" // Internal compiler error in GCC 3.3 and below #if defined(__GNUC__) && (__GNUC__ < 4) # undef CRYPTOPP_SSE2_INTRIN_AVAILABLE #endif #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) # include # include #endif #if defined(__SSSE3__) # include #endif #if defined(__XOP__) # if defined(CRYPTOPP_GCC_COMPATIBLE) # include # endif # include #endif // XOP #if (CRYPTOPP_ARM_NEON_HEADER) # include #endif #if (CRYPTOPP_ARM_ACLE_HEADER) # include # include #endif #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) # include "ppc_simd.h" #endif // Squash MS LNK4221 and libtool warnings extern const char CHACHA_SIMD_FNAME[] = __FILE__; ANONYMOUS_NAMESPACE_BEGIN // ***************************** NEON ***************************** // #if (CRYPTOPP_ARM_NEON_AVAILABLE) template inline uint32x4_t RotateLeft(const uint32x4_t& val) { return vorrq_u32(vshlq_n_u32(val, R), vshrq_n_u32(val, 32 - R)); } template inline uint32x4_t RotateRight(const uint32x4_t& val) { return vorrq_u32(vshlq_n_u32(val, 32 - R), vshrq_n_u32(val, R)); } template <> inline uint32x4_t RotateLeft<8>(const uint32x4_t& val) { #if defined(__aarch32__) || defined(__aarch64__) const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 }; const uint8x16_t mask = vld1q_u8(maskb); return vreinterpretq_u32_u8( vqtbl1q_u8(vreinterpretq_u8_u32(val), mask)); #else // fallback to slower C++ rotation. return vorrq_u32(vshlq_n_u32(val, 8), vshrq_n_u32(val, 32 - 8)); #endif } template <> inline uint32x4_t RotateLeft<16>(const uint32x4_t& val) { #if defined(__aarch32__) || defined(__aarch64__) return vreinterpretq_u32_u16( vrev32q_u16(vreinterpretq_u16_u32(val))); #else // fallback to slower C++ rotation. return vorrq_u32(vshlq_n_u32(val, 16), vshrq_n_u32(val, 32 - 16)); #endif } template <> inline uint32x4_t RotateRight<8>(const uint32x4_t& val) { #if defined(__aarch32__) || defined(__aarch64__) const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,15,12 }; const uint8x16_t mask = vld1q_u8(maskb); return vreinterpretq_u32_u8( vqtbl1q_u8(vreinterpretq_u8_u32(val), mask)); #else // fallback to slower C++ rotation. return vorrq_u32(vshrq_n_u32(val, 8), vshlq_n_u32(val, 32 - 8)); #endif } template <> inline uint32x4_t RotateRight<16>(const uint32x4_t& val) { #if defined(__aarch32__) || defined(__aarch64__) return vreinterpretq_u32_u16( vrev32q_u16(vreinterpretq_u16_u32(val))); #else // fallback to slower C++ rotation. return vorrq_u32(vshrq_n_u32(val, 16), vshlq_n_u32(val, 32 - 16)); #endif } // ChaCha's use of x86 shuffle is really a 4, 8, or 12 byte // rotation on the 128-bit vector word: // * [3,2,1,0] => [0,3,2,1] is Extract<1>(x) // * [3,2,1,0] => [1,0,3,2] is Extract<2>(x) // * [3,2,1,0] => [2,1,0,3] is Extract<3>(x) template inline uint32x4_t Extract(const uint32x4_t& val) { return vextq_u32(val, val, S); } // Helper to perform 64-bit addition across two elements of 32-bit vectors inline uint32x4_t Add64(const uint32x4_t& a, const uint32x4_t& b) { return vreinterpretq_u32_u64( vaddq_u64( vreinterpretq_u64_u32(a), vreinterpretq_u64_u32(b))); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE // ***************************** SSE2 ***************************** // #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) template inline __m128i RotateLeft(const __m128i val) { #ifdef __XOP__ return _mm_roti_epi32(val, R); #else return _mm_or_si128(_mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R)); #endif } template <> inline __m128i RotateLeft<8>(const __m128i val) { #if defined(__XOP__) return _mm_roti_epi32(val, 8); #elif defined(__SSSE3__) const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3); return _mm_shuffle_epi8(val, mask); #else return _mm_or_si128(_mm_slli_epi32(val, 8), _mm_srli_epi32(val, 32-8)); #endif } template <> inline __m128i RotateLeft<16>(const __m128i val) { #if defined(__XOP__) return _mm_roti_epi32(val, 16); #elif defined(__SSSE3__) const __m128i mask = _mm_set_epi8(13,12,15,14, 9,8,11,10, 5,4,7,6, 1,0,3,2); return _mm_shuffle_epi8(val, mask); #else return _mm_or_si128(_mm_slli_epi32(val, 16), _mm_srli_epi32(val, 32-16)); #endif } #endif // CRYPTOPP_SSE2_INTRIN_AVAILABLE // **************************** Altivec **************************** // #if (CRYPTOPP_ALTIVEC_AVAILABLE) // ChaCha_OperateKeystream is optimized for Altivec. However, Altivec // is supported by using vec_ld and vec_st, and using a composite VecAdd // that supports 64-bit element adds. vec_ld and vec_st add significant // overhead when memory is not aligned. Despite the drawbacks Altivec // is profitable. The numbers for ChaCha8 are: // // PowerMac, C++, 2.0 GHz: 205 MB/s, 9.29 cpb // PowerMac, Altivec, 2.0 GHz: 471 MB/s, 4.09 cpb using CryptoPP::uint8x16_p; using CryptoPP::uint32x4_p; using CryptoPP::VecLoad; using CryptoPP::VecLoadAligned; using CryptoPP::VecStore; using CryptoPP::VecPermute; // Permutes bytes in packed 32-bit words to little endian. // State is already in proper endian order. Input and // output must be permuted during load and save. inline uint32x4_p VecLoad32LE(const uint8_t src[16]) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12}; const uint32x4_p val = VecLoad(src); return VecPermute(val, val, mask); #else return VecLoad(src); #endif } // Permutes bytes in packed 32-bit words to little endian. // State is already in proper endian order. Input and // output must be permuted during load and save. inline void VecStore32LE(uint8_t dest[16], const uint32x4_p& val) { #if (CRYPTOPP_BIG_ENDIAN) const uint8x16_p mask = {3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12}; VecStore(VecPermute(val, val, mask), dest); #else return VecStore(val, dest); #endif } // ChaCha's use of x86 shuffle is really a 4, 8, or 12 byte // rotation on the 128-bit vector word: // * [3,2,1,0] => [0,3,2,1] is Shuffle<1>(x) // * [3,2,1,0] => [1,0,3,2] is Shuffle<2>(x) // * [3,2,1,0] => [2,1,0,3] is Shuffle<3>(x) template inline uint32x4_p Shuffle(const uint32x4_p& val) { CRYPTOPP_ASSERT(0); return val; } template <> inline uint32x4_p Shuffle<1>(const uint32x4_p& val) { const uint8x16_p mask = {4,5,6,7, 8,9,10,11, 12,13,14,15, 0,1,2,3}; return VecPermute(val, val, mask); } template <> inline uint32x4_p Shuffle<2>(const uint32x4_p& val) { const uint8x16_p mask = {8,9,10,11, 12,13,14,15, 0,1,2,3, 4,5,6,7}; return VecPermute(val, val, mask); } template <> inline uint32x4_p Shuffle<3>(const uint32x4_p& val) { const uint8x16_p mask = {12,13,14,15, 0,1,2,3, 4,5,6,7, 8,9,10,11}; return VecPermute(val, val, mask); } #endif // CRYPTOPP_ALTIVEC_AVAILABLE ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) // ***************************** NEON ***************************** // #if (CRYPTOPP_ARM_NEON_AVAILABLE) void ChaCha_OperateKeystream_NEON(const word32 *state, const byte* input, byte *output, unsigned int rounds) { const uint32x4_t state0 = vld1q_u32(state + 0*4); const uint32x4_t state1 = vld1q_u32(state + 1*4); const uint32x4_t state2 = vld1q_u32(state + 2*4); const uint32x4_t state3 = vld1q_u32(state + 3*4); const unsigned int w[] = {1,0,0,0, 2,0,0,0, 3,0,0,0}; const uint32x4_t CTRS[3] = { vld1q_u32(w+0), vld1q_u32(w+4), vld1q_u32(w+8) }; uint32x4_t r0_0 = state0; uint32x4_t r0_1 = state1; uint32x4_t r0_2 = state2; uint32x4_t r0_3 = state3; uint32x4_t r1_0 = state0; uint32x4_t r1_1 = state1; uint32x4_t r1_2 = state2; uint32x4_t r1_3 = Add64(r0_3, CTRS[0]); uint32x4_t r2_0 = state0; uint32x4_t r2_1 = state1; uint32x4_t r2_2 = state2; uint32x4_t r2_3 = Add64(r0_3, CTRS[1]); uint32x4_t r3_0 = state0; uint32x4_t r3_1 = state1; uint32x4_t r3_2 = state2; uint32x4_t r3_3 = Add64(r0_3, CTRS[2]); for (int i = static_cast(rounds); i > 0; i -= 2) { r0_0 = vaddq_u32(r0_0, r0_1); r1_0 = vaddq_u32(r1_0, r1_1); r2_0 = vaddq_u32(r2_0, r2_1); r3_0 = vaddq_u32(r3_0, r3_1); r0_3 = veorq_u32(r0_3, r0_0); r1_3 = veorq_u32(r1_3, r1_0); r2_3 = veorq_u32(r2_3, r2_0); r3_3 = veorq_u32(r3_3, r3_0); r0_3 = RotateLeft<16>(r0_3); r1_3 = RotateLeft<16>(r1_3); r2_3 = RotateLeft<16>(r2_3); r3_3 = RotateLeft<16>(r3_3); r0_2 = vaddq_u32(r0_2, r0_3); r1_2 = vaddq_u32(r1_2, r1_3); r2_2 = vaddq_u32(r2_2, r2_3); r3_2 = vaddq_u32(r3_2, r3_3); r0_1 = veorq_u32(r0_1, r0_2); r1_1 = veorq_u32(r1_1, r1_2); r2_1 = veorq_u32(r2_1, r2_2); r3_1 = veorq_u32(r3_1, r3_2); r0_1 = RotateLeft<12>(r0_1); r1_1 = RotateLeft<12>(r1_1); r2_1 = RotateLeft<12>(r2_1); r3_1 = RotateLeft<12>(r3_1); r0_0 = vaddq_u32(r0_0, r0_1); r1_0 = vaddq_u32(r1_0, r1_1); r2_0 = vaddq_u32(r2_0, r2_1); r3_0 = vaddq_u32(r3_0, r3_1); r0_3 = veorq_u32(r0_3, r0_0); r1_3 = veorq_u32(r1_3, r1_0); r2_3 = veorq_u32(r2_3, r2_0); r3_3 = veorq_u32(r3_3, r3_0); r0_3 = RotateLeft<8>(r0_3); r1_3 = RotateLeft<8>(r1_3); r2_3 = RotateLeft<8>(r2_3); r3_3 = RotateLeft<8>(r3_3); r0_2 = vaddq_u32(r0_2, r0_3); r1_2 = vaddq_u32(r1_2, r1_3); r2_2 = vaddq_u32(r2_2, r2_3); r3_2 = vaddq_u32(r3_2, r3_3); r0_1 = veorq_u32(r0_1, r0_2); r1_1 = veorq_u32(r1_1, r1_2); r2_1 = veorq_u32(r2_1, r2_2); r3_1 = veorq_u32(r3_1, r3_2); r0_1 = RotateLeft<7>(r0_1); r1_1 = RotateLeft<7>(r1_1); r2_1 = RotateLeft<7>(r2_1); r3_1 = RotateLeft<7>(r3_1); r0_1 = Extract<1>(r0_1); r0_2 = Extract<2>(r0_2); r0_3 = Extract<3>(r0_3); r1_1 = Extract<1>(r1_1); r1_2 = Extract<2>(r1_2); r1_3 = Extract<3>(r1_3); r2_1 = Extract<1>(r2_1); r2_2 = Extract<2>(r2_2); r2_3 = Extract<3>(r2_3); r3_1 = Extract<1>(r3_1); r3_2 = Extract<2>(r3_2); r3_3 = Extract<3>(r3_3); r0_0 = vaddq_u32(r0_0, r0_1); r1_0 = vaddq_u32(r1_0, r1_1); r2_0 = vaddq_u32(r2_0, r2_1); r3_0 = vaddq_u32(r3_0, r3_1); r0_3 = veorq_u32(r0_3, r0_0); r1_3 = veorq_u32(r1_3, r1_0); r2_3 = veorq_u32(r2_3, r2_0); r3_3 = veorq_u32(r3_3, r3_0); r0_3 = RotateLeft<16>(r0_3); r1_3 = RotateLeft<16>(r1_3); r2_3 = RotateLeft<16>(r2_3); r3_3 = RotateLeft<16>(r3_3); r0_2 = vaddq_u32(r0_2, r0_3); r1_2 = vaddq_u32(r1_2, r1_3); r2_2 = vaddq_u32(r2_2, r2_3); r3_2 = vaddq_u32(r3_2, r3_3); r0_1 = veorq_u32(r0_1, r0_2); r1_1 = veorq_u32(r1_1, r1_2); r2_1 = veorq_u32(r2_1, r2_2); r3_1 = veorq_u32(r3_1, r3_2); r0_1 = RotateLeft<12>(r0_1); r1_1 = RotateLeft<12>(r1_1); r2_1 = RotateLeft<12>(r2_1); r3_1 = RotateLeft<12>(r3_1); r0_0 = vaddq_u32(r0_0, r0_1); r1_0 = vaddq_u32(r1_0, r1_1); r2_0 = vaddq_u32(r2_0, r2_1); r3_0 = vaddq_u32(r3_0, r3_1); r0_3 = veorq_u32(r0_3, r0_0); r1_3 = veorq_u32(r1_3, r1_0); r2_3 = veorq_u32(r2_3, r2_0); r3_3 = veorq_u32(r3_3, r3_0); r0_3 = RotateLeft<8>(r0_3); r1_3 = RotateLeft<8>(r1_3); r2_3 = RotateLeft<8>(r2_3); r3_3 = RotateLeft<8>(r3_3); r0_2 = vaddq_u32(r0_2, r0_3); r1_2 = vaddq_u32(r1_2, r1_3); r2_2 = vaddq_u32(r2_2, r2_3); r3_2 = vaddq_u32(r3_2, r3_3); r0_1 = veorq_u32(r0_1, r0_2); r1_1 = veorq_u32(r1_1, r1_2); r2_1 = veorq_u32(r2_1, r2_2); r3_1 = veorq_u32(r3_1, r3_2); r0_1 = RotateLeft<7>(r0_1); r1_1 = RotateLeft<7>(r1_1); r2_1 = RotateLeft<7>(r2_1); r3_1 = RotateLeft<7>(r3_1); r0_1 = Extract<3>(r0_1); r0_2 = Extract<2>(r0_2); r0_3 = Extract<1>(r0_3); r1_1 = Extract<3>(r1_1); r1_2 = Extract<2>(r1_2); r1_3 = Extract<1>(r1_3); r2_1 = Extract<3>(r2_1); r2_2 = Extract<2>(r2_2); r2_3 = Extract<1>(r2_3); r3_1 = Extract<3>(r3_1); r3_2 = Extract<2>(r3_2); r3_3 = Extract<1>(r3_3); } r0_0 = vaddq_u32(r0_0, state0); r0_1 = vaddq_u32(r0_1, state1); r0_2 = vaddq_u32(r0_2, state2); r0_3 = vaddq_u32(r0_3, state3); r1_0 = vaddq_u32(r1_0, state0); r1_1 = vaddq_u32(r1_1, state1); r1_2 = vaddq_u32(r1_2, state2); r1_3 = vaddq_u32(r1_3, state3); r1_3 = Add64(r1_3, CTRS[0]); r2_0 = vaddq_u32(r2_0, state0); r2_1 = vaddq_u32(r2_1, state1); r2_2 = vaddq_u32(r2_2, state2); r2_3 = vaddq_u32(r2_3, state3); r2_3 = Add64(r2_3, CTRS[1]); r3_0 = vaddq_u32(r3_0, state0); r3_1 = vaddq_u32(r3_1, state1); r3_2 = vaddq_u32(r3_2, state2); r3_3 = vaddq_u32(r3_3, state3); r3_3 = Add64(r3_3, CTRS[2]); if (input) { r0_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 0*16)), r0_0); r0_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 1*16)), r0_1); r0_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 2*16)), r0_2); r0_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 3*16)), r0_3); } vst1q_u8(output + 0*16, vreinterpretq_u8_u32(r0_0)); vst1q_u8(output + 1*16, vreinterpretq_u8_u32(r0_1)); vst1q_u8(output + 2*16, vreinterpretq_u8_u32(r0_2)); vst1q_u8(output + 3*16, vreinterpretq_u8_u32(r0_3)); if (input) { r1_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 4*16)), r1_0); r1_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 5*16)), r1_1); r1_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 6*16)), r1_2); r1_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 7*16)), r1_3); } vst1q_u8(output + 4*16, vreinterpretq_u8_u32(r1_0)); vst1q_u8(output + 5*16, vreinterpretq_u8_u32(r1_1)); vst1q_u8(output + 6*16, vreinterpretq_u8_u32(r1_2)); vst1q_u8(output + 7*16, vreinterpretq_u8_u32(r1_3)); if (input) { r2_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 8*16)), r2_0); r2_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 9*16)), r2_1); r2_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 10*16)), r2_2); r2_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 11*16)), r2_3); } vst1q_u8(output + 8*16, vreinterpretq_u8_u32(r2_0)); vst1q_u8(output + 9*16, vreinterpretq_u8_u32(r2_1)); vst1q_u8(output + 10*16, vreinterpretq_u8_u32(r2_2)); vst1q_u8(output + 11*16, vreinterpretq_u8_u32(r2_3)); if (input) { r3_0 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 12*16)), r3_0); r3_1 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 13*16)), r3_1); r3_2 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 14*16)), r3_2); r3_3 = veorq_u32(vreinterpretq_u32_u8(vld1q_u8(input + 15*16)), r3_3); } vst1q_u8(output + 12*16, vreinterpretq_u8_u32(r3_0)); vst1q_u8(output + 13*16, vreinterpretq_u8_u32(r3_1)); vst1q_u8(output + 14*16, vreinterpretq_u8_u32(r3_2)); vst1q_u8(output + 15*16, vreinterpretq_u8_u32(r3_3)); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE // ***************************** SSE2 ***************************** // #if (CRYPTOPP_SSE2_INTRIN_AVAILABLE) void ChaCha_OperateKeystream_SSE2(const word32 *state, const byte* input, byte *output, unsigned int rounds) { const __m128i state0 = _mm_load_si128(reinterpret_cast(state+0*4)); const __m128i state1 = _mm_load_si128(reinterpret_cast(state+1*4)); const __m128i state2 = _mm_load_si128(reinterpret_cast(state+2*4)); const __m128i state3 = _mm_load_si128(reinterpret_cast(state+3*4)); __m128i r0_0 = state0; __m128i r0_1 = state1; __m128i r0_2 = state2; __m128i r0_3 = state3; __m128i r1_0 = state0; __m128i r1_1 = state1; __m128i r1_2 = state2; __m128i r1_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 1)); __m128i r2_0 = state0; __m128i r2_1 = state1; __m128i r2_2 = state2; __m128i r2_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 2)); __m128i r3_0 = state0; __m128i r3_1 = state1; __m128i r3_2 = state2; __m128i r3_3 = _mm_add_epi64(r0_3, _mm_set_epi32(0, 0, 0, 3)); for (int i = static_cast(rounds); i > 0; i -= 2) { r0_0 = _mm_add_epi32(r0_0, r0_1); r1_0 = _mm_add_epi32(r1_0, r1_1); r2_0 = _mm_add_epi32(r2_0, r2_1); r3_0 = _mm_add_epi32(r3_0, r3_1); r0_3 = _mm_xor_si128(r0_3, r0_0); r1_3 = _mm_xor_si128(r1_3, r1_0); r2_3 = _mm_xor_si128(r2_3, r2_0); r3_3 = _mm_xor_si128(r3_3, r3_0); r0_3 = RotateLeft<16>(r0_3); r1_3 = RotateLeft<16>(r1_3); r2_3 = RotateLeft<16>(r2_3); r3_3 = RotateLeft<16>(r3_3); r0_2 = _mm_add_epi32(r0_2, r0_3); r1_2 = _mm_add_epi32(r1_2, r1_3); r2_2 = _mm_add_epi32(r2_2, r2_3); r3_2 = _mm_add_epi32(r3_2, r3_3); r0_1 = _mm_xor_si128(r0_1, r0_2); r1_1 = _mm_xor_si128(r1_1, r1_2); r2_1 = _mm_xor_si128(r2_1, r2_2); r3_1 = _mm_xor_si128(r3_1, r3_2); r0_1 = RotateLeft<12>(r0_1); r1_1 = RotateLeft<12>(r1_1); r2_1 = RotateLeft<12>(r2_1); r3_1 = RotateLeft<12>(r3_1); r0_0 = _mm_add_epi32(r0_0, r0_1); r1_0 = _mm_add_epi32(r1_0, r1_1); r2_0 = _mm_add_epi32(r2_0, r2_1); r3_0 = _mm_add_epi32(r3_0, r3_1); r0_3 = _mm_xor_si128(r0_3, r0_0); r1_3 = _mm_xor_si128(r1_3, r1_0); r2_3 = _mm_xor_si128(r2_3, r2_0); r3_3 = _mm_xor_si128(r3_3, r3_0); r0_3 = RotateLeft<8>(r0_3); r1_3 = RotateLeft<8>(r1_3); r2_3 = RotateLeft<8>(r2_3); r3_3 = RotateLeft<8>(r3_3); r0_2 = _mm_add_epi32(r0_2, r0_3); r1_2 = _mm_add_epi32(r1_2, r1_3); r2_2 = _mm_add_epi32(r2_2, r2_3); r3_2 = _mm_add_epi32(r3_2, r3_3); r0_1 = _mm_xor_si128(r0_1, r0_2); r1_1 = _mm_xor_si128(r1_1, r1_2); r2_1 = _mm_xor_si128(r2_1, r2_2); r3_1 = _mm_xor_si128(r3_1, r3_2); r0_1 = RotateLeft<7>(r0_1); r1_1 = RotateLeft<7>(r1_1); r2_1 = RotateLeft<7>(r2_1); r3_1 = RotateLeft<7>(r3_1); r0_1 = _mm_shuffle_epi32(r0_1, _MM_SHUFFLE(0, 3, 2, 1)); r0_2 = _mm_shuffle_epi32(r0_2, _MM_SHUFFLE(1, 0, 3, 2)); r0_3 = _mm_shuffle_epi32(r0_3, _MM_SHUFFLE(2, 1, 0, 3)); r1_1 = _mm_shuffle_epi32(r1_1, _MM_SHUFFLE(0, 3, 2, 1)); r1_2 = _mm_shuffle_epi32(r1_2, _MM_SHUFFLE(1, 0, 3, 2)); r1_3 = _mm_shuffle_epi32(r1_3, _MM_SHUFFLE(2, 1, 0, 3)); r2_1 = _mm_shuffle_epi32(r2_1, _MM_SHUFFLE(0, 3, 2, 1)); r2_2 = _mm_shuffle_epi32(r2_2, _MM_SHUFFLE(1, 0, 3, 2)); r2_3 = _mm_shuffle_epi32(r2_3, _MM_SHUFFLE(2, 1, 0, 3)); r3_1 = _mm_shuffle_epi32(r3_1, _MM_SHUFFLE(0, 3, 2, 1)); r3_2 = _mm_shuffle_epi32(r3_2, _MM_SHUFFLE(1, 0, 3, 2)); r3_3 = _mm_shuffle_epi32(r3_3, _MM_SHUFFLE(2, 1, 0, 3)); r0_0 = _mm_add_epi32(r0_0, r0_1); r1_0 = _mm_add_epi32(r1_0, r1_1); r2_0 = _mm_add_epi32(r2_0, r2_1); r3_0 = _mm_add_epi32(r3_0, r3_1); r0_3 = _mm_xor_si128(r0_3, r0_0); r1_3 = _mm_xor_si128(r1_3, r1_0); r2_3 = _mm_xor_si128(r2_3, r2_0); r3_3 = _mm_xor_si128(r3_3, r3_0); r0_3 = RotateLeft<16>(r0_3); r1_3 = RotateLeft<16>(r1_3); r2_3 = RotateLeft<16>(r2_3); r3_3 = RotateLeft<16>(r3_3); r0_2 = _mm_add_epi32(r0_2, r0_3); r1_2 = _mm_add_epi32(r1_2, r1_3); r2_2 = _mm_add_epi32(r2_2, r2_3); r3_2 = _mm_add_epi32(r3_2, r3_3); r0_1 = _mm_xor_si128(r0_1, r0_2); r1_1 = _mm_xor_si128(r1_1, r1_2); r2_1 = _mm_xor_si128(r2_1, r2_2); r3_1 = _mm_xor_si128(r3_1, r3_2); r0_1 = RotateLeft<12>(r0_1); r1_1 = RotateLeft<12>(r1_1); r2_1 = RotateLeft<12>(r2_1); r3_1 = RotateLeft<12>(r3_1); r0_0 = _mm_add_epi32(r0_0, r0_1); r1_0 = _mm_add_epi32(r1_0, r1_1); r2_0 = _mm_add_epi32(r2_0, r2_1); r3_0 = _mm_add_epi32(r3_0, r3_1); r0_3 = _mm_xor_si128(r0_3, r0_0); r1_3 = _mm_xor_si128(r1_3, r1_0); r2_3 = _mm_xor_si128(r2_3, r2_0); r3_3 = _mm_xor_si128(r3_3, r3_0); r0_3 = RotateLeft<8>(r0_3); r1_3 = RotateLeft<8>(r1_3); r2_3 = RotateLeft<8>(r2_3); r3_3 = RotateLeft<8>(r3_3); r0_2 = _mm_add_epi32(r0_2, r0_3); r1_2 = _mm_add_epi32(r1_2, r1_3); r2_2 = _mm_add_epi32(r2_2, r2_3); r3_2 = _mm_add_epi32(r3_2, r3_3); r0_1 = _mm_xor_si128(r0_1, r0_2); r1_1 = _mm_xor_si128(r1_1, r1_2); r2_1 = _mm_xor_si128(r2_1, r2_2); r3_1 = _mm_xor_si128(r3_1, r3_2); r0_1 = RotateLeft<7>(r0_1); r1_1 = RotateLeft<7>(r1_1); r2_1 = RotateLeft<7>(r2_1); r3_1 = RotateLeft<7>(r3_1); r0_1 = _mm_shuffle_epi32(r0_1, _MM_SHUFFLE(2, 1, 0, 3)); r0_2 = _mm_shuffle_epi32(r0_2, _MM_SHUFFLE(1, 0, 3, 2)); r0_3 = _mm_shuffle_epi32(r0_3, _MM_SHUFFLE(0, 3, 2, 1)); r1_1 = _mm_shuffle_epi32(r1_1, _MM_SHUFFLE(2, 1, 0, 3)); r1_2 = _mm_shuffle_epi32(r1_2, _MM_SHUFFLE(1, 0, 3, 2)); r1_3 = _mm_shuffle_epi32(r1_3, _MM_SHUFFLE(0, 3, 2, 1)); r2_1 = _mm_shuffle_epi32(r2_1, _MM_SHUFFLE(2, 1, 0, 3)); r2_2 = _mm_shuffle_epi32(r2_2, _MM_SHUFFLE(1, 0, 3, 2)); r2_3 = _mm_shuffle_epi32(r2_3, _MM_SHUFFLE(0, 3, 2, 1)); r3_1 = _mm_shuffle_epi32(r3_1, _MM_SHUFFLE(2, 1, 0, 3)); r3_2 = _mm_shuffle_epi32(r3_2, _MM_SHUFFLE(1, 0, 3, 2)); r3_3 = _mm_shuffle_epi32(r3_3, _MM_SHUFFLE(0, 3, 2, 1)); } r0_0 = _mm_add_epi32(r0_0, state0); r0_1 = _mm_add_epi32(r0_1, state1); r0_2 = _mm_add_epi32(r0_2, state2); r0_3 = _mm_add_epi32(r0_3, state3); r1_0 = _mm_add_epi32(r1_0, state0); r1_1 = _mm_add_epi32(r1_1, state1); r1_2 = _mm_add_epi32(r1_2, state2); r1_3 = _mm_add_epi32(r1_3, state3); r1_3 = _mm_add_epi64(r1_3, _mm_set_epi32(0, 0, 0, 1)); r2_0 = _mm_add_epi32(r2_0, state0); r2_1 = _mm_add_epi32(r2_1, state1); r2_2 = _mm_add_epi32(r2_2, state2); r2_3 = _mm_add_epi32(r2_3, state3); r2_3 = _mm_add_epi64(r2_3, _mm_set_epi32(0, 0, 0, 2)); r3_0 = _mm_add_epi32(r3_0, state0); r3_1 = _mm_add_epi32(r3_1, state1); r3_2 = _mm_add_epi32(r3_2, state2); r3_3 = _mm_add_epi32(r3_3, state3); r3_3 = _mm_add_epi64(r3_3, _mm_set_epi32(0, 0, 0, 3)); if (input) { r0_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+0*16)), r0_0); r0_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+1*16)), r0_1); r0_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+2*16)), r0_2); r0_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+3*16)), r0_3); } _mm_storeu_si128(reinterpret_cast<__m128i*>(output+0*16), r0_0); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+1*16), r0_1); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+2*16), r0_2); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+3*16), r0_3); if (input) { r1_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+4*16)), r1_0); r1_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+5*16)), r1_1); r1_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+6*16)), r1_2); r1_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+7*16)), r1_3); } _mm_storeu_si128(reinterpret_cast<__m128i*>(output+4*16), r1_0); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+5*16), r1_1); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+6*16), r1_2); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+7*16), r1_3); if (input) { r2_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+ 8*16)), r2_0); r2_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+ 9*16)), r2_1); r2_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+10*16)), r2_2); r2_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+11*16)), r2_3); } _mm_storeu_si128(reinterpret_cast<__m128i*>(output+ 8*16), r2_0); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+ 9*16), r2_1); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+10*16), r2_2); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+11*16), r2_3); if (input) { r3_0 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+12*16)), r3_0); r3_1 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+13*16)), r3_1); r3_2 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+14*16)), r3_2); r3_3 = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast(input+15*16)), r3_3); } _mm_storeu_si128(reinterpret_cast<__m128i*>(output+12*16), r3_0); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+13*16), r3_1); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+14*16), r3_2); _mm_storeu_si128(reinterpret_cast<__m128i*>(output+15*16), r3_3); } #endif // CRYPTOPP_SSE2_INTRIN_AVAILABLE #if (CRYPTOPP_ALTIVEC_AVAILABLE) // ChaCha_OperateKeystream_CORE will use either POWER7 or ALTIVEC, // depending on the flags used to compile this source file. The // abstractions are handled in VecLoad, VecStore and friends. In // the future we may to provide both POWER7 or ALTIVEC at the same // time to better support distros. inline void ChaCha_OperateKeystream_CORE(const word32 *state, const byte* input, byte *output, unsigned int rounds) { const uint32x4_p state0 = VecLoadAligned(state + 0*4); const uint32x4_p state1 = VecLoadAligned(state + 1*4); const uint32x4_p state2 = VecLoadAligned(state + 2*4); const uint32x4_p state3 = VecLoadAligned(state + 3*4); const uint32x4_p CTRS[3] = { {1,0,0,0}, {2,0,0,0}, {3,0,0,0} }; uint32x4_p r0_0 = state0; uint32x4_p r0_1 = state1; uint32x4_p r0_2 = state2; uint32x4_p r0_3 = state3; uint32x4_p r1_0 = state0; uint32x4_p r1_1 = state1; uint32x4_p r1_2 = state2; uint32x4_p r1_3 = VecAdd64(r0_3, CTRS[0]); uint32x4_p r2_0 = state0; uint32x4_p r2_1 = state1; uint32x4_p r2_2 = state2; uint32x4_p r2_3 = VecAdd64(r0_3, CTRS[1]); uint32x4_p r3_0 = state0; uint32x4_p r3_1 = state1; uint32x4_p r3_2 = state2; uint32x4_p r3_3 = VecAdd64(r0_3, CTRS[2]); for (int i = static_cast(rounds); i > 0; i -= 2) { r0_0 = VecAdd(r0_0, r0_1); r1_0 = VecAdd(r1_0, r1_1); r2_0 = VecAdd(r2_0, r2_1); r3_0 = VecAdd(r3_0, r3_1); r0_3 = VecXor(r0_3, r0_0); r1_3 = VecXor(r1_3, r1_0); r2_3 = VecXor(r2_3, r2_0); r3_3 = VecXor(r3_3, r3_0); r0_3 = VecRotateLeft<16>(r0_3); r1_3 = VecRotateLeft<16>(r1_3); r2_3 = VecRotateLeft<16>(r2_3); r3_3 = VecRotateLeft<16>(r3_3); r0_2 = VecAdd(r0_2, r0_3); r1_2 = VecAdd(r1_2, r1_3); r2_2 = VecAdd(r2_2, r2_3); r3_2 = VecAdd(r3_2, r3_3); r0_1 = VecXor(r0_1, r0_2); r1_1 = VecXor(r1_1, r1_2); r2_1 = VecXor(r2_1, r2_2); r3_1 = VecXor(r3_1, r3_2); r0_1 = VecRotateLeft<12>(r0_1); r1_1 = VecRotateLeft<12>(r1_1); r2_1 = VecRotateLeft<12>(r2_1); r3_1 = VecRotateLeft<12>(r3_1); r0_0 = VecAdd(r0_0, r0_1); r1_0 = VecAdd(r1_0, r1_1); r2_0 = VecAdd(r2_0, r2_1); r3_0 = VecAdd(r3_0, r3_1); r0_3 = VecXor(r0_3, r0_0); r1_3 = VecXor(r1_3, r1_0); r2_3 = VecXor(r2_3, r2_0); r3_3 = VecXor(r3_3, r3_0); r0_3 = VecRotateLeft<8>(r0_3); r1_3 = VecRotateLeft<8>(r1_3); r2_3 = VecRotateLeft<8>(r2_3); r3_3 = VecRotateLeft<8>(r3_3); r0_2 = VecAdd(r0_2, r0_3); r1_2 = VecAdd(r1_2, r1_3); r2_2 = VecAdd(r2_2, r2_3); r3_2 = VecAdd(r3_2, r3_3); r0_1 = VecXor(r0_1, r0_2); r1_1 = VecXor(r1_1, r1_2); r2_1 = VecXor(r2_1, r2_2); r3_1 = VecXor(r3_1, r3_2); r0_1 = VecRotateLeft<7>(r0_1); r1_1 = VecRotateLeft<7>(r1_1); r2_1 = VecRotateLeft<7>(r2_1); r3_1 = VecRotateLeft<7>(r3_1); r0_1 = Shuffle<1>(r0_1); r0_2 = Shuffle<2>(r0_2); r0_3 = Shuffle<3>(r0_3); r1_1 = Shuffle<1>(r1_1); r1_2 = Shuffle<2>(r1_2); r1_3 = Shuffle<3>(r1_3); r2_1 = Shuffle<1>(r2_1); r2_2 = Shuffle<2>(r2_2); r2_3 = Shuffle<3>(r2_3); r3_1 = Shuffle<1>(r3_1); r3_2 = Shuffle<2>(r3_2); r3_3 = Shuffle<3>(r3_3); r0_0 = VecAdd(r0_0, r0_1); r1_0 = VecAdd(r1_0, r1_1); r2_0 = VecAdd(r2_0, r2_1); r3_0 = VecAdd(r3_0, r3_1); r0_3 = VecXor(r0_3, r0_0); r1_3 = VecXor(r1_3, r1_0); r2_3 = VecXor(r2_3, r2_0); r3_3 = VecXor(r3_3, r3_0); r0_3 = VecRotateLeft<16>(r0_3); r1_3 = VecRotateLeft<16>(r1_3); r2_3 = VecRotateLeft<16>(r2_3); r3_3 = VecRotateLeft<16>(r3_3); r0_2 = VecAdd(r0_2, r0_3); r1_2 = VecAdd(r1_2, r1_3); r2_2 = VecAdd(r2_2, r2_3); r3_2 = VecAdd(r3_2, r3_3); r0_1 = VecXor(r0_1, r0_2); r1_1 = VecXor(r1_1, r1_2); r2_1 = VecXor(r2_1, r2_2); r3_1 = VecXor(r3_1, r3_2); r0_1 = VecRotateLeft<12>(r0_1); r1_1 = VecRotateLeft<12>(r1_1); r2_1 = VecRotateLeft<12>(r2_1); r3_1 = VecRotateLeft<12>(r3_1); r0_0 = VecAdd(r0_0, r0_1); r1_0 = VecAdd(r1_0, r1_1); r2_0 = VecAdd(r2_0, r2_1); r3_0 = VecAdd(r3_0, r3_1); r0_3 = VecXor(r0_3, r0_0); r1_3 = VecXor(r1_3, r1_0); r2_3 = VecXor(r2_3, r2_0); r3_3 = VecXor(r3_3, r3_0); r0_3 = VecRotateLeft<8>(r0_3); r1_3 = VecRotateLeft<8>(r1_3); r2_3 = VecRotateLeft<8>(r2_3); r3_3 = VecRotateLeft<8>(r3_3); r0_2 = VecAdd(r0_2, r0_3); r1_2 = VecAdd(r1_2, r1_3); r2_2 = VecAdd(r2_2, r2_3); r3_2 = VecAdd(r3_2, r3_3); r0_1 = VecXor(r0_1, r0_2); r1_1 = VecXor(r1_1, r1_2); r2_1 = VecXor(r2_1, r2_2); r3_1 = VecXor(r3_1, r3_2); r0_1 = VecRotateLeft<7>(r0_1); r1_1 = VecRotateLeft<7>(r1_1); r2_1 = VecRotateLeft<7>(r2_1); r3_1 = VecRotateLeft<7>(r3_1); r0_1 = Shuffle<3>(r0_1); r0_2 = Shuffle<2>(r0_2); r0_3 = Shuffle<1>(r0_3); r1_1 = Shuffle<3>(r1_1); r1_2 = Shuffle<2>(r1_2); r1_3 = Shuffle<1>(r1_3); r2_1 = Shuffle<3>(r2_1); r2_2 = Shuffle<2>(r2_2); r2_3 = Shuffle<1>(r2_3); r3_1 = Shuffle<3>(r3_1); r3_2 = Shuffle<2>(r3_2); r3_3 = Shuffle<1>(r3_3); } r0_0 = VecAdd(r0_0, state0); r0_1 = VecAdd(r0_1, state1); r0_2 = VecAdd(r0_2, state2); r0_3 = VecAdd(r0_3, state3); r1_0 = VecAdd(r1_0, state0); r1_1 = VecAdd(r1_1, state1); r1_2 = VecAdd(r1_2, state2); r1_3 = VecAdd(r1_3, state3); r1_3 = VecAdd64(r1_3, CTRS[0]); r2_0 = VecAdd(r2_0, state0); r2_1 = VecAdd(r2_1, state1); r2_2 = VecAdd(r2_2, state2); r2_3 = VecAdd(r2_3, state3); r2_3 = VecAdd64(r2_3, CTRS[1]); r3_0 = VecAdd(r3_0, state0); r3_1 = VecAdd(r3_1, state1); r3_2 = VecAdd(r3_2, state2); r3_3 = VecAdd(r3_3, state3); r3_3 = VecAdd64(r3_3, CTRS[2]); if (input) { r0_0 = VecXor(VecLoad32LE(input + 0*16), r0_0); r0_1 = VecXor(VecLoad32LE(input + 1*16), r0_1); r0_2 = VecXor(VecLoad32LE(input + 2*16), r0_2); r0_3 = VecXor(VecLoad32LE(input + 3*16), r0_3); } VecStore32LE(output + 0*16, r0_0); VecStore32LE(output + 1*16, r0_1); VecStore32LE(output + 2*16, r0_2); VecStore32LE(output + 3*16, r0_3); if (input) { r1_0 = VecXor(VecLoad32LE(input + 4*16), r1_0); r1_1 = VecXor(VecLoad32LE(input + 5*16), r1_1); r1_2 = VecXor(VecLoad32LE(input + 6*16), r1_2); r1_3 = VecXor(VecLoad32LE(input + 7*16), r1_3); } VecStore32LE(output + 4*16, r1_0); VecStore32LE(output + 5*16, r1_1); VecStore32LE(output + 6*16, r1_2); VecStore32LE(output + 7*16, r1_3); if (input) { r2_0 = VecXor(VecLoad32LE(input + 8*16), r2_0); r2_1 = VecXor(VecLoad32LE(input + 9*16), r2_1); r2_2 = VecXor(VecLoad32LE(input + 10*16), r2_2); r2_3 = VecXor(VecLoad32LE(input + 11*16), r2_3); } VecStore32LE(output + 8*16, r2_0); VecStore32LE(output + 9*16, r2_1); VecStore32LE(output + 10*16, r2_2); VecStore32LE(output + 11*16, r2_3); if (input) { r3_0 = VecXor(VecLoad32LE(input + 12*16), r3_0); r3_1 = VecXor(VecLoad32LE(input + 13*16), r3_1); r3_2 = VecXor(VecLoad32LE(input + 14*16), r3_2); r3_3 = VecXor(VecLoad32LE(input + 15*16), r3_3); } VecStore32LE(output + 12*16, r3_0); VecStore32LE(output + 13*16, r3_1); VecStore32LE(output + 14*16, r3_2); VecStore32LE(output + 15*16, r3_3); } #endif // CRYPTOPP_ALTIVEC_AVAILABLE #if (CRYPTOPP_ALTIVEC_AVAILABLE) void ChaCha_OperateKeystream_ALTIVEC(const word32 *state, const byte* input, byte *output, unsigned int rounds) { ChaCha_OperateKeystream_CORE(state, input, output, rounds); } #endif NAMESPACE_END