// rw.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "rw.h" #include "asn.h" #include "integer.h" #include "nbtheory.h" #include "modarith.h" #include "asn.h" #ifndef CRYPTOPP_IMPORTS #if defined(_OPENMP) static const bool CRYPTOPP_RW_USE_OMP = true; #else static const bool CRYPTOPP_RW_USE_OMP = false; #endif NAMESPACE_BEGIN(CryptoPP) void RWFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); seq.MessageEnd(); } void RWFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); seq.MessageEnd(); } Integer RWFunction::ApplyFunction(const Integer &in) const { DoQuickSanityCheck(); Integer out = in.Squared()%m_n; const word r = 12; // this code was written to handle both r = 6 and r = 12, // but now only r = 12 is used in P1363 const word r2 = r/2; const word r3a = (16 + 5 - r) % 16; // n%16 could be 5 or 13 const word r3b = (16 + 13 - r) % 16; const word r4 = (8 + 5 - r/2) % 8; // n%8 == 5 switch (out % 16) { case r: break; case r2: case r2+8: out <<= 1; break; case r3a: case r3b: out.Negate(); out += m_n; break; case r4: case r4+8: out.Negate(); out += m_n; out <<= 1; break; default: out = Integer::Zero(); } return out; } bool RWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(level); bool pass = true; pass = pass && m_n > Integer::One() && m_n%8 == 5; return pass; } bool RWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) ; } void RWFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) ; } // ***************************************************************************** // private key operations: // generate a random private key void InvertibleRWFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg) { int modulusSize = 2048; alg.GetIntValue("ModulusSize", modulusSize) || alg.GetIntValue("KeySize", modulusSize); if (modulusSize < 16) throw InvalidArgument("InvertibleRWFunction: specified modulus length is too small"); AlgorithmParameters primeParam = MakeParametersForTwoPrimesOfEqualSize(modulusSize); m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 3)("Mod", 8))); m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("EquivalentTo", 7)("Mod", 8))); m_n = m_p * m_q; m_u = m_q.InverseMod(m_p); Precompute(); } void InvertibleRWFunction::Initialize(const Integer &n, const Integer &p, const Integer &q, const Integer &u) { m_n = n; m_p = p; m_q = q; m_u = u; Precompute(); } void InvertibleRWFunction::PrecomputeTweakedRoots() const { ModularArithmetic modp(m_p), modq(m_q); #pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP) { #pragma omp section m_pre_2_9p = modp.Exponentiate(2, (9 * m_p - 11)/8); #pragma omp section m_pre_2_3q = modq.Exponentiate(2, (3 * m_q - 5)/8); #pragma omp section m_pre_q_p = modp.Exponentiate(m_q, m_p - 2); } m_precompute = true; } void InvertibleRWFunction::LoadPrecomputation(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_pre_2_9p.BERDecode(seq); m_pre_2_3q.BERDecode(seq); m_pre_q_p.BERDecode(seq); seq.MessageEnd(); m_precompute = true; } void InvertibleRWFunction::SavePrecomputation(BufferedTransformation &bt) const { if(!m_precompute) Precompute(); DERSequenceEncoder seq(bt); m_pre_2_9p.DEREncode(seq); m_pre_2_3q.DEREncode(seq); m_pre_q_p.DEREncode(seq); seq.MessageEnd(); } void InvertibleRWFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); m_p.BERDecode(seq); m_q.BERDecode(seq); m_u.BERDecode(seq); seq.MessageEnd(); m_precompute = false; } void InvertibleRWFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); m_p.DEREncode(seq); m_q.DEREncode(seq); m_u.DEREncode(seq); seq.MessageEnd(); } // DJB's "RSA signatures and Rabin-Williams signatures..." (http://cr.yp.to/sigs/rwsota-20080131.pdf). Integer InvertibleRWFunction::CalculateInverse(RandomNumberGenerator &rng, const Integer &x) const { DoQuickSanityCheck(); if(!m_precompute) Precompute(); ModularArithmetic modn(m_n), modp(m_p), modq(m_q); Integer r, rInv; do { // Do this in a loop for people using small numbers for testing r.Randomize(rng, Integer::One(), m_n - Integer::One()); // Fix for CVE-2015-2141. Thanks to Evgeny Sidorov for reporting. // Squaring to satisfy Jacobi requirements suggested by Jean-Pierre Munch. r = modn.Square(r); rInv = modn.MultiplicativeInverse(r); } while (rInv.IsZero()); Integer re = modn.Square(r); re = modn.Multiply(re, x); // blind const Integer &h = re, &p = m_p, &q = m_q; Integer e, f; const Integer U = modq.Exponentiate(h, (q+1)/8); if(((modq.Exponentiate(U, 4) - h) % q).IsZero()) e = Integer::One(); else e = -1; const Integer eh = e*h, V = modp.Exponentiate(eh, (p-3)/8); if(((modp.Multiply(modp.Exponentiate(V, 4), modp.Exponentiate(eh, 2)) - eh) % p).IsZero()) f = Integer::One(); else f = 2; Integer W, X; #pragma omp parallel sections if(CRYPTOPP_RW_USE_OMP) { #pragma omp section { W = (f.IsUnit() ? U : modq.Multiply(m_pre_2_3q, U)); } #pragma omp section { const Integer t = modp.Multiply(modp.Exponentiate(V, 3), eh); X = (f.IsUnit() ? t : modp.Multiply(m_pre_2_9p, t)); } } const Integer Y = W + q * modp.Multiply(m_pre_q_p, (X - W)); // Signature Integer s = modn.Multiply(modn.Square(Y), rInv); assert((e * f * s.Squared()) % m_n == x); // IEEE P1363, Section 8.2.8 IFSP-RW, p.44 s = STDMIN(s, m_n - s); if (ApplyFunction(s) != x) // check throw Exception(Exception::OTHER_ERROR, "InvertibleRWFunction: computational error during private key operation"); return s; } bool InvertibleRWFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = RWFunction::Validate(rng, level); pass = pass && m_p > Integer::One() && m_p%8 == 3 && m_p < m_n; pass = pass && m_q > Integer::One() && m_q%8 == 7 && m_q < m_n; pass = pass && m_u.IsPositive() && m_u < m_p; if (level >= 1) { pass = pass && m_p * m_q == m_n; pass = pass && m_u * m_q % m_p == 1; } if (level >= 2) pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); return pass; } bool InvertibleRWFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) CRYPTOPP_GET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; } void InvertibleRWFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) CRYPTOPP_SET_FUNCTION_ENTRY(MultiplicativeInverseOfPrime2ModPrime1) ; m_precompute = false; } NAMESPACE_END #endif