inline T1 VectorAdd(const T1& vec1, const T2& vec2)
{
return (T1)vec_add(vec1, (T1)vec2);
}
/// \brief Shift two vectors left
/// \tparam C shift byte count
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param vec1 the first vector
/// \param vec2 the second vector
/// \details VectorShiftLeft() concatenates vec1 and vec2 and returns a
/// new vector after shifting the concatenation by the specified number
/// of bytes. Both vec1 and vec2 are cast to uint8x16_p. The return
/// vector is the same type as vec1.
/// \details On big endian machines VectorShiftLeft() is vec_sld(a, b,
/// c). On little endian machines VectorShiftLeft() is translated to
/// vec_sld(b, a, 16-c). You should always call the function as
/// if on a big endian machine as shown below.
///
/// uint8x16_p r0 = {0};
/// uint8x16_p r1 = VectorLoad(ptr);
/// uint8x16_p r5 = VectorShiftLeft<12>(r0, r1);
///
/// \sa Is vec_sld
/// endian sensitive? on Stack Overflow
/// \since Crypto++ 6.0
template
inline T1 VectorShiftLeft(const T1& vec1, const T2& vec2)
{
#if defined(CRYPTOPP_LITTLE_ENDIAN)
return (T1)vec_sld((uint8x16_p)vec2, (uint8x16_p)vec1, 16-C);
#else
return (T1)vec_sld((uint8x16_p)vec1, (uint8x16_p)vec2, C);
#endif
}
#endif // CRYPTOPP_POWER7_AVAILABLE
#if defined(CRYPTOPP_POWER8_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING)
/// \brief One round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorEncrypt performs one round of AES encryption of state
/// using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template
inline T1 VectorEncrypt(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vcipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vcipher((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief Final round of AES encryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorEncryptLast performs the final round of AES encryption
/// of state using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template
inline T1 VectorEncryptLast(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vcipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vcipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief One round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorDecrypt performs one round of AES decryption of state
/// using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template
inline T1 VectorDecrypt(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vncipher((uint8x16_p)state, (uint8x16_p)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vncipher((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief Final round of AES decryption
/// \tparam T1 vector type
/// \tparam T2 vector type
/// \param state the state vector
/// \param key the subkey vector
/// \details VectorDecryptLast performs the final round of AES decryption
/// of state using subkey key. The return vector is the same type as vec1.
/// \since Crypto++ 6.0
template
inline T1 VectorDecryptLast(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vncipherlast((uint8x16_p)state, (uint8x16_p)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vncipherlast((uint64x2_p)state, (uint64x2_p)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief SHA256 Sigma functions
/// \tparam func function
/// \tparam subfunc sub-function
/// \tparam T vector type
/// \param vec the block to transform
/// \details VectorSHA256 selects sigma0, sigma1, Sigma0, Sigma1 based on
/// func and subfunc. The return vector is the same type as vec.
/// \since Crypto++ 6.0
template
inline T VectorSHA256(const T& vec)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T)__vshasigmaw((uint32x4_p)vec, func, subfunc);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T)__builtin_crypto_vshasigmaw((uint32x4_p)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
/// \brief SHA512 Sigma functions
/// \tparam func function
/// \tparam subfunc sub-function
/// \tparam T vector type
/// \param vec the block to transform
/// \details VectorSHA512 selects sigma0, sigma1, Sigma0, Sigma1 based on
/// func and subfunc. The return vector is the same type as vec.
/// \since Crypto++ 6.0
template
inline T VectorSHA512(const T& vec)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T)__vshasigmad((uint64x2_p)vec, func, subfunc);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T)__builtin_crypto_vshasigmad((uint64x2_p)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
#endif // CRYPTOPP_POWER8_AVAILABLE
NAMESPACE_END
#endif // CRYPTOPP_PPC_CRYPTO_H