// algparam.h - originally written and placed in the public domain by Wei Dai /// \file algparam.h /// \brief Classes for working with NameValuePairs #ifndef CRYPTOPP_ALGPARAM_H #define CRYPTOPP_ALGPARAM_H #include "config.h" #include "cryptlib.h" #include "smartptr.h" #include "secblock.h" #include "integer.h" #include "misc.h" NAMESPACE_BEGIN(CryptoPP) /// \brief Used to pass byte array input as part of a NameValuePairs object class ConstByteArrayParameter { public: /// \brief Construct a ConstByteArrayParameter /// \param data a C-String /// \param deepCopy flag indicating whether the data should be copied /// \details The deepCopy option is used when the NameValuePairs object can't /// keep a copy of the data available ConstByteArrayParameter(const char *data = NULLPTR, bool deepCopy = false) : m_deepCopy(false), m_data(NULLPTR), m_size(0) { Assign(reinterpret_cast(data), data ? strlen(data) : 0, deepCopy); } /// \brief Construct a ConstByteArrayParameter /// \param data a memory buffer /// \param size the length of the memory buffer /// \param deepCopy flag indicating whether the data should be copied /// \details The deepCopy option is used when the NameValuePairs object can't /// keep a copy of the data available ConstByteArrayParameter(const byte *data, size_t size, bool deepCopy = false) : m_deepCopy(false), m_data(NULLPTR), m_size(0) { Assign(data, size, deepCopy); } /// \brief Construct a ConstByteArrayParameter /// \tparam T a std::basic_string class /// \param string a std::basic_string class /// \param deepCopy flag indicating whether the data should be copied /// \details The deepCopy option is used when the NameValuePairs object can't /// keep a copy of the data available template ConstByteArrayParameter(const T &string, bool deepCopy = false) : m_deepCopy(false), m_data(NULLPTR), m_size(0) { CRYPTOPP_COMPILE_ASSERT(sizeof(typename T::value_type) == 1); Assign(reinterpret_cast(string.data()), string.size(), deepCopy); } /// \brief Assign contents from a memory buffer /// \param data a memory buffer /// \param size the length of the memory buffer /// \param deepCopy flag indicating whether the data should be copied /// \details The deepCopy option is used when the NameValuePairs object can't /// keep a copy of the data available void Assign(const byte *data, size_t size, bool deepCopy) { // This fires, which means: no data with a size, or data with no size. // CRYPTOPP_ASSERT((data && size) || !(data || size)); if (deepCopy) m_block.Assign(data, size); else { m_data = data; m_size = size; } m_deepCopy = deepCopy; } /// \brief Pointer to the first byte in the memory block const byte *begin() const {return m_deepCopy ? m_block.begin() : m_data;} /// \brief Pointer beyond the last byte in the memory block const byte *end() const {return m_deepCopy ? m_block.end() : m_data + m_size;} /// \brief Length of the memory block size_t size() const {return m_deepCopy ? m_block.size() : m_size;} private: bool m_deepCopy; const byte *m_data; size_t m_size; SecByteBlock m_block; }; /// \brief Used to pass byte array input as part of a NameValuePairs object class ByteArrayParameter { public: /// \brief Construct a ByteArrayParameter /// \param data a memory buffer /// \param size the length of the memory buffer ByteArrayParameter(byte *data = NULLPTR, unsigned int size = 0) : m_data(data), m_size(size) {} /// \brief Construct a ByteArrayParameter /// \param block a SecByteBlock ByteArrayParameter(SecByteBlock &block) : m_data(block.begin()), m_size(block.size()) {} /// \brief Pointer to the first byte in the memory block byte *begin() const {return m_data;} /// \brief Pointer beyond the last byte in the memory block byte *end() const {return m_data + m_size;} /// \brief Length of the memory block size_t size() const {return m_size;} private: byte *m_data; size_t m_size; }; /// \brief Combines two sets of NameValuePairs /// \details CombinedNameValuePairs allows you to provide two sets of of NameValuePairs. /// If a name is not found in the first set, then the second set is searched for the /// name and value pair. The second set of NameValuePairs often provides default values. class CRYPTOPP_DLL CombinedNameValuePairs : public NameValuePairs { public: /// \brief Construct a CombinedNameValuePairs /// \param pairs1 reference to the first set of NameValuePairs /// \param pairs2 reference to the second set of NameValuePairs CombinedNameValuePairs(const NameValuePairs &pairs1, const NameValuePairs &pairs2) : m_pairs1(pairs1), m_pairs2(pairs2) {} bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const; private: const NameValuePairs &m_pairs1, &m_pairs2; }; #ifndef CRYPTOPP_DOXYGEN_PROCESSING template class GetValueHelperClass { public: GetValueHelperClass(const T *pObject, const char *name, const std::type_info &valueType, void *pValue, const NameValuePairs *searchFirst) : m_pObject(pObject), m_name(name), m_valueType(&valueType), m_pValue(pValue), m_found(false), m_getValueNames(false) { if (strcmp(m_name, "ValueNames") == 0) { m_found = m_getValueNames = true; NameValuePairs::ThrowIfTypeMismatch(m_name, typeid(std::string), *m_valueType); if (searchFirst) searchFirst->GetVoidValue(m_name, valueType, pValue); if (typeid(T) != typeid(BASE)) pObject->BASE::GetVoidValue(m_name, valueType, pValue); ((*reinterpret_cast(m_pValue) += "ThisPointer:") += typeid(T).name()) += ';'; } if (!m_found && strncmp(m_name, "ThisPointer:", 12) == 0 && strcmp(m_name+12, typeid(T).name()) == 0) { NameValuePairs::ThrowIfTypeMismatch(m_name, typeid(T *), *m_valueType); *reinterpret_cast(pValue) = pObject; m_found = true; return; } if (!m_found && searchFirst) m_found = searchFirst->GetVoidValue(m_name, valueType, pValue); if (!m_found && typeid(T) != typeid(BASE)) m_found = pObject->BASE::GetVoidValue(m_name, valueType, pValue); } operator bool() const {return m_found;} template GetValueHelperClass & operator()(const char *name, const R & (T::*pm)() const) { if (m_getValueNames) (*reinterpret_cast(m_pValue) += name) += ";"; if (!m_found && strcmp(name, m_name) == 0) { NameValuePairs::ThrowIfTypeMismatch(name, typeid(R), *m_valueType); *reinterpret_cast(m_pValue) = (m_pObject->*pm)(); m_found = true; } return *this; } GetValueHelperClass &Assignable() { #ifndef __INTEL_COMPILER // ICL 9.1 workaround: Intel compiler copies the vTable pointer for some reason if (m_getValueNames) ((*reinterpret_cast(m_pValue) += "ThisObject:") += typeid(T).name()) += ';'; if (!m_found && strncmp(m_name, "ThisObject:", 11) == 0 && strcmp(m_name+11, typeid(T).name()) == 0) { NameValuePairs::ThrowIfTypeMismatch(m_name, typeid(T), *m_valueType); *reinterpret_cast(m_pValue) = *m_pObject; m_found = true; } #endif return *this; } private: const T *m_pObject; const char *m_name; const std::type_info *m_valueType; void *m_pValue; bool m_found, m_getValueNames; }; template GetValueHelperClass GetValueHelper(const T *pObject, const char *name, const std::type_info &valueType, void *pValue, const NameValuePairs *searchFirst=NULLPTR) { return GetValueHelperClass(pObject, name, valueType, pValue, searchFirst); } template GetValueHelperClass GetValueHelper(const T *pObject, const char *name, const std::type_info &valueType, void *pValue, const NameValuePairs *searchFirst=NULLPTR) { return GetValueHelperClass(pObject, name, valueType, pValue, searchFirst); } // ******************************************************** template class AssignFromHelperClass { public: AssignFromHelperClass(T *pObject, const NameValuePairs &source) : m_pObject(pObject), m_source(source), m_done(false) { if (source.GetThisObject(*pObject)) m_done = true; else if (typeid(BASE) != typeid(T)) pObject->BASE::AssignFrom(source); } template AssignFromHelperClass & operator()(const char *name, void (T::*pm)(const R&)) { if (!m_done) { R value; if (!m_source.GetValue(name, value)) throw InvalidArgument(std::string(typeid(T).name()) + ": Missing required parameter '" + name + "'"); (m_pObject->*pm)(value); } return *this; } template AssignFromHelperClass & operator()(const char *name1, const char *name2, void (T::*pm)(const R&, const S&)) { if (!m_done) { R value1; if (!m_source.GetValue(name1, value1)) throw InvalidArgument(std::string(typeid(T).name()) + ": Missing required parameter '" + name1 + "'"); S value2; if (!m_source.GetValue(name2, value2)) throw InvalidArgument(std::string(typeid(T).name()) + ": Missing required parameter '" + name2 + "'"); (m_pObject->*pm)(value1, value2); } return *this; } private: T *m_pObject; const NameValuePairs &m_source; bool m_done; }; template AssignFromHelperClass AssignFromHelper(T *pObject, const NameValuePairs &source) { return AssignFromHelperClass(pObject, source); } template AssignFromHelperClass AssignFromHelper(T *pObject, const NameValuePairs &source) { return AssignFromHelperClass(pObject, source); } #endif // CRYPTOPP_DOXYGEN_PROCESSING // ******************************************************** #ifndef CRYPTOPP_NO_ASSIGN_TO_INTEGER // Allow the linker to discard Integer code if not needed. // Also see http://github.com/weidai11/cryptopp/issues/389. CRYPTOPP_DLL bool AssignIntToInteger(const std::type_info &valueType, void *pInteger, const void *pInt); #endif CRYPTOPP_DLL const std::type_info & CRYPTOPP_API IntegerTypeId(); /// \brief Base class for AlgorithmParameters class CRYPTOPP_DLL AlgorithmParametersBase { public: /// \brief Exception thrown when an AlgorithmParameter is unused class ParameterNotUsed : public Exception { public: ParameterNotUsed(const char *name) : Exception(OTHER_ERROR, std::string("AlgorithmParametersBase: parameter \"") + name + "\" not used") {} }; virtual ~AlgorithmParametersBase() CRYPTOPP_THROW { #if defined(CRYPTOPP_CXX17_EXCEPTIONS) if (std::uncaught_exceptions() == 0) #elif defined(CRYPTOPP_UNCAUGHT_EXCEPTION_AVAILABLE) if (std::uncaught_exception() == false) #else try #endif { if (m_throwIfNotUsed && !m_used) throw ParameterNotUsed(m_name); } #if !defined(CRYPTOPP_CXX17_EXCEPTIONS) && !defined(CRYPTOPP_UNCAUGHT_EXCEPTION_AVAILABLE) catch(const Exception&) { } #endif } // this is actually a move, not a copy AlgorithmParametersBase(const AlgorithmParametersBase &x) : m_name(x.m_name), m_throwIfNotUsed(x.m_throwIfNotUsed), m_used(x.m_used) { m_next.reset(const_cast(x).m_next.release()); x.m_used = true; } /// \brief Construct a AlgorithmParametersBase /// \param name the parameter name /// \param throwIfNotUsed flags indicating whether an exception should be thrown /// \details If throwIfNotUsed is true, then a ParameterNotUsed exception /// will be thrown in the destructor if the parameter is not not retrieved. AlgorithmParametersBase(const char *name, bool throwIfNotUsed) : m_name(name), m_throwIfNotUsed(throwIfNotUsed), m_used(false) {} bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const; protected: friend class AlgorithmParameters; void operator=(const AlgorithmParametersBase& rhs); // assignment not allowed, declare this for VC60 virtual void AssignValue(const char *name, const std::type_info &valueType, void *pValue) const =0; virtual void MoveInto(void *p) const =0; // not really const const char *m_name; bool m_throwIfNotUsed; mutable bool m_used; member_ptr m_next; }; /// \brief Template base class for AlgorithmParameters /// \tparam T the class or type template class AlgorithmParametersTemplate : public AlgorithmParametersBase { public: /// \brief Construct an AlgorithmParametersTemplate /// \param name the name of the value /// \param value a reference to the value /// \param throwIfNotUsed flags indicating whether an exception should be thrown /// \details If throwIfNotUsed is true, then a ParameterNotUsed exception /// will be thrown in the destructor if the parameter is not not retrieved. AlgorithmParametersTemplate(const char *name, const T &value, bool throwIfNotUsed) : AlgorithmParametersBase(name, throwIfNotUsed), m_value(value) { } void AssignValue(const char *name, const std::type_info &valueType, void *pValue) const { #ifndef CRYPTOPP_NO_ASSIGN_TO_INTEGER // Special case for retrieving an Integer parameter when an int was passed in if (!(typeid(T) == typeid(int) && AssignIntToInteger(valueType, pValue, &m_value))) #endif { NameValuePairs::ThrowIfTypeMismatch(name, typeid(T), valueType); *reinterpret_cast(pValue) = m_value; } } #if defined(DEBUG_NEW) && (_MSC_VER >= 1300) # pragma push_macro("new") # undef new #endif void MoveInto(void *buffer) const { AlgorithmParametersTemplate* p = new(buffer) AlgorithmParametersTemplate(*this); CRYPTOPP_UNUSED(p); // silence warning } #if defined(DEBUG_NEW) && (_MSC_VER >= 1300) # pragma pop_macro("new") #endif protected: T m_value; }; CRYPTOPP_DLL_TEMPLATE_CLASS AlgorithmParametersTemplate; CRYPTOPP_DLL_TEMPLATE_CLASS AlgorithmParametersTemplate; CRYPTOPP_DLL_TEMPLATE_CLASS AlgorithmParametersTemplate; /// \brief An object that implements NameValuePairs /// \note A NameValuePairs object containing an arbitrary number of name value pairs may be constructed by /// repeatedly using operator() on the object returned by MakeParameters, for example: ///
///     AlgorithmParameters parameters = MakeParameters(name1, value1)(name2, value2)(name3, value3);
///   
class CRYPTOPP_DLL AlgorithmParameters : public NameValuePairs { public: /// \brief Construct a AlgorithmParameters /// \note A NameValuePairs object containing an arbitrary number of name value pairs may be constructed by /// repeatedly using operator() on the object returned by MakeParameters, for example: ///
	///     AlgorithmParameters parameters = MakeParameters(name1, value1)(name2, value2)(name3, value3);
	///   
AlgorithmParameters(); #ifdef __BORLANDC__ /// \brief Construct a AlgorithmParameters /// \tparam T the class or type /// \param name the name of the object or value to retrieve /// \param value reference to a variable that receives the value /// \param throwIfNotUsed if true, the object will throw an exception if the value is not accessed /// \note throwIfNotUsed is ignored if using a compiler that does not support std::uncaught_exception(), /// such as MSVC 7.0 and earlier. /// \note A NameValuePairs object containing an arbitrary number of name value pairs may be constructed by /// repeatedly using operator() on the object returned by MakeParameters, for example: ///
	///     AlgorithmParameters parameters = MakeParameters(name1, value1)(name2, value2)(name3, value3);
	///   
template AlgorithmParameters(const char *name, const T &value, bool throwIfNotUsed=true) : m_next(new AlgorithmParametersTemplate(name, value, throwIfNotUsed)) , m_defaultThrowIfNotUsed(throwIfNotUsed) { } #endif AlgorithmParameters(const AlgorithmParameters &x); AlgorithmParameters & operator=(const AlgorithmParameters &x); /// \tparam T the class or type /// \param name the name of the object or value to retrieve /// \param value reference to a variable that receives the value /// \param throwIfNotUsed if true, the object will throw an exception if the value is not accessed template AlgorithmParameters & operator()(const char *name, const T &value, bool throwIfNotUsed) { member_ptr p(new AlgorithmParametersTemplate(name, value, throwIfNotUsed)); p->m_next.reset(m_next.release()); m_next.reset(p.release()); m_defaultThrowIfNotUsed = throwIfNotUsed; return *this; } /// \brief Appends a NameValuePair to a collection of NameValuePairs /// \tparam T the class or type /// \param name the name of the object or value to retrieve /// \param value reference to a variable that receives the value template AlgorithmParameters & operator()(const char *name, const T &value) { return operator()(name, value, m_defaultThrowIfNotUsed); } bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const; protected: member_ptr m_next; bool m_defaultThrowIfNotUsed; }; /// \brief Create an object that implements NameValuePairs /// \tparam T the class or type /// \param name the name of the object or value to retrieve /// \param value reference to a variable that receives the value /// \param throwIfNotUsed if true, the object will throw an exception if the value is not accessed /// \note throwIfNotUsed is ignored if using a compiler that does not support std::uncaught_exception(), /// such as MSVC 7.0 and earlier. /// \note A NameValuePairs object containing an arbitrary number of name value pairs may be constructed by /// repeatedly using \p operator() on the object returned by \p MakeParameters, for example: ///
///     AlgorithmParameters parameters = MakeParameters(name1, value1)(name2, value2)(name3, value3);
///   
#ifdef __BORLANDC__ typedef AlgorithmParameters MakeParameters; #else template AlgorithmParameters MakeParameters(const char *name, const T &value, bool throwIfNotUsed = true) { return AlgorithmParameters()(name, value, throwIfNotUsed); } #endif #define CRYPTOPP_GET_FUNCTION_ENTRY(name) (Name::name(), &ThisClass::Get##name) #define CRYPTOPP_SET_FUNCTION_ENTRY(name) (Name::name(), &ThisClass::Set##name) #define CRYPTOPP_SET_FUNCTION_ENTRY2(name1, name2) (Name::name1(), Name::name2(), &ThisClass::Set##name1##And##name2) NAMESPACE_END #endif