// esign.cpp - written and placed in the public domain by Wei Dai #include "pch.h" #include "config.h" // TODO: fix the C4589 warnings #if CRYPTOPP_MSC_VERSION # pragma warning(disable: 4589) #endif #include "esign.h" #include "modarith.h" #include "integer.h" #include "nbtheory.h" #include "algparam.h" #include "sha.h" #include "asn.h" NAMESPACE_BEGIN(CryptoPP) #if CRYPTOPP_DEBUG && !defined(CRYPTOPP_DOXYGEN_PROCESSING) void ESIGN_TestInstantiations() { ESIGN::Verifier x1(1, 1); ESIGN::Signer x2(NullRNG(), 1); ESIGN::Verifier x3(x2); ESIGN::Verifier x4(x2.GetKey()); ESIGN::Verifier x5(x3); ESIGN::Signer x6 = x2; x6 = x2; x3 = ESIGN::Verifier(x2); x4 = x2.GetKey(); } #endif void ESIGNFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder seq(bt); m_n.BERDecode(seq); m_e.BERDecode(seq); seq.MessageEnd(); } void ESIGNFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder seq(bt); m_n.DEREncode(seq); m_e.DEREncode(seq); seq.MessageEnd(); } Integer ESIGNFunction::ApplyFunction(const Integer &x) const { DoQuickSanityCheck(); return STDMIN(a_exp_b_mod_c(x, m_e, m_n) >> (2*GetK()+2), MaxImage()); } bool ESIGNFunction::Validate(RandomNumberGenerator& rng, unsigned int level) const { CRYPTOPP_UNUSED(rng), CRYPTOPP_UNUSED(level); bool pass = true; pass = pass && m_n > Integer::One() && m_n.IsOdd(); pass = pass && m_e >= 8 && m_e < m_n; return pass; } bool ESIGNFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Modulus) CRYPTOPP_GET_FUNCTION_ENTRY(PublicExponent) ; } void ESIGNFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Modulus) CRYPTOPP_SET_FUNCTION_ENTRY(PublicExponent) ; } // ***************************************************************************** void InvertibleESIGNFunction::GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs ¶m) { int modulusSize = 1023*2; param.GetIntValue("ModulusSize", modulusSize) || param.GetIntValue("KeySize", modulusSize); if (modulusSize < 24) throw InvalidArgument("InvertibleESIGNFunction: specified modulus size is too small"); if (modulusSize % 3 != 0) throw InvalidArgument("InvertibleESIGNFunction: modulus size must be divisible by 3"); m_e = param.GetValueWithDefault("PublicExponent", Integer(32)); if (m_e < 8) throw InvalidArgument("InvertibleESIGNFunction: public exponents less than 8 may not be secure"); // VC70 workaround: putting these after primeParam causes overlapped stack allocation ConstByteArrayParameter seedParam; SecByteBlock seed; const Integer minP = Integer(204) << (modulusSize/3-8); const Integer maxP = Integer::Power2(modulusSize/3)-1; AlgorithmParameters primeParam = MakeParameters("Min", minP)("Max", maxP)("RandomNumberType", Integer::PRIME); if (param.GetValue("Seed", seedParam)) { seed.resize(seedParam.size() + 4); memcpy(seed + 4, seedParam.begin(), seedParam.size()); PutWord(false, BIG_ENDIAN_ORDER, seed, (word32)0); m_p.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("Seed", ConstByteArrayParameter(seed)))); PutWord(false, BIG_ENDIAN_ORDER, seed, (word32)1); m_q.GenerateRandom(rng, CombinedNameValuePairs(primeParam, MakeParameters("Seed", ConstByteArrayParameter(seed)))); } else { m_p.GenerateRandom(rng, primeParam); m_q.GenerateRandom(rng, primeParam); } m_n = m_p * m_p * m_q; CRYPTOPP_ASSERT(m_n.BitCount() == (unsigned int)modulusSize); } void InvertibleESIGNFunction::BERDecode(BufferedTransformation &bt) { BERSequenceDecoder privateKey(bt); m_n.BERDecode(privateKey); m_e.BERDecode(privateKey); m_p.BERDecode(privateKey); m_q.BERDecode(privateKey); privateKey.MessageEnd(); } void InvertibleESIGNFunction::DEREncode(BufferedTransformation &bt) const { DERSequenceEncoder privateKey(bt); m_n.DEREncode(privateKey); m_e.DEREncode(privateKey); m_p.DEREncode(privateKey); m_q.DEREncode(privateKey); privateKey.MessageEnd(); } Integer InvertibleESIGNFunction::CalculateRandomizedInverse(RandomNumberGenerator &rng, const Integer &x) const { DoQuickSanityCheck(); Integer pq = m_p * m_q; Integer p2 = m_p * m_p; Integer r, z, re, a, w0, w1; do { r.Randomize(rng, Integer::Zero(), pq); z = x << (2*GetK()+2); re = a_exp_b_mod_c(r, m_e, m_n); a = (z - re) % m_n; Integer::Divide(w1, w0, a, pq); if (w1.NotZero()) { ++w0; w1 = pq - w1; } } while ((w1 >> (2*GetK()+1)).IsPositive()); ModularArithmetic modp(m_p); Integer t = modp.Divide(w0 * r % m_p, m_e * re % m_p); Integer s = r + t*pq; CRYPTOPP_ASSERT(s < m_n); #if 0 using namespace std; cout << "f = " << x << endl; cout << "r = " << r << endl; cout << "z = " << z << endl; cout << "a = " << a << endl; cout << "w0 = " << w0 << endl; cout << "w1 = " << w1 << endl; cout << "t = " << t << endl; cout << "s = " << s << endl; #endif return s; } bool InvertibleESIGNFunction::Validate(RandomNumberGenerator &rng, unsigned int level) const { bool pass = ESIGNFunction::Validate(rng, level); pass = pass && m_p > Integer::One() && m_p.IsOdd() && m_p < m_n; pass = pass && m_q > Integer::One() && m_q.IsOdd() && m_q < m_n; pass = pass && m_p.BitCount() == m_q.BitCount(); if (level >= 1) pass = pass && m_p * m_p * m_q == m_n; if (level >= 2) pass = pass && VerifyPrime(rng, m_p, level-2) && VerifyPrime(rng, m_q, level-2); return pass; } bool InvertibleESIGNFunction::GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const { return GetValueHelper(this, name, valueType, pValue).Assignable() CRYPTOPP_GET_FUNCTION_ENTRY(Prime1) CRYPTOPP_GET_FUNCTION_ENTRY(Prime2) ; } void InvertibleESIGNFunction::AssignFrom(const NameValuePairs &source) { AssignFromHelper(this, source) CRYPTOPP_SET_FUNCTION_ENTRY(Prime1) CRYPTOPP_SET_FUNCTION_ENTRY(Prime2) ; } NAMESPACE_END