// ecp.cpp - originally written and placed in the public domain by Wei Dai #include "pch.h" #ifndef CRYPTOPP_IMPORTS #include "ecp.h" #include "asn.h" #include "integer.h" #include "nbtheory.h" #include "modarith.h" #include "filters.h" #include "algebra.cpp" ANONYMOUS_NAMESPACE_BEGIN using CryptoPP::ECP; using CryptoPP::Integer; using CryptoPP::ModularArithmetic; #if defined(HAVE_GCC_INIT_PRIORITY) #define INIT_ATTRIBUTE __attribute__ ((init_priority (CRYPTOPP_INIT_PRIORITY + 50))) const ECP::Point g_identity INIT_ATTRIBUTE = ECP::Point(); #elif defined(HAVE_MSC_INIT_PRIORITY) #pragma warning(disable: 4075) #pragma init_seg(".CRT$XCU") const ECP::Point g_identity; #pragma warning(default: 4075) #elif defined(HAVE_XLC_INIT_PRIORITY) #pragma priority(290) const ECP::Point g_identity; #endif inline ECP::Point ToMontgomery(const ModularArithmetic &mr, const ECP::Point &P) { return P.identity ? P : ECP::Point(mr.ConvertIn(P.x), mr.ConvertIn(P.y)); } inline ECP::Point FromMontgomery(const ModularArithmetic &mr, const ECP::Point &P) { return P.identity ? P : ECP::Point(mr.ConvertOut(P.x), mr.ConvertOut(P.y)); } inline Integer IdentityToInteger(bool val) { return val ? Integer::One() : Integer::Zero(); } ANONYMOUS_NAMESPACE_END NAMESPACE_BEGIN(CryptoPP) ECP::ECP(const ECP &ecp, bool convertToMontgomeryRepresentation) { if (convertToMontgomeryRepresentation && !ecp.GetField().IsMontgomeryRepresentation()) { m_fieldPtr.reset(new MontgomeryRepresentation(ecp.GetField().GetModulus())); m_a = GetField().ConvertIn(ecp.m_a); m_b = GetField().ConvertIn(ecp.m_b); } else operator=(ecp); } ECP::ECP(BufferedTransformation &bt) : m_fieldPtr(new Field(bt)) { BERSequenceDecoder seq(bt); GetField().BERDecodeElement(seq, m_a); GetField().BERDecodeElement(seq, m_b); // skip optional seed if (!seq.EndReached()) { SecByteBlock seed; unsigned int unused; BERDecodeBitString(seq, seed, unused); } seq.MessageEnd(); } void ECP::DEREncode(BufferedTransformation &bt) const { GetField().DEREncode(bt); DERSequenceEncoder seq(bt); GetField().DEREncodeElement(seq, m_a); GetField().DEREncodeElement(seq, m_b); seq.MessageEnd(); } bool ECP::DecodePoint(ECP::Point &P, const byte *encodedPoint, size_t encodedPointLen) const { StringStore store(encodedPoint, encodedPointLen); return DecodePoint(P, store, encodedPointLen); } bool ECP::DecodePoint(ECP::Point &P, BufferedTransformation &bt, size_t encodedPointLen) const { byte type; if (encodedPointLen < 1 || !bt.Get(type)) return false; switch (type) { case 0: P.identity = true; return true; case 2: case 3: { if (encodedPointLen != EncodedPointSize(true)) return false; Integer p = FieldSize(); P.identity = false; P.x.Decode(bt, GetField().MaxElementByteLength()); P.y = ((P.x*P.x+m_a)*P.x+m_b) % p; if (Jacobi(P.y, p) !=1) return false; P.y = ModularSquareRoot(P.y, p); if ((type & 1) != P.y.GetBit(0)) P.y = p-P.y; return true; } case 4: { if (encodedPointLen != EncodedPointSize(false)) return false; unsigned int len = GetField().MaxElementByteLength(); P.identity = false; P.x.Decode(bt, len); P.y.Decode(bt, len); return true; } default: return false; } } void ECP::EncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const { if (P.identity) NullStore().TransferTo(bt, EncodedPointSize(compressed)); else if (compressed) { bt.Put((byte)(2U + P.y.GetBit(0))); P.x.Encode(bt, GetField().MaxElementByteLength()); } else { unsigned int len = GetField().MaxElementByteLength(); bt.Put(4U); // uncompressed P.x.Encode(bt, len); P.y.Encode(bt, len); } } void ECP::EncodePoint(byte *encodedPoint, const Point &P, bool compressed) const { ArraySink sink(encodedPoint, EncodedPointSize(compressed)); EncodePoint(sink, P, compressed); CRYPTOPP_ASSERT(sink.TotalPutLength() == EncodedPointSize(compressed)); } ECP::Point ECP::BERDecodePoint(BufferedTransformation &bt) const { SecByteBlock str; BERDecodeOctetString(bt, str); Point P; if (!DecodePoint(P, str, str.size())) BERDecodeError(); return P; } void ECP::DEREncodePoint(BufferedTransformation &bt, const Point &P, bool compressed) const { SecByteBlock str(EncodedPointSize(compressed)); EncodePoint(str, P, compressed); DEREncodeOctetString(bt, str); } bool ECP::ValidateParameters(RandomNumberGenerator &rng, unsigned int level) const { Integer p = FieldSize(); bool pass = p.IsOdd(); pass = pass && !m_a.IsNegative() && m_a

= 1) pass = pass && ((4*m_a*m_a*m_a+27*m_b*m_b)%p).IsPositive(); if (level >= 2) pass = pass && VerifyPrime(rng, p); return pass; } bool ECP::VerifyPoint(const Point &P) const { const FieldElement &x = P.x, &y = P.y; Integer p = FieldSize(); return P.identity || (!x.IsNegative() && x

().Ref(); #endif } const ECP::Point& ECP::Inverse(const Point &P) const { if (P.identity) return P; else { m_R.identity = false; m_R.x = P.x; m_R.y = GetField().Inverse(P.y); return m_R; } } const ECP::Point& ECP::Add(const Point &P, const Point &Q) const { AdditionFunction add(*this); return (m_R = add(P, Q)); } const ECP::Point& ECP::Double(const Point &P) const { AdditionFunction add(*this); return (m_R = add(P)); } template void ParallelInvert(const AbstractRing &ring, Iterator begin, Iterator end) { size_t n = end-begin; if (n == 1) *begin = ring.MultiplicativeInverse(*begin); else if (n > 1) { std::vector vec((n+1)/2); unsigned int i; Iterator it; for (i=0, it=begin; i::iterator it) : it(it) {} Integer& operator*() {return it->z;} int operator-(ZIterator it2) {return int(it-it2.it);} ZIterator operator+(int i) {return ZIterator(it+i);} ZIterator& operator+=(int i) {it+=i; return *this;} std::vector::iterator it; }; ECP::Point ECP::ScalarMultiply(const Point &P, const Integer &k) const { Element result; if (k.BitCount() <= 5) AbstractGroup::SimultaneousMultiply(&result, P, &k, 1); else ECP::SimultaneousMultiply(&result, P, &k, 1); return result; } void ECP::SimultaneousMultiply(ECP::Point *results, const ECP::Point &P, const Integer *expBegin, unsigned int expCount) const { if (!GetField().IsMontgomeryRepresentation()) { ECP ecpmr(*this, true); const ModularArithmetic &mr = ecpmr.GetField(); ecpmr.SimultaneousMultiply(results, ToMontgomery(mr, P), expBegin, expCount); for (unsigned int i=0; i bases; std::vector exponents; exponents.reserve(expCount); std::vector > baseIndices(expCount); std::vector > negateBase(expCount); std::vector > exponentWindows(expCount); unsigned int i; for (i=0; iNotNegative()); exponents.push_back(WindowSlider(*expBegin++, InversionIsFast(), 5)); exponents[i].FindNextWindow(); } unsigned int expBitPosition = 0; bool notDone = true; while (notDone) { notDone = false; bool baseAdded = false; for (i=0; i > finalCascade; for (i=0; i::CascadeScalarMultiply(P, k1, Q, k2); } #define X p.x #define Y p.y #define Z p.z #define X1 p.x #define Y1 p.y #define Z1 p.z #define X2 q.x #define Y2 q.y #define Z2 q.z #define X3 r.x #define Y3 r.y #define Z3 r.z ECP::AdditionFunction::AdditionFunction(const ECP& ecp) : m_ecp(ecp), m_alpha(static_cast(0)) { if (m_ecp.GetField().IsMontgomeryRepresentation()) { m_alpha = A_Montgomery; } else { if (m_ecp.m_a == 0) { m_alpha = A_0; } else if (m_ecp.m_a == -3 || (m_ecp.m_a - m_ecp.GetField().GetModulus()) == -3) { m_alpha = A_3; } else { m_alpha = A_Star; } } } ECP::Point ECP::AdditionFunction::operator()(const Point& P) const { if (m_alpha == A_3) { const ECP::Field& field = m_ecp.GetField(); const FieldElement& b = m_ecp.m_b; ECP::Point& R = m_ecp.m_R; // Gyrations attempt to maintain constant-timeness // We need either (P.x, P.y, 1) or (0, 1, 0). const Integer x = P.x * IdentityToInteger(!P.identity); const Integer y = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity); const Integer z = 1 * IdentityToInteger(!P.identity); ProjectivePoint p(x, y, z), r; FieldElement t0 = field.Square(X); FieldElement t1 = field.Square(Y); FieldElement t2 = field.Square(Z); FieldElement t3 = field.Multiply(X,Y); t3 = field.Add(t3,t3); Z3 = field.Multiply(X,Z); Z3 = field.Add(Z3,Z3); Y3 = field.Multiply(b,t2); Y3 = field.Subtract(Y3,Z3); X3 = field.Add(Y3,Y3); Y3 = field.Add(X3,Y3); X3 = field.Subtract(t1,Y3); Y3 = field.Add(t1,Y3); Y3 = field.Multiply(X3,Y3); X3 = field.Multiply(X3,t3); t3 = field.Add(t2,t2); t2 = field.Add(t2,t3); Z3 = field.Multiply(b,Z3); Z3 = field.Subtract(Z3,t2); Z3 = field.Subtract(Z3,t0); t3 = field.Add(Z3,Z3); Z3 = field.Add(Z3,t3); t3 = field.Add(t0,t0); t0 = field.Add(t3,t0); t0 = field.Subtract(t0,t2); t0 = field.Multiply(t0,Z3); Y3 = field.Add(Y3,t0); t0 = field.Multiply(Y,Z); t0 = field.Add(t0,t0); Z3 = field.Multiply(t0,Z3); X3 = field.Subtract(X3,Z3); Z3 = field.Multiply(t0,t1); Z3 = field.Add(Z3,Z3); Z3 = field.Add(Z3,Z3); const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3); X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv); // More gyrations R.x = X3*Z3.NotZero(); R.y = Y3*Z3.NotZero(); R.identity = Z3.IsZero(); return R; } else if (m_alpha == A_0) { const ECP::Field& field = m_ecp.GetField(); const FieldElement b3 = field.Multiply(m_ecp.m_b, 3); ECP::Point& R = m_ecp.m_R; // Gyrations attempt to maintain constant-timeness // We need either (P.x, P.y, 1) or (0, 1, 0). const Integer x = P.x * IdentityToInteger(!P.identity); const Integer y = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity); const Integer z = 1 * IdentityToInteger(!P.identity); ProjectivePoint p(x, y, z), r; FieldElement t0 = field.Square(Y); Z3 = field.Add(t0,t0); Z3 = field.Add(Z3,Z3); Z3 = field.Add(Z3,Z3); FieldElement t1 = field.Add(Y,Z); FieldElement t2 = field.Square(Z); t2 = field.Multiply(b3,t2); X3 = field.Multiply(t2,Z3); Y3 = field.Add(t0,t2); Z3 = field.Multiply(t1,Z3); t1 = field.Add(t2,t2); t2 = field.Add(t1,t2); t0 = field.Subtract(t0,t2); Y3 = field.Multiply(t0,Y3); Y3 = field.Add(X3,Y3); t1 = field.Multiply(X,Y); X3 = field.Multiply(t0,t1); X3 = field.Add(X3,X3); const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3); X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv); // More gyrations R.x = X3*Z3.NotZero(); R.y = Y3*Z3.NotZero(); R.identity = Z3.IsZero(); return R; } else if (m_alpha == A_Star) { const ECP::Field& field = m_ecp.GetField(); const FieldElement b3 = field.Multiply(m_ecp.m_b, 3); ECP::Point& R = m_ecp.m_R; // Gyrations attempt to maintain constant-timeness // We need either (P.x, P.y, 1) or (0, 1, 0). const Integer x = P.x * IdentityToInteger(!P.identity); const Integer y = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity); const Integer z = 1 * IdentityToInteger(!P.identity); ProjectivePoint p(x, y, z), r; FieldElement t0 = field.Square(Y); Z3 = field.Add(t0,t0); Z3 = field.Add(Z3,Z3); Z3 = field.Add(Z3,Z3); FieldElement t1 = field.Add(Y,Z); FieldElement t2 = field.Square(Z); t2 = field.Multiply(b3,t2); X3 = field.Multiply(t2,Z3); Y3 = field.Add(t0,t2); Z3 = field.Multiply(t1,Z3); t1 = field.Add(t2,t2); t2 = field.Add(t1,t2); t0 = field.Subtract(t0,t2); Y3 = field.Multiply(t0,Y3); Y3 = field.Add(X3,Y3); t1 = field.Multiply(X,Y); X3 = field.Multiply(t0,t1); X3 = field.Add(X3,X3); const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3); X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv); // More gyrations R.x = X3*Z3.NotZero(); R.y = Y3*Z3.NotZero(); R.identity = Z3.IsZero(); return R; } else // A_Montgomery { ECP::Point& R = m_ecp.m_R; const ECP::Field& field = m_ecp.GetField(); const FieldElement& a = m_ecp.m_a; // More gyrations bool identity = (P.identity | (P.y==field.Identity())); FieldElement t = field.Square(P.x); t = field.Add(field.Add(field.Double(t), t), a); t = field.Divide(t, field.Double(P.y)); FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), P.x); R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y); R.x.swap(x); // More gyrations R.x *= IdentityToInteger(!identity); R.y *= IdentityToInteger(!identity); R.identity = identity; return R; } } ECP::Point ECP::AdditionFunction::operator()(const Point& P, const Point& Q) const { if (m_alpha == A_3) { const ECP::Field& field = m_ecp.GetField(); const FieldElement& b = m_ecp.m_b; ECP::Point& R = m_ecp.m_R; // Gyrations attempt to maintain constant-timeness // We need either (P.x, P.y, 1) or (0, 1, 0). const Integer x1 = P.x * IdentityToInteger(!P.identity); const Integer y1 = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity); const Integer z1 = 1 * IdentityToInteger(!P.identity); const Integer x2 = Q.x * IdentityToInteger(!Q.identity); const Integer y2 = Q.y * IdentityToInteger(!Q.identity) + 1 * IdentityToInteger(Q.identity); const Integer z2 = 1 * IdentityToInteger(!Q.identity); ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r; FieldElement t0 = field.Multiply(X1,X2); FieldElement t1 = field.Multiply(Y1,Y2); FieldElement t2 = field.Multiply(Z1,Z2); FieldElement t3 = field.Add(X1,Y1); FieldElement t4 = field.Add(X2,Y2); t3 = field.Multiply(t3,t4); t4 = field.Add(t0,t1); t3 = field.Subtract(t3,t4); t4 = field.Add(Y1,Z1); X3 = field.Add(Y2,Z2); t4 = field.Multiply(t4,X3); X3 = field.Add(t1,t2); t4 = field.Subtract(t4,X3); X3 = field.Add(X1,Z1); Y3 = field.Add(X2,Z2); X3 = field.Multiply(X3,Y3); Y3 = field.Add(t0,t2); Y3 = field.Subtract(X3,Y3); Z3 = field.Multiply(b,t2); X3 = field.Subtract(Y3,Z3); Z3 = field.Add(X3,X3); X3 = field.Add(X3,Z3); Z3 = field.Subtract(t1,X3); X3 = field.Add(t1,X3); Y3 = field.Multiply(b,Y3); t1 = field.Add(t2,t2); t2 = field.Add(t1,t2); Y3 = field.Subtract(Y3,t2); Y3 = field.Subtract(Y3,t0); t1 = field.Add(Y3,Y3); Y3 = field.Add(t1,Y3); t1 = field.Add(t0,t0); t0 = field.Add(t1,t0); t0 = field.Subtract(t0,t2); t1 = field.Multiply(t4,Y3); t2 = field.Multiply(t0,Y3); Y3 = field.Multiply(X3,Z3); Y3 = field.Add(Y3,t2); X3 = field.Multiply(t3,X3); X3 = field.Subtract(X3,t1); Z3 = field.Multiply(t4,Z3); t1 = field.Multiply(t3,t0); Z3 = field.Add(Z3,t1); const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3); X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv); // More gyrations R.x = X3*Z3.NotZero(); R.y = Y3*Z3.NotZero(); R.identity = Z3.IsZero(); return R; } else if (m_alpha == A_0) { const ECP::Field& field = m_ecp.GetField(); const FieldElement b3 = field.Multiply(m_ecp.m_b, 3); ECP::Point& R = m_ecp.m_R; // Gyrations attempt to maintain constant-timeness // We need either (P.x, P.y, 1) or (0, 1, 0). const Integer x1 = P.x * IdentityToInteger(!P.identity); const Integer y1 = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity); const Integer z1 = 1 * IdentityToInteger(!P.identity); const Integer x2 = Q.x * IdentityToInteger(!Q.identity); const Integer y2 = Q.y * IdentityToInteger(!Q.identity) + 1 * IdentityToInteger(Q.identity); const Integer z2 = 1 * IdentityToInteger(!Q.identity); ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r; FieldElement t0 = field.Square(Y); Z3 = field.Add(t0,t0); Z3 = field.Add(Z3,Z3); Z3 = field.Add(Z3,Z3); FieldElement t1 = field.Add(Y,Z); FieldElement t2 = field.Square(Z); t2 = field.Multiply(b3,t2); X3 = field.Multiply(t2,Z3); Y3 = field.Add(t0,t2); Z3 = field.Multiply(t1,Z3); t1 = field.Add(t2,t2); t2 = field.Add(t1,t2); t0 = field.Subtract(t0,t2); Y3 = field.Multiply(t0,Y3); Y3 = field.Add(X3,Y3); t1 = field.Multiply(X,Y); X3 = field.Multiply(t0,t1); X3 = field.Add(X3,X3); const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3); X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv); // More gyrations R.x = X3*Z3.NotZero(); R.y = Y3*Z3.NotZero(); R.identity = Z3.IsZero(); return R; } else if (m_alpha == A_Star) { const ECP::Field& field = m_ecp.GetField(); const FieldElement &a = m_ecp.m_a; const FieldElement b3 = field.Multiply(m_ecp.m_b, 3); ECP::Point& R = m_ecp.m_R; // Gyrations attempt to maintain constant-timeness // We need either (P.x, P.y, 1) or (0, 1, 0). const Integer x1 = P.x * IdentityToInteger(!P.identity); const Integer y1 = P.y * IdentityToInteger(!P.identity) + 1 * IdentityToInteger(P.identity); const Integer z1 = 1 * IdentityToInteger(!P.identity); const Integer x2 = Q.x * IdentityToInteger(!Q.identity); const Integer y2 = Q.y * IdentityToInteger(!Q.identity) + 1 * IdentityToInteger(Q.identity); const Integer z2 = 1 * IdentityToInteger(!Q.identity); ProjectivePoint p(x1, y1, z1), q(x2, y2, z2), r; FieldElement t0 = field.Multiply(X1,X2); FieldElement t1 = field.Multiply(Y1,Y2); FieldElement t2 = field.Multiply(Z1,Z2); FieldElement t3 = field.Add(X1,Y1); FieldElement t4 = field.Add(X2,Y2); t3 = field.Multiply(t3,t4); t4 = field.Add(t0,t1); t3 = field.Subtract(t3,t4); t4 = field.Add(X1,Z1); FieldElement t5 = field.Add(X2,Z2); t4 = field.Multiply(t4,t5); t5 = field.Add(t0,t2); t4 = field.Subtract(t4,t5); t5 = field.Add(Y1,Z1); X3 = field.Add(Y2,Z2); t5 = field.Multiply(t5,X3); X3 = field.Add(t1,t2); t5 = field.Subtract(t5,X3); Z3 = field.Multiply(a,t4); X3 = field.Multiply(b3,t2); Z3 = field.Add(X3,Z3); X3 = field.Subtract(t1,Z3); Z3 = field.Add(t1,Z3); Y3 = field.Multiply(X3,Z3); t1 = field.Add(t0,t0); t1 = field.Add(t1,t0); t2 = field.Multiply(a,t2); t4 = field.Multiply(b3,t4); t1 = field.Add(t1,t2); t2 = field.Subtract(t0,t2); t2 = field.Multiply(a,t2); t4 = field.Add(t4,t2); t0 = field.Multiply(t1,t4); Y3 = field.Add(Y3,t0); t0 = field.Multiply(t5,t4); X3 = field.Multiply(t3,X3); X3 = field.Subtract(X3,t0); t0 = field.Multiply(t3,t1); Z3 = field.Multiply(t5,Z3); Z3 = field.Add(Z3,t0); const FieldElement inv = field.MultiplicativeInverse(Z3.IsZero() ? Integer::One() : Z3); X3 = field.Multiply(X3, inv); Y3 = field.Multiply(Y3, inv); // More gyrations R.x = X3*Z3.NotZero(); R.y = Y3*Z3.NotZero(); R.identity = Z3.IsZero(); return R; } else // A_Montgomery { const ECP::Field& field = m_ecp.GetField(); const FieldElement& a = m_ecp.m_a; ECP::Point& R = m_ecp.m_R, S = m_ecp.m_R; // More gyrations bool return_Q = P.identity; bool return_P = Q.identity; bool double_P = field.Equal(P.x, Q.x) && field.Equal(P.y, Q.y); bool identity = field.Equal(P.x, Q.x) && !field.Equal(P.y, Q.y); // This code taken from Double(P) identity |= (double_P * (P.identity | (P.y==field.Identity()))); if (double_P) { // This code taken from Double(P) FieldElement t = field.Square(P.x); t = field.Add(field.Add(field.Double(t), t), a); t = field.Divide(t, field.Double(P.y)); FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), P.x); R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y); R.x.swap(x); } else { // Original Double (P,Q) code FieldElement t = field.Subtract(Q.y, P.y); t = field.Divide(t, field.Subtract(Q.x, P.x)); FieldElement x = field.Subtract(field.Subtract(field.Square(t), P.x), Q.x); R.y = field.Subtract(field.Multiply(t, field.Subtract(P.x, x)), P.y); R.x.swap(x); } // More gyrations R.x = R.x * IdentityToInteger(!identity); R.y = R.y * IdentityToInteger(!identity); R.identity = identity; if (return_Q) return (R = S), Q; else if (return_P) return (R = S), P; else return (S = R), R; } } #undef X #undef Y #undef Z #undef X1 #undef Y1 #undef Z1 #undef X2 #undef Y2 #undef Z2 #undef X3 #undef Y3 #undef Z3 NAMESPACE_END #endif