// rijndael-simd.cpp - written and placed in the public domain by // Jeffrey Walton, Uri Blumenthal and Marcel Raad. // // This source file uses intrinsics to gain access to AES-NI and // ARMv8a AES instructions. A separate source file is needed // because additional CXXFLAGS are required to enable the // appropriate instructions sets in some build configurations. // // ARMv8a AES code based on CriticalBlue code from Johannes Schneiders, // Skip Hovsmith and Barry O'Rourke for the mbedTLS project. Stepping // mbedTLS under a debugger was helped for us to determine problems // with our subkey generation and scheduling. // // AltiVec and Power8 code based on http://github.com/noloader/AES-Intrinsics and // http://www.ibm.com/developerworks/library/se-power8-in-core-cryptography/ // The IBM documentation absolutely sucks. Thanks to Andy Polyakov, Paul R and // Trudeaun for answering questions and filing the gaps in the IBM documentation. #include "pch.h" #include "config.h" #include "misc.h" // We set CRYPTOPP_ARM_AES_AVAILABLE based on compiler version. // If the crypto is not available, then we have to disable it here. #if !(defined(__ARM_FEATURE_CRYPTO) || defined(_MSC_VER)) # undef CRYPTOPP_ARM_AES_AVAILABLE #endif // We set CRYPTOPP_POWER8_CRYPTO_AVAILABLE based on compiler version. // If the crypto is not available, then we have to disable it here. #if !(defined(__CRYPTO) || defined(_ARCH_PWR8) || defined(_ARCH_PWR9)) # undef CRYPTOPP_POWER8_CRYPTO_AVAILABLE #endif #if (CRYPTOPP_AESNI_AVAILABLE) // Hack... We are supposed to use . GCC 4.8, LLVM Clang 3.5 // and Apple Clang 6.0 conflates SSE4.1 and SSE4.2. If we use // then compile fails with "SSE4.2 instruction set not enabled". Also see // http://gcc.gnu.org/ml/gcc-help/2017-08/msg00015.html. # include # include #endif #if (CRYPTOPP_ARM_AES_AVAILABLE) # include # if defined(CRYPTOPP_ARM_ACLE_AVAILABLE) # include # endif #endif #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) # include # undef vector # undef pixel # undef bool #endif #ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY # include # include #endif #ifndef EXCEPTION_EXECUTE_HANDLER # define EXCEPTION_EXECUTE_HANDLER 1 #endif // Hack for SunCC, http://github.com/weidai11/cryptopp/issues/224 #if (__SUNPRO_CC >= 0x5130) # define MAYBE_CONST # define MAYBE_UNCONST_CAST(T, x) const_cast(x) #else # define MAYBE_CONST const # define MAYBE_UNCONST_CAST(T, x) (x) #endif // Clang __m128i casts, http://bugs.llvm.org/show_bug.cgi?id=20670 #define M128_CAST(x) ((__m128i *)(void *)(x)) #define CONST_M128_CAST(x) ((const __m128i *)(const void *)(x)) NAMESPACE_BEGIN(CryptoPP) #ifdef CRYPTOPP_GNU_STYLE_INLINE_ASSEMBLY extern "C" { typedef void (*SigHandler)(int); static jmp_buf s_jmpSIGILL; static void SigIllHandler(int) { longjmp(s_jmpSIGILL, 1); } }; #endif // Not CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY #if (CRYPTOPP_BOOL_ARM32 || CRYPTOPP_BOOL_ARM64) bool CPU_ProbeAES() { #if defined(CRYPTOPP_NO_CPU_FEATURE_PROBES) return false; #elif (CRYPTOPP_ARM_AES_AVAILABLE) # if defined(CRYPTOPP_MS_STYLE_INLINE_ASSEMBLY) volatile bool result = true; __try { // AES encrypt and decrypt uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0); uint8x16_t r1 = vaeseq_u8(data, key); uint8x16_t r2 = vaesdq_u8(data, key); r1 = vaesmcq_u8(r1); r2 = vaesimcq_u8(r2); result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7)); } __except (EXCEPTION_EXECUTE_HANDLER) { return false; } return result; # else // longjmp and clobber warnings. Volatile is required. // http://github.com/weidai11/cryptopp/issues/24 and http://stackoverflow.com/q/7721854 volatile bool result = true; volatile SigHandler oldHandler = signal(SIGILL, SigIllHandler); if (oldHandler == SIG_ERR) return false; volatile sigset_t oldMask; if (sigprocmask(0, NULLPTR, (sigset_t*)&oldMask)) return false; if (setjmp(s_jmpSIGILL)) result = false; else { uint8x16_t data = vdupq_n_u8(0), key = vdupq_n_u8(0); uint8x16_t r1 = vaeseq_u8(data, key); uint8x16_t r2 = vaesdq_u8(data, key); r1 = vaesmcq_u8(r1); r2 = vaesimcq_u8(r2); // Hack... GCC optimizes away the code and returns true result = !!(vgetq_lane_u8(r1,0) | vgetq_lane_u8(r2,7)); } sigprocmask(SIG_SETMASK, (sigset_t*)&oldMask, NULLPTR); signal(SIGILL, oldHandler); return result; # endif #else return false; #endif // CRYPTOPP_ARM_AES_AVAILABLE } #endif // ARM32 or ARM64 // ***************************** ARMv8 ***************************** // #if (CRYPTOPP_ARM_AES_AVAILABLE) #if defined(IS_LITTLE_ENDIAN) const word32 s_one[] = {0, 0, 0, 1<<24}; // uint32x4_t #else const word32 s_one[] = {0, 0, 0, 1}; // uint32x4_t #endif static inline void ARMV8_Enc_Block(uint8x16_t &block, const word32 *subkeys, unsigned int rounds) { CRYPTOPP_ASSERT(subkeys); const byte *keys = reinterpret_cast(subkeys); // AES single round encryption block = vaeseq_u8(block, vld1q_u8(keys+0*16)); // AES mix columns block = vaesmcq_u8(block); for (unsigned int i=1; i(subkeys); uint8x16_t key; for (unsigned int i=0; i(subkeys); // AES single round decryption block = vaesdq_u8(block, vld1q_u8(keys+0*16)); // AES inverse mix columns block = vaesimcq_u8(block); for (unsigned int i=1; i(subkeys); uint8x16_t key; for (unsigned int i=0; i size_t Rijndael_AdvancedProcessBlocks_ARMV8(F1 func1, F6 func6, const word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { CRYPTOPP_ASSERT(subKeys); CRYPTOPP_ASSERT(inBlocks); CRYPTOPP_ASSERT(outBlocks); CRYPTOPP_ASSERT(length >= 16); const size_t blockSize = 16; size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize; size_t xorIncrement = xorBlocks ? blockSize : 0; size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize; if (flags & BlockTransformation::BT_ReverseDirection) { inBlocks += length - blockSize; xorBlocks += length - blockSize; outBlocks += length - blockSize; inIncrement = 0-inIncrement; xorIncrement = 0-xorIncrement; outIncrement = 0-outIncrement; } if (flags & BlockTransformation::BT_AllowParallel) { while (length >= 6*blockSize) { uint8x16_t block0, block1, block2, block3, block4, block5, temp; block0 = vld1q_u8(inBlocks); if (flags & BlockTransformation::BT_InBlockIsCounter) { uint32x4_t be = vld1q_u32(s_one); block1 = (uint8x16_t)vaddq_u32(vreinterpretq_u32_u8(block0), be); block2 = (uint8x16_t)vaddq_u32(vreinterpretq_u32_u8(block1), be); block3 = (uint8x16_t)vaddq_u32(vreinterpretq_u32_u8(block2), be); block4 = (uint8x16_t)vaddq_u32(vreinterpretq_u32_u8(block3), be); block5 = (uint8x16_t)vaddq_u32(vreinterpretq_u32_u8(block4), be); temp = (uint8x16_t)vaddq_u32(vreinterpretq_u32_u8(block5), be); vst1q_u8(const_cast(inBlocks), temp); } else { const int inc = static_cast(inIncrement); block1 = vld1q_u8(inBlocks+1*inc); block2 = vld1q_u8(inBlocks+2*inc); block3 = vld1q_u8(inBlocks+3*inc); block4 = vld1q_u8(inBlocks+4*inc); block5 = vld1q_u8(inBlocks+5*inc); inBlocks += 6*inc; } if (flags & BlockTransformation::BT_XorInput) { const int inc = static_cast(xorIncrement); block0 = veorq_u8(block0, vld1q_u8(xorBlocks+0*inc)); block1 = veorq_u8(block1, vld1q_u8(xorBlocks+1*inc)); block2 = veorq_u8(block2, vld1q_u8(xorBlocks+2*inc)); block3 = veorq_u8(block3, vld1q_u8(xorBlocks+3*inc)); block4 = veorq_u8(block4, vld1q_u8(xorBlocks+4*inc)); block5 = veorq_u8(block5, vld1q_u8(xorBlocks+5*inc)); xorBlocks += 6*inc; } func6(block0, block1, block2, block3, block4, block5, subKeys, rounds); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) { const int inc = static_cast(xorIncrement); block0 = veorq_u8(block0, vld1q_u8(xorBlocks+0*inc)); block1 = veorq_u8(block1, vld1q_u8(xorBlocks+1*inc)); block2 = veorq_u8(block2, vld1q_u8(xorBlocks+2*inc)); block3 = veorq_u8(block3, vld1q_u8(xorBlocks+3*inc)); block4 = veorq_u8(block4, vld1q_u8(xorBlocks+4*inc)); block5 = veorq_u8(block5, vld1q_u8(xorBlocks+5*inc)); xorBlocks += 6*inc; } const int inc = static_cast(outIncrement); vst1q_u8(outBlocks+0*inc, block0); vst1q_u8(outBlocks+1*inc, block1); vst1q_u8(outBlocks+2*inc, block2); vst1q_u8(outBlocks+3*inc, block3); vst1q_u8(outBlocks+4*inc, block4); vst1q_u8(outBlocks+5*inc, block5); outBlocks += 6*inc; length -= 6*blockSize; } } while (length >= blockSize) { uint8x16_t block = vld1q_u8(inBlocks); if (flags & BlockTransformation::BT_XorInput) block = veorq_u8(block, vld1q_u8(xorBlocks)); if (flags & BlockTransformation::BT_InBlockIsCounter) const_cast(inBlocks)[15]++; func1(block, subKeys, rounds); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) block = veorq_u8(block, vld1q_u8(xorBlocks)); vst1q_u8(outBlocks, block); inBlocks += inIncrement; outBlocks += outIncrement; xorBlocks += xorIncrement; length -= blockSize; } return length; } size_t Rijndael_Enc_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return Rijndael_AdvancedProcessBlocks_ARMV8(ARMV8_Enc_Block, ARMV8_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t Rijndael_Dec_AdvancedProcessBlocks_ARMV8(const word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return Rijndael_AdvancedProcessBlocks_ARMV8(ARMV8_Dec_Block, ARMV8_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // CRYPTOPP_ARM_AES_AVAILABLE // ***************************** AES-NI ***************************** // #if (CRYPTOPP_AESNI_AVAILABLE) CRYPTOPP_ALIGN_DATA(16) const word32 s_one[] = {0, 0, 0, 1<<24}; /* for 128-bit blocks, Rijndael never uses more than 10 rcon values */ CRYPTOPP_ALIGN_DATA(16) const word32 s_rconLE[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36 }; static inline void AESNI_Enc_Block(__m128i &block, MAYBE_CONST __m128i *subkeys, unsigned int rounds) { block = _mm_xor_si128(block, subkeys[0]); for (unsigned int i=1; i static inline size_t Rijndael_AdvancedProcessBlocks_AESNI(F1 func1, F4 func4, MAYBE_CONST word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { CRYPTOPP_ASSERT(subKeys); CRYPTOPP_ASSERT(inBlocks); CRYPTOPP_ASSERT(outBlocks); CRYPTOPP_ASSERT(length >= 16); const size_t blockSize = 16; size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize; size_t xorIncrement = xorBlocks ? blockSize : 0; size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize; MAYBE_CONST __m128i *subkeys = reinterpret_cast(subKeys); if (flags & BlockTransformation::BT_ReverseDirection) { inBlocks += length - blockSize; xorBlocks += length - blockSize; outBlocks += length - blockSize; inIncrement = 0-inIncrement; xorIncrement = 0-xorIncrement; outIncrement = 0-outIncrement; } if (flags & BlockTransformation::BT_AllowParallel) { while (length >= 4*blockSize) { __m128i block0 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)), block1, block2, block3; if (flags & BlockTransformation::BT_InBlockIsCounter) { const __m128i be1 = *CONST_M128_CAST(s_one); block1 = _mm_add_epi32(block0, be1); block2 = _mm_add_epi32(block1, be1); block3 = _mm_add_epi32(block2, be1); _mm_storeu_si128(M128_CAST(inBlocks), _mm_add_epi32(block3, be1)); } else { inBlocks += inIncrement; block1 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); inBlocks += inIncrement; block2 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); inBlocks += inIncrement; block3 = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); inBlocks += inIncrement; } if (flags & BlockTransformation::BT_XorInput) { // Coverity finding, appears to be false positive. Assert the condition. CRYPTOPP_ASSERT(xorBlocks); block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; } func4(block0, block1, block2, block3, subkeys, static_cast(rounds)); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) { block0 = _mm_xor_si128(block0, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block1 = _mm_xor_si128(block1, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block2 = _mm_xor_si128(block2, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; block3 = _mm_xor_si128(block3, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); xorBlocks += xorIncrement; } _mm_storeu_si128(M128_CAST(outBlocks), block0); outBlocks += outIncrement; _mm_storeu_si128(M128_CAST(outBlocks), block1); outBlocks += outIncrement; _mm_storeu_si128(M128_CAST(outBlocks), block2); outBlocks += outIncrement; _mm_storeu_si128(M128_CAST(outBlocks), block3); outBlocks += outIncrement; length -= 4*blockSize; } } while (length >= blockSize) { __m128i block = _mm_loadu_si128(CONST_M128_CAST(inBlocks)); if (flags & BlockTransformation::BT_XorInput) block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); if (flags & BlockTransformation::BT_InBlockIsCounter) const_cast(inBlocks)[15]++; func1(block, subkeys, static_cast(rounds)); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) block = _mm_xor_si128(block, _mm_loadu_si128(CONST_M128_CAST(xorBlocks))); _mm_storeu_si128(M128_CAST(outBlocks), block); inBlocks += inIncrement; outBlocks += outIncrement; xorBlocks += xorIncrement; length -= blockSize; } return length; } size_t Rijndael_Enc_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { // SunCC workaround MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys); MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks); MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks); return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Enc_Block, AESNI_Enc_4_Blocks, sk, rounds, ib, xb, outBlocks, length, flags); } size_t Rijndael_Dec_AdvancedProcessBlocks_AESNI(const word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { MAYBE_CONST word32* sk = MAYBE_UNCONST_CAST(word32*, subKeys); MAYBE_CONST byte* ib = MAYBE_UNCONST_CAST(byte*, inBlocks); MAYBE_CONST byte* xb = MAYBE_UNCONST_CAST(byte*, xorBlocks); return Rijndael_AdvancedProcessBlocks_AESNI(AESNI_Dec_Block, AESNI_Dec_4_Blocks, sk, rounds, ib, xb, outBlocks, length, flags); } void Rijndael_UncheckedSetKey_SSE4_AESNI(const byte *userKey, size_t keyLen, word32 *rk, unsigned int rounds) { const word32 *ro = s_rconLE, *rc = s_rconLE; CRYPTOPP_UNUSED(ro); __m128i temp = _mm_loadu_si128(M128_CAST(userKey+keyLen-16)); std::memcpy(rk, userKey, keyLen); // keySize: m_key allocates 4*(rounds+1) word32's. const size_t keySize = 4*(rounds+1); const word32* end = rk + keySize; while (true) { CRYPTOPP_ASSERT(rc < ro + COUNTOF(s_rconLE)); rk[keyLen/4] = rk[0] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 3) ^ *(rc++); rk[keyLen/4+1] = rk[1] ^ rk[keyLen/4]; rk[keyLen/4+2] = rk[2] ^ rk[keyLen/4+1]; rk[keyLen/4+3] = rk[3] ^ rk[keyLen/4+2]; if (rk + keyLen/4 + 4 == end) break; if (keyLen == 24) { rk[10] = rk[ 4] ^ rk[ 9]; rk[11] = rk[ 5] ^ rk[10]; CRYPTOPP_ASSERT(keySize >= 12); temp = _mm_insert_epi32(temp, rk[11], 3); } else if (keyLen == 32) { CRYPTOPP_ASSERT(keySize >= 12); temp = _mm_insert_epi32(temp, rk[11], 3); rk[12] = rk[ 4] ^ _mm_extract_epi32(_mm_aeskeygenassist_si128(temp, 0), 2); rk[13] = rk[ 5] ^ rk[12]; rk[14] = rk[ 6] ^ rk[13]; rk[15] = rk[ 7] ^ rk[14]; CRYPTOPP_ASSERT(keySize >= 16); temp = _mm_insert_epi32(temp, rk[15], 3); } else { CRYPTOPP_ASSERT(keySize >= 8); temp = _mm_insert_epi32(temp, rk[7], 3); } rk += keyLen/4; } } void Rijndael_UncheckedSetKeyRev_AESNI(word32 *key, unsigned int rounds) { unsigned int i, j; __m128i temp; #if defined(__SUNPRO_CC) && (__SUNPRO_CC <= 0x5120) // __m128i is an unsigned long long[2], and support for swapping it was not added until C++11. // SunCC 12.1 - 12.3 fail to consume the swap; while SunCC 12.4 consumes it without -std=c++11. vec_swap(*(__m128i *)(key), *(__m128i *)(key+4*rounds)); #else std::swap(*M128_CAST(key), *M128_CAST(key+4*rounds)); #endif for (i = 4, j = 4*rounds-4; i < j; i += 4, j -= 4) { temp = _mm_aesimc_si128(*M128_CAST(key+i)); *M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+j)); *M128_CAST(key+j) = temp; } *M128_CAST(key+i) = _mm_aesimc_si128(*M128_CAST(key+i)); } #endif // CRYPTOPP_AESNI_AVAILABLE // ***************************** Power 8 ***************************** // #if (CRYPTOPP_POWER8_AES_AVAILABLE) typedef __vector unsigned char uint8x16_p8; typedef __vector unsigned int uint32x4_p8; typedef __vector unsigned long long uint64x2_p8; void ReverseByteArrayLE(byte src[16]) { #if defined(CRYPTOPP_XLC_VERSION) && defined(IS_LITTLE_ENDIAN) vec_st(vec_reve(vec_ld(0, src)), 0, src); #elif defined(IS_LITTLE_ENDIAN) const uint8x16_p8 mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0}; const uint8x16_p8 zero = {0}; vec_vsx_st(vec_perm(vec_vsx_ld(0, src), zero, mask), 0, src); #endif } static inline uint8x16_p8 Reverse8x16(const uint8x16_p8& src) { const uint8x16_p8 mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0}; const uint8x16_p8 zero = {0}; return vec_perm(src, zero, mask); } static inline uint64x2_p8 Reverse64x2(const uint64x2_p8& src) { const uint8x16_p8 mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0}; const uint8x16_p8 zero = {0}; return (uint64x2_p8)vec_perm((uint8x16_p8)src, zero, mask); } static inline uint8x16_p8 Load8x16(const uint8_t src[16]) { #if defined(CRYPTOPP_XLC_VERSION) return vec_xl_be(0, (uint8_t*)src); #else # if defined(IS_LITTLE_ENDIAN) return Reverse8x16(vec_vsx_ld(0, src)); # else return vec_vsx_ld(0, src); # endif #endif } static inline uint8x16_p8 Load8x16(int off, const uint8_t src[16]) { #if defined(CRYPTOPP_XLC_VERSION) return vec_xl_be(off, (uint8_t*)src); #else # if defined(IS_LITTLE_ENDIAN) return Reverse8x16(vec_vsx_ld(off, src)); # else return vec_vsx_ld(off, src); # endif #endif } static inline void Store8x16(const uint8x16_p8& src, uint8_t dest[16]) { #if defined(CRYPTOPP_XLC_VERSION) vec_xst_be(src, 0, (uint8_t*)dest); #else # if defined(IS_LITTLE_ENDIAN) vec_vsx_st(Reverse8x16(src), 0, dest); # else vec_vsx_st(src, 0, dest); # endif #endif } static inline uint64x2_p8 Load64x2(const uint8_t src[16]) { #if defined(CRYPTOPP_XLC_VERSION) return (uint64x2_p8)vec_xl_be(0, (uint8_t*)src); #else # if defined(IS_LITTLE_ENDIAN) return Reverse64x2((uint64x2_p8)vec_vsx_ld(0, src)); # else return (uint64x2_p8)vec_vsx_ld(0, src); # endif #endif } static inline uint64x2_p8 Load64x2(int off, const uint8_t src[16]) { #if defined(CRYPTOPP_XLC_VERSION) return (uint64x2_p8)vec_xl_be(off, (uint8_t*)src); #else # if defined(IS_LITTLE_ENDIAN) return (uint64x2_p8)Reverse8x16(vec_vsx_ld(off, src)); # else return (uint64x2_p8)vec_vsx_ld(off, src); # endif #endif } static inline void Store64x2(const uint64x2_p8& src, uint8_t dest[16]) { #if defined(CRYPTOPP_XLC_VERSION) vec_xst_be((uint8x16_p8)src, 0, (uint8_t*)dest); #else # if defined(IS_LITTLE_ENDIAN) vec_vsx_st((uint8x16_p8)Reverse64x2(src), 0, dest); # else vec_vsx_st((uint8x16_p8)src, 0, dest); # endif #endif } ////////////////////////////////////////////////////////////////// #if defined(CRYPTOPP_XLC_VERSION) typedef uint8x16_p8 VectorType; #elif defined(CRYPTOPP_GCC_VERSION) typedef uint64x2_p8 VectorType; #endif // Loads a mis-aligned byte array, performs an endian conversion. static inline VectorType VectorLoad(const byte src[16]) { return (VectorType)Load8x16(src); } // Loads a mis-aligned byte array, performs an endian conversion. static inline VectorType VectorLoad(int off, const byte src[16]) { return (VectorType)Load8x16(off, src); } // Loads an aligned byte array, does not perform an endian conversion. // This function presumes the subkey table is correct endianess. static inline VectorType VectorLoadKey(const byte src[16]) { CRYPTOPP_ASSERT(IsAlignedOn(src, 16)); return (VectorType)vec_ld(0, (uint8_t*)src); } // Loads a byte array, does not perform an endian conversion. // This function presumes the subkey table is correct endianess. static inline VectorType VectorLoadKeyUnaligned(const byte src[16]) { const uint8x16_p8 perm = vec_lvsl(0, src); const uint8x16_p8 low = vec_ld(0, src); const uint8x16_p8 high = vec_ld(15, src); return (VectorType)vec_perm(low, high, perm); } // Loads an aligned byte array, does not perform an endian conversion. // This function presumes the subkey table is correct endianess. static inline VectorType VectorLoadKey(const word32 src[4]) { CRYPTOPP_ASSERT(IsAlignedOn(src, 16)); return (VectorType)vec_ld(0, (uint8_t*)src); } // Loads an aligned byte array, does not perform an endian conversion. // This function presumes the subkey table is correct endianess. static inline VectorType VectorLoadKey(int off, const byte src[16]) { CRYPTOPP_ASSERT(IsAlignedOn(src, 16)); return (VectorType)vec_ld(off, (uint8_t*)src); } // Loads a byte array, does not perform an endian conversion. // This function presumes the subkey table is correct endianess. static inline VectorType VectorLoadKeyUnaligned(int off, const byte src[16]) { const uint8x16_p8 perm = vec_lvsl(off, src); const uint8x16_p8 low = vec_ld(off, src); const uint8x16_p8 high = vec_ld(off+15, src); return (VectorType)vec_perm(low, high, perm); } // Stores to a mis-aligned byte array, performs an endian conversion. static inline void VectorStore(const uint8x16_p8& src, byte dest[16]) { return Store8x16(src, dest); } // Stores to a mis-aligned byte array, performs an endian conversion. static inline void VectorStore(const uint64x2_p8& src, byte dest[16]) { return Store64x2(src, dest); } template static inline T1 VectorXor(const T1& vec1, const T2& vec2) { return (T1)vec_xor(vec1, (T1)vec2); } template static inline T1 VectorAdd(const T1& vec1, const T2& vec2) { return (T1)vec_add(vec1, (T1)vec2); } template static inline T1 VectorEncrypt(const T1& state, const T2& key) { #if defined(CRYPTOPP_XLC_VERSION) return (T1)__vcipher((VectorType)state, (VectorType)key); #elif defined(CRYPTOPP_GCC_VERSION) return (T1)__builtin_crypto_vcipher((VectorType)state, (VectorType)key); #else CRYPTOPP_ASSERT(0); #endif } template static inline T1 VectorEncryptLast(const T1& state, const T2& key) { #if defined(CRYPTOPP_XLC_VERSION) return (T1)__vcipherlast((VectorType)state, (VectorType)key); #elif defined(CRYPTOPP_GCC_VERSION) return (T1)__builtin_crypto_vcipherlast((VectorType)state, (VectorType)key); #else CRYPTOPP_ASSERT(0); #endif } template static inline T1 VectorDecrypt(const T1& state, const T2& key) { #if defined(CRYPTOPP_XLC_VERSION) return (T1)__vncipher((VectorType)state, (VectorType)key); #elif defined(CRYPTOPP_GCC_VERSION) return (T1)__builtin_crypto_vncipher((VectorType)state, (VectorType)key); #else CRYPTOPP_ASSERT(0); #endif } template static inline T1 VectorDecryptLast(const T1& state, const T2& key) { #if defined(CRYPTOPP_XLC_VERSION) return (T1)__vncipherlast((VectorType)state, (VectorType)key); #elif defined(CRYPTOPP_GCC_VERSION) return (T1)__builtin_crypto_vncipherlast((VectorType)state, (VectorType)key); #else CRYPTOPP_ASSERT(0); #endif } ////////////////////////////////////////////////////////////////// /* Round constants */ CRYPTOPP_ALIGN_DATA(16) static const uint32_t s_rcon[3][4] = { #if defined(IS_LITTLE_ENDIAN) {0x01,0x01,0x01,0x01}, /* 1 */ {0x1b,0x1b,0x1b,0x1b}, /* 9 */ {0x36,0x36,0x36,0x36} /* 10 */ #else {0x01000000,0x01000000,0x01000000,0x01000000}, /* 1 */ {0x1b000000,0x1b000000,0x1b000000,0x1b000000}, /* 9 */ {0x36000000,0x36000000,0x36000000,0x36000000} /* 10 */ #endif }; /* Permute mask */ CRYPTOPP_ALIGN_DATA(16) static const uint32_t s_mask[4] = { #if defined(IS_LITTLE_ENDIAN) 0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d #else 0x0d0e0f0c,0x0d0e0f0c,0x0d0e0f0c,0x0d0e0f0c #endif }; static inline uint8x16_p8 Rijndael_Subkey_POWER8(uint8x16_p8 r1, const uint8x16_p8 r4, const uint8x16_p8 r5) { // Big endian: vec_sld(a, b, c) // Little endian: vec_sld(b, a, 16-c) const uint8x16_p8 r0 = {0}; uint8x16_p8 r3, r6; #if defined(IS_LITTLE_ENDIAN) r3 = vec_perm(r1, r1, r5); /* line 1 */ r6 = vec_sld(r1, r0, 4); /* line 2 */ r3 = VectorEncryptLast(r3, r4); /* line 3 */ r1 = vec_xor(r1, r6); /* line 4 */ r6 = vec_sld(r6, r0, 4); /* line 5 */ r1 = vec_xor(r1, r6); /* line 6 */ r6 = vec_sld(r6, r0, 4); /* line 7 */ r1 = vec_xor(r1, r6); /* line 8 */ #else r3 = vec_perm(r1, r1, r5); /* line 1 */ r6 = vec_sld(r0, r1, 12); /* line 2 */ r3 = VectorEncryptLast(r3, r4); /* line 3 */ r1 = vec_xor(r1, r6); /* line 4 */ r6 = vec_sld(r0, r6, 12); /* line 5 */ r1 = vec_xor(r1, r6); /* line 6 */ r6 = vec_sld(r0, r6, 12); /* line 7 */ r1 = vec_xor(r1, r6); /* line 8 */ #endif // Caller handles r4 (rcon) addition // r4 = vec_add(r4, r4); /* line 9 */ // r1 is ready for next round r1 = vec_xor(r1, r3); /* line 10 */ return r1; } // We still need rcon and Se to fallback to C/C++ for AES-192 and AES-256. // The IBM docs on AES sucks. Intel's docs on AESNI puts IBM to shame. void Rijndael_UncheckedSetKey_POWER8(const byte* userKey, size_t keyLen, word32* rk, const word32* rc, const byte* Se) { const size_t rounds = keyLen / 4 + 6; if (keyLen == 16) { std::memcpy(rk, userKey, keyLen); uint8_t* skptr = (uint8_t*)rk; uint8x16_p8 r1 = (uint8x16_p8)VectorLoadKey((const uint8_t*)skptr); uint8x16_p8 r4 = (uint8x16_p8)VectorLoadKey((const uint8_t*)s_rcon[0]); uint8x16_p8 r5 = (uint8x16_p8)VectorLoadKey((const uint8_t*)s_mask); #if defined(IS_LITTLE_ENDIAN) // Only the user key requires byte reversing. // The subkeys are stored in proper endianess. ReverseByteArrayLE(skptr); #endif for (unsigned int i=0; i(rk); for (unsigned int i=0; i<=rounds; i++) ReverseByteArrayLE(ptr+i*16); #endif // IS_LITTLE_ENDIAN } } static inline void POWER8_Enc_Block(VectorType &block, const word32 *subkeys, unsigned int rounds) { CRYPTOPP_ASSERT(IsAlignedOn(subkeys, 16)); const byte *keys = reinterpret_cast(subkeys); VectorType k = VectorLoadKey(keys); block = VectorXor(block, k); for (size_t i=1; i(subkeys); VectorType k = VectorLoadKey(keys); block0 = VectorXor(block0, k); block1 = VectorXor(block1, k); block2 = VectorXor(block2, k); block3 = VectorXor(block3, k); block4 = VectorXor(block4, k); block5 = VectorXor(block5, k); for (size_t i=1; i(subkeys); VectorType k = VectorLoadKey(rounds*16, keys); block = VectorXor(block, k); for (size_t i=rounds-1; i>1; i-=2) { block = VectorDecrypt(block, VectorLoadKey( i*16, keys)); block = VectorDecrypt(block, VectorLoadKey((i-1)*16, keys)); } block = VectorDecrypt(block, VectorLoadKey(16, keys)); block = VectorDecryptLast(block, VectorLoadKey(0, keys)); } static inline void POWER8_Dec_6_Blocks(VectorType &block0, VectorType &block1, VectorType &block2, VectorType &block3, VectorType &block4, VectorType &block5, const word32 *subkeys, unsigned int rounds) { CRYPTOPP_ASSERT(subkeys); const byte *keys = reinterpret_cast(subkeys); VectorType k = VectorLoadKey(rounds*16, keys); block0 = VectorXor(block0, k); block1 = VectorXor(block1, k); block2 = VectorXor(block2, k); block3 = VectorXor(block3, k); block4 = VectorXor(block4, k); block5 = VectorXor(block5, k); for (size_t i=rounds-1; i>0; --i) { k = VectorLoadKey(i*16, keys); block0 = VectorDecrypt(block0, k); block1 = VectorDecrypt(block1, k); block2 = VectorDecrypt(block2, k); block3 = VectorDecrypt(block3, k); block4 = VectorDecrypt(block4, k); block5 = VectorDecrypt(block5, k); } k = VectorLoadKey(0, keys); block0 = VectorDecryptLast(block0, k); block1 = VectorDecryptLast(block1, k); block2 = VectorDecryptLast(block2, k); block3 = VectorDecryptLast(block3, k); block4 = VectorDecryptLast(block4, k); block5 = VectorDecryptLast(block5, k); } template size_t Rijndael_AdvancedProcessBlocks_POWER8(F1 func1, F6 func6, const word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { CRYPTOPP_ASSERT(subKeys); CRYPTOPP_ASSERT(inBlocks); CRYPTOPP_ASSERT(outBlocks); CRYPTOPP_ASSERT(length >= 16); const size_t blockSize = 16; size_t inIncrement = (flags & (BlockTransformation::BT_InBlockIsCounter|BlockTransformation::BT_DontIncrementInOutPointers)) ? 0 : blockSize; size_t xorIncrement = xorBlocks ? blockSize : 0; size_t outIncrement = (flags & BlockTransformation::BT_DontIncrementInOutPointers) ? 0 : blockSize; if (flags & BlockTransformation::BT_ReverseDirection) { inBlocks += length - blockSize; xorBlocks += length - blockSize; outBlocks += length - blockSize; inIncrement = 0-inIncrement; xorIncrement = 0-xorIncrement; outIncrement = 0-outIncrement; } if (flags & BlockTransformation::BT_AllowParallel) { while (length >= 6*blockSize) { #if defined(IS_LITTLE_ENDIAN) const VectorType one = (VectorType)((uint64x2_p8){1,0}); #else const VectorType one = (VectorType)((uint64x2_p8){0,1}); #endif VectorType block0, block1, block2, block3, block4, block5, temp; block0 = VectorLoad(inBlocks); if (flags & BlockTransformation::BT_InBlockIsCounter) { block1 = VectorAdd(block0, one); block2 = VectorAdd(block1, one); block3 = VectorAdd(block2, one); block4 = VectorAdd(block3, one); block5 = VectorAdd(block4, one); temp = VectorAdd(block5, one); VectorStore(temp, const_cast(inBlocks)); } else { const int inc = static_cast(inIncrement); block1 = VectorLoad(1*inc, inBlocks); block2 = VectorLoad(2*inc, inBlocks); block3 = VectorLoad(3*inc, inBlocks); block4 = VectorLoad(4*inc, inBlocks); block5 = VectorLoad(5*inc, inBlocks); inBlocks += 6*inc; } if (flags & BlockTransformation::BT_XorInput) { const int inc = static_cast(xorIncrement); block0 = VectorXor(block0, VectorLoad(0*inc, xorBlocks)); block1 = VectorXor(block1, VectorLoad(1*inc, xorBlocks)); block2 = VectorXor(block2, VectorLoad(2*inc, xorBlocks)); block3 = VectorXor(block3, VectorLoad(3*inc, xorBlocks)); block4 = VectorXor(block4, VectorLoad(4*inc, xorBlocks)); block5 = VectorXor(block5, VectorLoad(5*inc, xorBlocks)); xorBlocks += 6*inc; } func6(block0, block1, block2, block3, block4, block5, subKeys, rounds); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) { const int inc = static_cast(xorIncrement); block0 = VectorXor(block0, VectorLoad(0*inc, xorBlocks)); block1 = VectorXor(block1, VectorLoad(1*inc, xorBlocks)); block2 = VectorXor(block2, VectorLoad(2*inc, xorBlocks)); block3 = VectorXor(block3, VectorLoad(3*inc, xorBlocks)); block4 = VectorXor(block4, VectorLoad(4*inc, xorBlocks)); block5 = VectorXor(block5, VectorLoad(5*inc, xorBlocks)); xorBlocks += 6*inc; } const int inc = static_cast(outIncrement); VectorStore(block0, outBlocks+0*inc); VectorStore(block1, outBlocks+1*inc); VectorStore(block2, outBlocks+2*inc); VectorStore(block3, outBlocks+3*inc); VectorStore(block4, outBlocks+4*inc); VectorStore(block5, outBlocks+5*inc); outBlocks += 6*inc; length -= 6*blockSize; } } while (length >= blockSize) { VectorType block = VectorLoad(inBlocks); if (flags & BlockTransformation::BT_XorInput) block = VectorXor(block, VectorLoad(xorBlocks)); if (flags & BlockTransformation::BT_InBlockIsCounter) const_cast(inBlocks)[15]++; func1(block, subKeys, rounds); if (xorBlocks && !(flags & BlockTransformation::BT_XorInput)) block = VectorXor(block, VectorLoad(xorBlocks)); VectorStore(block, outBlocks); inBlocks += inIncrement; outBlocks += outIncrement; xorBlocks += xorIncrement; length -= blockSize; } return length; } size_t Rijndael_Enc_AdvancedProcessBlocks_POWER8(const word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return Rijndael_AdvancedProcessBlocks_POWER8(POWER8_Enc_Block, POWER8_Enc_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } size_t Rijndael_Dec_AdvancedProcessBlocks_POWER8(const word32 *subKeys, size_t rounds, const byte *inBlocks, const byte *xorBlocks, byte *outBlocks, size_t length, word32 flags) { return Rijndael_AdvancedProcessBlocks_POWER8(POWER8_Dec_Block, POWER8_Dec_6_Blocks, subKeys, rounds, inBlocks, xorBlocks, outBlocks, length, flags); } #endif // CRYPTOPP_POWER8_AES_AVAILABLE NAMESPACE_END