// simon-simd.cpp - written and placed in the public domain by Jeffrey Walton // // This source file uses intrinsics and built-ins to gain access to // SSSE3, ARM NEON and ARMv8a, and Power7 Altivec instructions. A separate // source file is needed because additional CXXFLAGS are required to enable // the appropriate instructions sets in some build configurations. #include "pch.h" #include "config.h" #include "simon.h" #include "misc.h" #include "adv-simd.h" // Uncomment for benchmarking C++ against SSE or NEON. // Do so in both simon.cpp and simon-simd.cpp. // #undef CRYPTOPP_SSSE3_AVAILABLE // #undef CRYPTOPP_SSE41_AVAILABLE // #undef CRYPTOPP_ARM_NEON_AVAILABLE #if (CRYPTOPP_SSSE3_AVAILABLE) # include # include #endif #if (CRYPTOPP_SSE41_AVAILABLE) # include #endif #if defined(__AVX512F__) && defined(__AVX512VL__) # define CRYPTOPP_AVX512_ROTATE 1 # include #endif #if (CRYPTOPP_ARM_NEON_AVAILABLE) # include #endif // Can't use CRYPTOPP_ARM_XXX_AVAILABLE because too many // compilers don't follow ACLE conventions for the include. #if defined(CRYPTOPP_ARM_ACLE_AVAILABLE) # include # include #endif // Squash MS LNK4221 and libtool warnings extern const char SIMON_SIMD_FNAME[] = __FILE__; ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::byte; using CryptoPP::word32; using CryptoPP::word64; using CryptoPP::rotlFixed; using CryptoPP::rotrFixed; using CryptoPP::vec_swap; // SunCC // *************************** ARM NEON ************************** // #if (CRYPTOPP_ARM_NEON_AVAILABLE) template inline T UnpackHigh32(const T& a, const T& b) { const uint32x2_t x(vget_high_u32((uint32x4_t)a)); const uint32x2_t y(vget_high_u32((uint32x4_t)b)); const uint32x2x2_t r = vzip_u32(x, y); return (T)vcombine_u32(r.val[0], r.val[1]); } template inline T UnpackLow32(const T& a, const T& b) { const uint32x2_t x(vget_low_u32((uint32x4_t)a)); const uint32x2_t y(vget_low_u32((uint32x4_t)b)); const uint32x2x2_t r = vzip_u32(x, y); return (T)vcombine_u32(r.val[0], r.val[1]); } template inline uint32x4_t RotateLeft32(const uint32x4_t& val) { const uint32x4_t a(vshlq_n_u32(val, R)); const uint32x4_t b(vshrq_n_u32(val, 32 - R)); return vorrq_u32(a, b); } template inline uint32x4_t RotateRight32(const uint32x4_t& val) { const uint32x4_t a(vshlq_n_u32(val, 32 - R)); const uint32x4_t b(vshrq_n_u32(val, R)); return vorrq_u32(a, b); } #if defined(__aarch32__) || defined(__aarch64__) // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline uint32x4_t RotateLeft32<8>(const uint32x4_t& val) { #if defined(CRYPTOPP_BIG_ENDIAN) const uint8_t maskb[16] = { 14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3 }; const uint8x16_t mask = vld1q_u8(maskb); #else const uint8_t maskb[16] = { 3,0,1,2, 7,4,5,6, 11,8,9,10, 15,12,13,14 }; const uint8x16_t mask = vld1q_u8(maskb); #endif return vreinterpretq_u32_u8( vqtbl1q_u8(vreinterpretq_u8_u32(val), mask)); } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline uint32x4_t RotateRight32<8>(const uint32x4_t& val) { #if defined(CRYPTOPP_BIG_ENDIAN) const uint8_t maskb[16] = { 12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1 }; const uint8x16_t mask = vld1q_u8(maskb); #else const uint8_t maskb[16] = { 1,2,3,0, 5,6,7,4, 9,10,11,8, 13,14,14,12 }; const uint8x16_t mask = vld1q_u8(maskb); #endif return vreinterpretq_u32_u8( vqtbl1q_u8(vreinterpretq_u8_u32(val), mask)); } #endif inline uint32x4_t SIMON64_f(const uint32x4_t& val) { return veorq_u32(RotateLeft32<2>(val), vandq_u32(RotateLeft32<1>(val), RotateLeft32<8>(val))); } inline void SIMON64_Enc_Block(uint32x4_t &block1, uint32x4_t &block0, const word32 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. If only a single block is available then // a Zero block is provided to promote vectorizations. // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1); const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1); x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2); } if (rounds & 1) { const uint32x4_t rk = vld1q_dup_u32(subkeys+rounds-1); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk); std::swap(x1, y1); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); } inline void SIMON64_Dec_Block(uint32x4_t &block0, uint32x4_t &block1, const word32 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. If only a single block is available then // a Zero block is provided to promote vectorizations. // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; if (rounds & 1) { std::swap(x1, y1); const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1); y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i+1); x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1); const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); } inline void SIMON64_Enc_6_Blocks(uint32x4_t &block0, uint32x4_t &block1, uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5, const word32 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. If only a single block is available then // a Zero block is provided to promote vectorizations. // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; uint32x4_t x2 = vuzpq_u32(block2, block3).val[1]; uint32x4_t y2 = vuzpq_u32(block2, block3).val[0]; uint32x4_t x3 = vuzpq_u32(block4, block5).val[1]; uint32x4_t y3 = vuzpq_u32(block4, block5).val[0]; for (int i = 0; i < static_cast(rounds & ~1) - 1; i += 2) { const uint32x4_t rk1 = vld1q_dup_u32(subkeys+i); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk1); y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk1); y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk1); const uint32x4_t rk2 = vld1q_dup_u32(subkeys+i+1); x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk2); x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk2); x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk2); } if (rounds & 1) { const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk); y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk); y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk); std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); block2 = UnpackLow32(y2, x2); block3 = UnpackHigh32(y2, x2); block4 = UnpackLow32(y3, x3); block5 = UnpackHigh32(y3, x3); } inline void SIMON64_Dec_6_Blocks(uint32x4_t &block0, uint32x4_t &block1, uint32x4_t &block2, uint32x4_t &block3, uint32x4_t &block4, uint32x4_t &block5, const word32 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. If only a single block is available then // a Zero block is provided to promote vectorizations. // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... uint32x4_t x1 = vuzpq_u32(block0, block1).val[1]; uint32x4_t y1 = vuzpq_u32(block0, block1).val[0]; uint32x4_t x2 = vuzpq_u32(block2, block3).val[1]; uint32x4_t y2 = vuzpq_u32(block2, block3).val[0]; uint32x4_t x3 = vuzpq_u32(block4, block5).val[1]; uint32x4_t y3 = vuzpq_u32(block4, block5).val[0]; if (rounds & 1) { std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3); const uint32x4_t rk = vld1q_dup_u32(subkeys + rounds - 1); y1 = veorq_u32(veorq_u32(y1, rk), SIMON64_f(x1)); y2 = veorq_u32(veorq_u32(y2, rk), SIMON64_f(x2)); y3 = veorq_u32(veorq_u32(y3, rk), SIMON64_f(x3)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const uint32x4_t rk1 = vld1q_dup_u32(subkeys + i + 1); x1 = veorq_u32(veorq_u32(x1, SIMON64_f(y1)), rk1); x2 = veorq_u32(veorq_u32(x2, SIMON64_f(y2)), rk1); x3 = veorq_u32(veorq_u32(x3, SIMON64_f(y3)), rk1); const uint32x4_t rk2 = vld1q_dup_u32(subkeys + i); y1 = veorq_u32(veorq_u32(y1, SIMON64_f(x1)), rk2); y2 = veorq_u32(veorq_u32(y2, SIMON64_f(x2)), rk2); y3 = veorq_u32(veorq_u32(y3, SIMON64_f(x3)), rk2); } // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = UnpackLow32(y1, x1); block1 = UnpackHigh32(y1, x1); block2 = UnpackLow32(y2, x2); block3 = UnpackHigh32(y2, x2); block4 = UnpackLow32(y3, x3); block5 = UnpackHigh32(y3, x3); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE #if (CRYPTOPP_ARM_NEON_AVAILABLE) template inline T UnpackHigh64(const T& a, const T& b) { const uint64x1_t x(vget_high_u64((uint64x2_t)a)); const uint64x1_t y(vget_high_u64((uint64x2_t)b)); return (T)vcombine_u64(x, y); } template inline T UnpackLow64(const T& a, const T& b) { const uint64x1_t x(vget_low_u64((uint64x2_t)a)); const uint64x1_t y(vget_low_u64((uint64x2_t)b)); return (T)vcombine_u64(x, y); } template inline uint64x2_t RotateLeft64(const uint64x2_t& val) { const uint64x2_t a(vshlq_n_u64(val, R)); const uint64x2_t b(vshrq_n_u64(val, 64 - R)); return vorrq_u64(a, b); } template inline uint64x2_t RotateRight64(const uint64x2_t& val) { const uint64x2_t a(vshlq_n_u64(val, 64 - R)); const uint64x2_t b(vshrq_n_u64(val, R)); return vorrq_u64(a, b); } #if defined(__aarch32__) || defined(__aarch64__) // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline uint64x2_t RotateLeft64<8>(const uint64x2_t& val) { #if defined(CRYPTOPP_BIG_ENDIAN) const uint8_t maskb[16] = { 14,13,12,11, 10,9,8,15, 6,5,4,3, 2,1,0,7 }; const uint8x16_t mask = vld1q_u8(maskb); #else const uint8_t maskb[16] = { 7,0,1,2, 3,4,5,6, 15,8,9,10, 11,12,13,14 }; const uint8x16_t mask = vld1q_u8(maskb); #endif return vreinterpretq_u64_u8( vqtbl1q_u8(vreinterpretq_u8_u64(val), mask)); } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline uint64x2_t RotateRight64<8>(const uint64x2_t& val) { #if defined(CRYPTOPP_BIG_ENDIAN) const uint8_t maskb[16] = { 8,15,14,13, 12,11,10,9, 0,7,6,5, 4,3,2,1 }; const uint8x16_t mask = vld1q_u8(maskb); #else const uint8_t maskb[16] = { 1,2,3,4, 5,6,7,0, 9,10,11,12, 13,14,15,8 }; const uint8x16_t mask = vld1q_u8(maskb); #endif return vreinterpretq_u64_u8( vqtbl1q_u8(vreinterpretq_u8_u64(val), mask)); } #endif inline uint64x2_t SIMON128_f(const uint64x2_t& val) { return veorq_u64(RotateLeft64<2>(val), vandq_u64(RotateLeft64<1>(val), RotateLeft64<8>(val))); } inline void SIMON128_Enc_Block(uint64x2_t &block0, uint64x2_t &block1, const word64 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... uint64x2_t x1 = UnpackHigh64(block0, block1); uint64x2_t y1 = UnpackLow64(block0, block1); for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i); y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1); const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1); x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2); } if (rounds & 1) { const uint64x2_t rk = vld1q_dup_u64(subkeys+rounds-1); y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk); std::swap(x1, y1); } // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = UnpackLow64(y1, x1); block1 = UnpackHigh64(y1, x1); } inline void SIMON128_Enc_6_Blocks(uint64x2_t &block0, uint64x2_t &block1, uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5, const word64 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... uint64x2_t x1 = UnpackHigh64(block0, block1); uint64x2_t y1 = UnpackLow64(block0, block1); uint64x2_t x2 = UnpackHigh64(block2, block3); uint64x2_t y2 = UnpackLow64(block2, block3); uint64x2_t x3 = UnpackHigh64(block4, block5); uint64x2_t y3 = UnpackLow64(block4, block5); for (int i = 0; i < static_cast(rounds & ~1) - 1; i += 2) { const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i); y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk1); y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk1); y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk1); const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i+1); x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk2); x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk2); x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk2); } if (rounds & 1) { const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1); y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk); y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk); y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk); std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3); } // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = UnpackLow64(y1, x1); block1 = UnpackHigh64(y1, x1); block2 = UnpackLow64(y2, x2); block3 = UnpackHigh64(y2, x2); block4 = UnpackLow64(y3, x3); block5 = UnpackHigh64(y3, x3); } inline void SIMON128_Dec_Block(uint64x2_t &block0, uint64x2_t &block1, const word64 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... uint64x2_t x1 = UnpackHigh64(block0, block1); uint64x2_t y1 = UnpackLow64(block0, block1); if (rounds & 1) { std::swap(x1, y1); const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1); y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const uint64x2_t rk1 = vld1q_dup_u64(subkeys+i+1); x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1); const uint64x2_t rk2 = vld1q_dup_u64(subkeys+i); y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2); } // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = UnpackLow64(y1, x1); block1 = UnpackHigh64(y1, x1); } inline void SIMON128_Dec_6_Blocks(uint64x2_t &block0, uint64x2_t &block1, uint64x2_t &block2, uint64x2_t &block3, uint64x2_t &block4, uint64x2_t &block5, const word64 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... uint64x2_t x1 = UnpackHigh64(block0, block1); uint64x2_t y1 = UnpackLow64(block0, block1); uint64x2_t x2 = UnpackHigh64(block2, block3); uint64x2_t y2 = UnpackLow64(block2, block3); uint64x2_t x3 = UnpackHigh64(block4, block5); uint64x2_t y3 = UnpackLow64(block4, block5); if (rounds & 1) { std::swap(x1, y1); std::swap(x2, y2); std::swap(x3, y3); const uint64x2_t rk = vld1q_dup_u64(subkeys + rounds - 1); y1 = veorq_u64(veorq_u64(y1, rk), SIMON128_f(x1)); y2 = veorq_u64(veorq_u64(y2, rk), SIMON128_f(x2)); y3 = veorq_u64(veorq_u64(y3, rk), SIMON128_f(x3)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const uint64x2_t rk1 = vld1q_dup_u64(subkeys + i + 1); x1 = veorq_u64(veorq_u64(x1, SIMON128_f(y1)), rk1); x2 = veorq_u64(veorq_u64(x2, SIMON128_f(y2)), rk1); x3 = veorq_u64(veorq_u64(x3, SIMON128_f(y3)), rk1); const uint64x2_t rk2 = vld1q_dup_u64(subkeys + i); y1 = veorq_u64(veorq_u64(y1, SIMON128_f(x1)), rk2); y2 = veorq_u64(veorq_u64(y2, SIMON128_f(x2)), rk2); y3 = veorq_u64(veorq_u64(y3, SIMON128_f(x3)), rk2); } // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = UnpackLow64(y1, x1); block1 = UnpackHigh64(y1, x1); block2 = UnpackLow64(y2, x2); block3 = UnpackHigh64(y2, x2); block4 = UnpackLow64(y3, x3); block5 = UnpackHigh64(y3, x3); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE // ***************************** IA-32 ***************************** // #if defined(CRYPTOPP_SSSE3_AVAILABLE) // Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670 #ifndef M128_CAST # define M128_CAST(x) ((__m128i *)(void *)(x)) #endif #ifndef CONST_M128_CAST # define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x)) #endif // GCC double casts, https://www.spinics.net/lists/gcchelp/msg47735.html #ifndef DOUBLE_CAST # define DOUBLE_CAST(x) ((double *)(void *)(x)) #endif #ifndef CONST_DOUBLE_CAST # define CONST_DOUBLE_CAST(x) ((const double *)(const void *)(x)) #endif inline void Swap128(__m128i& a,__m128i& b) { #if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120) // __m128i is an unsigned long long[2], and support for swapping it was not added until C++11. // SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11. vec_swap(a, b); #else std::swap(a, b); #endif } template inline __m128i RotateLeft64(const __m128i& val) { #if defined(CRYPTOPP_AVX512_ROTATE) return _mm_rol_epi64(val, R); #else return _mm_or_si128( _mm_slli_epi64(val, R), _mm_srli_epi64(val, 64-R)); #endif } template inline __m128i RotateRight64(const __m128i& val) { #if defined(CRYPTOPP_AVX512_ROTATE) return _mm_ror_epi64(val, R); #else return _mm_or_si128( _mm_slli_epi64(val, 64-R), _mm_srli_epi64(val, R)); #endif } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline __m128i RotateLeft64<8>(const __m128i& val) { const __m128i mask = _mm_set_epi8(14,13,12,11, 10,9,8,15, 6,5,4,3, 2,1,0,7); return _mm_shuffle_epi8(val, mask); } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline __m128i RotateRight64<8>(const __m128i& val) { const __m128i mask = _mm_set_epi8(8,15,14,13, 12,11,10,9, 0,7,6,5, 4,3,2,1); return _mm_shuffle_epi8(val, mask); } inline __m128i SIMON128_f(const __m128i& v) { return _mm_xor_si128(RotateLeft64<2>(v), _mm_and_si128(RotateLeft64<1>(v), RotateLeft64<8>(v))); } inline void SIMON128_Enc_Block(__m128i &block0, __m128i &block1, const word64 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... __m128i x1 = _mm_unpackhi_epi64(block0, block1); __m128i y1 = _mm_unpacklo_epi64(block0, block1); for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { const __m128i rk1 = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i))); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1); const __m128i rk2 = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i+1))); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2); } if (rounds & 1) { const __m128i rk = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+rounds-1))); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk); Swap128(x1, y1); } // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = _mm_unpacklo_epi64(y1, x1); block1 = _mm_unpackhi_epi64(y1, x1); } inline void SIMON128_Enc_6_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5, const word64 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... __m128i x1 = _mm_unpackhi_epi64(block0, block1); __m128i y1 = _mm_unpacklo_epi64(block0, block1); __m128i x2 = _mm_unpackhi_epi64(block2, block3); __m128i y2 = _mm_unpacklo_epi64(block2, block3); __m128i x3 = _mm_unpackhi_epi64(block4, block5); __m128i y3 = _mm_unpacklo_epi64(block4, block5); for (int i = 0; i < static_cast(rounds & ~1) - 1; i += 2) { const __m128i rk1 = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i))); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk1); y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk1); y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk1); const __m128i rk2 = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i + 1))); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk2); x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk2); x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk2); } if (rounds & 1) { const __m128i rk = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1))); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk); y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk); y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk); Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3); } // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = _mm_unpacklo_epi64(y1, x1); block1 = _mm_unpackhi_epi64(y1, x1); block2 = _mm_unpacklo_epi64(y2, x2); block3 = _mm_unpackhi_epi64(y2, x2); block4 = _mm_unpacklo_epi64(y3, x3); block5 = _mm_unpackhi_epi64(y3, x3); } inline void SIMON128_Dec_Block(__m128i &block0, __m128i &block1, const word64 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... __m128i x1 = _mm_unpackhi_epi64(block0, block1); __m128i y1 = _mm_unpacklo_epi64(block0, block1); if (rounds & 1) { const __m128i rk = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1))); Swap128(x1, y1); y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const __m128i rk1 = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i+1))); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1); const __m128i rk2 = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys+i))); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2); } // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = _mm_unpacklo_epi64(y1, x1); block1 = _mm_unpackhi_epi64(y1, x1); } inline void SIMON128_Dec_6_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5, const word64 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. // [A1 A2][B1 B2] ... => [A1 B1][A2 B2] ... __m128i x1 = _mm_unpackhi_epi64(block0, block1); __m128i y1 = _mm_unpacklo_epi64(block0, block1); __m128i x2 = _mm_unpackhi_epi64(block2, block3); __m128i y2 = _mm_unpacklo_epi64(block2, block3); __m128i x3 = _mm_unpackhi_epi64(block4, block5); __m128i y3 = _mm_unpacklo_epi64(block4, block5); if (rounds & 1) { const __m128i rk = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + rounds - 1))); Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3); y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON128_f(x1)); y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON128_f(x2)); y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON128_f(x3)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const __m128i rk1 = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i + 1))); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON128_f(y1)), rk1); x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON128_f(y2)), rk1); x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON128_f(y3)), rk1); const __m128i rk2 = _mm_castpd_si128( _mm_loaddup_pd(CONST_DOUBLE_CAST(subkeys + i))); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON128_f(x1)), rk2); y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON128_f(x2)), rk2); y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON128_f(x3)), rk2); } // [A1 B1][A2 B2] ... => [A1 A2][B1 B2] ... block0 = _mm_unpacklo_epi64(y1, x1); block1 = _mm_unpackhi_epi64(y1, x1); block2 = _mm_unpacklo_epi64(y2, x2); block3 = _mm_unpackhi_epi64(y2, x2); block4 = _mm_unpacklo_epi64(y3, x3); block5 = _mm_unpackhi_epi64(y3, x3); } #endif // CRYPTOPP_SSSE3_AVAILABLE #if defined(CRYPTOPP_SSE41_AVAILABLE) template inline __m128i RotateLeft32(const __m128i& val) { return _mm_or_si128( _mm_slli_epi32(val, R), _mm_srli_epi32(val, 32-R)); } template inline __m128i RotateRight32(const __m128i& val) { return _mm_or_si128( _mm_slli_epi32(val, 32-R), _mm_srli_epi32(val, R)); } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline __m128i RotateLeft32<8>(const __m128i& val) { const __m128i mask = _mm_set_epi8(14,13,12,15, 10,9,8,11, 6,5,4,7, 2,1,0,3); return _mm_shuffle_epi8(val, mask); } // Faster than two Shifts and an Or. Thanks to Louis Wingers and Bryan Weeks. template <> inline __m128i RotateRight32<8>(const __m128i& val) { const __m128i mask = _mm_set_epi8(12,15,14,13, 8,11,10,9, 4,7,6,5, 0,3,2,1); return _mm_shuffle_epi8(val, mask); } inline __m128i SIMON64_f(const __m128i& v) { return _mm_xor_si128(RotateLeft32<2>(v), _mm_and_si128(RotateLeft32<1>(v), RotateLeft32<8>(v))); } inline void SIMON64_Enc_Block(__m128i &block0, __m128i &block1, const word32 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. Thanks to Peter Cordes for help with the // SSE permutes below. // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { const __m128i rk1 = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1); const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2); } if (rounds & 1) { const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk); Swap128(x1, y1); } // The is roughly the SSE equivalent to ARM vzp32 // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); } inline void SIMON64_Dec_Block(__m128i &block0, __m128i &block1, const word32 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. Thanks to Peter Cordes for help with the // SSE permutes below. // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); if (rounds & 1) { Swap128(x1, y1); const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]); y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1); const __m128i rk2 = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2); } // The is roughly the SSE equivalent to ARM vzp32 // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); } inline void SIMON64_Enc_6_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5, const word32 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. Thanks to Peter Cordes for help with the // SSE permutes below. // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); const __m128 t2 = _mm_castsi128_ps(block2); const __m128 t3 = _mm_castsi128_ps(block3); __m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1))); __m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0))); const __m128 t4 = _mm_castsi128_ps(block4); const __m128 t5 = _mm_castsi128_ps(block5); __m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1))); __m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0))); for (int i = 0; i < static_cast(rounds & ~1)-1; i += 2) { const __m128i rk1 = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk1); y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk1); y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk1); const __m128i rk2 = _mm_set1_epi32(subkeys[i+1]); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk2); x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk2); x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk2); } if (rounds & 1) { const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk); y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk); y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk); Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3); } // The is roughly the SSE equivalent to ARM vzp32 // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); block2 = _mm_unpacklo_epi32(y2, x2); block3 = _mm_unpackhi_epi32(y2, x2); block4 = _mm_unpacklo_epi32(y3, x3); block5 = _mm_unpackhi_epi32(y3, x3); } inline void SIMON64_Dec_6_Blocks(__m128i &block0, __m128i &block1, __m128i &block2, __m128i &block3, __m128i &block4, __m128i &block5, const word32 *subkeys, unsigned int rounds) { // Rearrange the data for vectorization. The incoming data was read into // a little-endian word array. Depending on the number of blocks it needs to // be permuted to the following. Thanks to Peter Cordes for help with the // SSE permutes below. // [A1 A2 A3 A4][B1 B2 B3 B4] ... => [A1 A3 B1 B3][A2 A4 B2 B4] ... const __m128 t0 = _mm_castsi128_ps(block0); const __m128 t1 = _mm_castsi128_ps(block1); __m128i x1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(3,1,3,1))); __m128i y1 = _mm_castps_si128(_mm_shuffle_ps(t0, t1, _MM_SHUFFLE(2,0,2,0))); const __m128 t2 = _mm_castsi128_ps(block2); const __m128 t3 = _mm_castsi128_ps(block3); __m128i x2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(3,1,3,1))); __m128i y2 = _mm_castps_si128(_mm_shuffle_ps(t2, t3, _MM_SHUFFLE(2,0,2,0))); const __m128 t4 = _mm_castsi128_ps(block4); const __m128 t5 = _mm_castsi128_ps(block5); __m128i x3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(3,1,3,1))); __m128i y3 = _mm_castps_si128(_mm_shuffle_ps(t4, t5, _MM_SHUFFLE(2,0,2,0))); if (rounds & 1) { Swap128(x1, y1); Swap128(x2, y2); Swap128(x3, y3); const __m128i rk = _mm_set1_epi32(subkeys[rounds-1]); y1 = _mm_xor_si128(_mm_xor_si128(y1, rk), SIMON64_f(x1)); y2 = _mm_xor_si128(_mm_xor_si128(y2, rk), SIMON64_f(x2)); y3 = _mm_xor_si128(_mm_xor_si128(y3, rk), SIMON64_f(x3)); rounds--; } for (int i = static_cast(rounds-2); i >= 0; i -= 2) { const __m128i rk1 = _mm_set1_epi32(subkeys[i+1]); x1 = _mm_xor_si128(_mm_xor_si128(x1, SIMON64_f(y1)), rk1); x2 = _mm_xor_si128(_mm_xor_si128(x2, SIMON64_f(y2)), rk1); x3 = _mm_xor_si128(_mm_xor_si128(x3, SIMON64_f(y3)), rk1); const __m128i rk2 = _mm_set1_epi32(subkeys[i]); y1 = _mm_xor_si128(_mm_xor_si128(y1, SIMON64_f(x1)), rk2); y2 = _mm_xor_si128(_mm_xor_si128(y2, SIMON64_f(x2)), rk2); y3 = _mm_xor_si128(_mm_xor_si128(y3, SIMON64_f(x3)), rk2); } // The is roughly the SSE equivalent to ARM vzp32 // [A1 A3 B1 B3][A2 A4 B2 B4] => [A1 A2 A3 A4][B1 B2 B3 B4] block0 = _mm_unpacklo_epi32(y1, x1); block1 = _mm_unpackhi_epi32(y1, x1); block2 = _mm_unpacklo_epi32(y2, x2); block3 = _mm_unpackhi_epi32(y2, x2); block4 = _mm_unpacklo_epi32(y3, x3); block5 = _mm_unpackhi_epi32(y3, x3); } #endif // CRYPTOPP_SSE41_AVAILABLE ANONYMOUS_NAMESPACE_END /////////////////////////////////////////////////////////////////////// NAMESPACE_BEGIN(CryptoPP) // *************************** ARM NEON **************************** // #if (CRYPTOPP_ARM_NEON_AVAILABLE) size_t SIMON64_Enc_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_NEON(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SIMON64_Dec_AdvancedProcessBlocks_NEON(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_NEON(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE #if (CRYPTOPP_ARM_NEON_AVAILABLE) size_t SIMON128_Enc_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SIMON128_Dec_AdvancedProcessBlocks_NEON(const word64* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks128_6x2_NEON(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // CRYPTOPP_ARM_NEON_AVAILABLE // ***************************** IA-32 ***************************** // #if defined(CRYPTOPP_SSE41_AVAILABLE) size_t SIMON64_Enc_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_SSE(SIMON64_Enc_Block, SIMON64_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SIMON64_Dec_AdvancedProcessBlocks_SSE41(const word32* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks64_6x2_SSE(SIMON64_Dec_Block, SIMON64_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif #if defined(CRYPTOPP_SSSE3_AVAILABLE) size_t SIMON128_Enc_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Enc_Block, SIMON128_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t SIMON128_Dec_AdvancedProcessBlocks_SSSE3(const word64* subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return AdvancedProcessBlocks128_6x2_SSE(SIMON128_Dec_Block, SIMON128_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // CRYPTOPP_SSSE3_AVAILABLE NAMESPACE_END