// modarith.h - written and placed in the public domain by Wei Dai //! \file modarith.h //! \brief Class file for performing modular arithmetic. #ifndef CRYPTOPP_MODARITH_H #define CRYPTOPP_MODARITH_H // implementations are in integer.cpp #include "cryptlib.h" #include "integer.h" #include "algebra.h" #include "secblock.h" #include "misc.h" NAMESPACE_BEGIN(CryptoPP) CRYPTOPP_DLL_TEMPLATE_CLASS AbstractGroup; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractRing; CRYPTOPP_DLL_TEMPLATE_CLASS AbstractEuclideanDomain; //! \class ModularArithmetic //! \brief Ring of congruence classes modulo n //! \details This implementation represents each congruence class as the smallest //! non-negative integer in that class. //! \details const Element& returned by member functions are references //! to internal data members. Since each object may have only //! one such data member for holding results, the following code //! will produce incorrect results: //!
    abcd = group.Add(group.Add(a,b), group.Add(c,d));
//! But this should be fine: //!
    abcd = group.Add(a, group.Add(b, group.Add(c,d));
class CRYPTOPP_DLL ModularArithmetic : public AbstractRing { public: typedef int RandomizationParameter; typedef Integer Element; #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 virtual ~ModularArithmetic() {} #endif //! \brief Construct a ModularArithmetic //! \param modulus congruence class modulus ModularArithmetic(const Integer &modulus = Integer::One()) : AbstractRing(), m_modulus(modulus), m_result((word)0, modulus.reg.size()) {} //! \brief Copy construct a ModularArithmetic //! \param ma other ModularArithmetic ModularArithmetic(const ModularArithmetic &ma) : AbstractRing(), m_modulus(ma.m_modulus), m_result((word)0, ma.m_modulus.reg.size()) {} //! \brief Construct a ModularArithmetic //! \param bt BER encoded ModularArithmetic ModularArithmetic(BufferedTransformation &bt); // construct from BER encoded parameters //! \brief Clone a ModularArithmetic //! \returns pointer to a new ModularArithmetic //! \details Clone effectively copy constructs a new ModularArithmetic. The caller is //! responsible for deleting the pointer returned from this method. virtual ModularArithmetic * Clone() const {return new ModularArithmetic(*this);} //! \brief Encodes in DER format //! \param bt BufferedTransformation object void DEREncode(BufferedTransformation &bt) const; //! \brief Encodes element in DER format //! \param out BufferedTransformation object //! \param a Element to encode void DEREncodeElement(BufferedTransformation &out, const Element &a) const; //! \brief Decodes element in DER format //! \param in BufferedTransformation object //! \param a Element to decode void BERDecodeElement(BufferedTransformation &in, Element &a) const; //! \brief Retrieves the modulus //! \returns the modulus const Integer& GetModulus() const {return m_modulus;} //! \brief Sets the modulus //! \param newModulus the new modulus void SetModulus(const Integer &newModulus) {m_modulus = newModulus; m_result.reg.resize(m_modulus.reg.size());} //! \brief Retrieves the representation //! \returns true if the representation is MontgomeryRepresentation, false otherwise virtual bool IsMontgomeryRepresentation() const {return false;} //! \brief Reduces an element in the congruence class //! \param a element to convert //! \returns the reduced element //! \details ConvertIn is useful for derived classes, like MontgomeryRepresentation, which //! must convert between representations. virtual Integer ConvertIn(const Integer &a) const {return a%m_modulus;} //! \brief Reduces an element in the congruence class //! \param a element to convert //! \returns the reduced element //! \details ConvertOut is useful for derived classes, like MontgomeryRepresentation, which //! must convert between representations. virtual Integer ConvertOut(const Integer &a) const {return a;} //! \brief TODO //! \param a element to convert const Integer& Half(const Integer &a) const; //! \brief Compare two elements for equality //! \param a first element //! \param b second element //! \returns true if the elements are equal, false otherwise //! \details Equal() tests the elements for equality using a==b bool Equal(const Integer &a, const Integer &b) const {return a==b;} //! \brief Provides the Identity element //! \returns the Identity element const Integer& Identity() const {return Integer::Zero();} //! \brief Adds elements in the ring //! \param a first element //! \param b second element //! \returns the sum of a and b const Integer& Add(const Integer &a, const Integer &b) const; //! \brief TODO //! \param a first element //! \param b second element //! \returns TODO Integer& Accumulate(Integer &a, const Integer &b) const; //! \brief Inverts the element in the ring //! \param a first element //! \returns the inverse of the element const Integer& Inverse(const Integer &a) const; //! \brief Subtracts elements in the ring //! \param a first element //! \param b second element //! \returns the difference of a and b. The element a must provide a Subtract member function. const Integer& Subtract(const Integer &a, const Integer &b) const; //! \brief TODO //! \param a first element //! \param b second element //! \returns TODO Integer& Reduce(Integer &a, const Integer &b) const; //! \brief Doubles an element in the ring //! \param a the element //! \returns the element doubled //! \details Double returns Add(a, a). The element a must provide an Add member function. const Integer& Double(const Integer &a) const {return Add(a, a);} //! \brief Retrieves the multiplicative identity //! \returns the multiplicative identity //! \details the base class implementations returns 1. const Integer& MultiplicativeIdentity() const {return Integer::One();} //! \brief Multiplies elements in the ring //! \param a the multiplicand //! \param b the multiplier //! \returns the product of a and b //! \details Multiply returns a*b\%n. const Integer& Multiply(const Integer &a, const Integer &b) const {return m_result1 = a*b%m_modulus;} //! \brief Square an element in the ring //! \param a the element //! \returns the element squared //! \details Square returns a*a\%n. The element a must provide a Square member function. const Integer& Square(const Integer &a) const {return m_result1 = a.Squared()%m_modulus;} //! \brief Determines whether an element is a unit in the ring //! \param a the element //! \returns true if the element is a unit after reduction, false otherwise. bool IsUnit(const Integer &a) const {return Integer::Gcd(a, m_modulus).IsUnit();} //! \brief Calculate the multiplicative inverse of an element in the ring //! \param a the element //! \details MultiplicativeInverse returns a-1\%n. The element a must //! provide a InverseMod member function. const Integer& MultiplicativeInverse(const Integer &a) const {return m_result1 = a.InverseMod(m_modulus);} //! \brief Divides elements in the ring //! \param a the dividend //! \param b the divisor //! \returns the quotient //! \details Divide returns a*b-1\%n. const Integer& Divide(const Integer &a, const Integer &b) const {return Multiply(a, MultiplicativeInverse(b));} //! \brief TODO //! \param x first element //! \param e1 first exponent //! \param y second element //! \param e2 second exponent //! \returns TODO Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const; //! \brief Exponentiates a base to multiple exponents in the ring //! \param results an array of Elements //! \param base the base to raise to the exponents //! \param exponents an array of exponents //! \param exponentsCount the number of exponents in the array //! \details SimultaneousExponentiate() raises the base to each exponent in the exponents array and stores the //! result at the respective position in the results array. //! \details SimultaneousExponentiate() must be implemented in a derived class. //! \pre COUNTOF(results) == exponentsCount //! \pre COUNTOF(exponents) == exponentsCount void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const; //! \brief Provides the maximum bit size of an element in the ring //! \returns maximum bit size of an element unsigned int MaxElementBitLength() const {return (m_modulus-1).BitCount();} //! \brief Provides the maximum byte size of an element in the ring //! \returns maximum byte size of an element unsigned int MaxElementByteLength() const {return (m_modulus-1).ByteCount();} //! \brief Provides a random element in the ring //! \param rng RandomNumberGenerator used to generate material //! \param ignore_for_now unused //! \returns a random element that is uniformly distributed //! \details RandomElement constructs a new element in the range [0,n-1], inclusive. //! The element's class must provide a constructor with the signature Element(RandomNumberGenerator rng, //! Element min, Element max). Element RandomElement( RandomNumberGenerator &rng , const RandomizationParameter &ignore_for_now = 0) const // left RandomizationParameter arg as ref in case RandomizationParameter becomes a more complicated struct { CRYPTOPP_UNUSED(ignore_for_now); return Element(rng, Integer::Zero(), m_modulus - Integer::One()) ; } //! \brief Compares two ModularArithmetic for equality //! \param rhs other ModularArithmetic //! \returns true if this is equal to the other, false otherwise //! \details The operator tests for equality using this.m_modulus == rhs.m_modulus. bool operator==(const ModularArithmetic &rhs) const {return m_modulus == rhs.m_modulus;} static const RandomizationParameter DefaultRandomizationParameter ; protected: Integer m_modulus; mutable Integer m_result, m_result1; }; // const ModularArithmetic::RandomizationParameter ModularArithmetic::DefaultRandomizationParameter = 0 ; //! \class MontgomeryRepresentation //! \brief Performs modular arithmetic in Montgomery representation for increased speed //! \details The Montgomery representation represents each congruence class [a] as //! a*r\%n, where r is a convenient power of 2. //! \details const Element& returned by member functions are references //! to internal data members. Since each object may have only //! one such data member for holding results, the following code //! will produce incorrect results: //!
    abcd = group.Add(group.Add(a,b), group.Add(c,d));
//! But this should be fine: //!
    abcd = group.Add(a, group.Add(b, group.Add(c,d));
class CRYPTOPP_DLL MontgomeryRepresentation : public ModularArithmetic { public: #ifndef CRYPTOPP_MAINTAIN_BACKWARDS_COMPATIBILITY_562 virtual ~MontgomeryRepresentation() {} #endif //! \brief Construct a IsMontgomeryRepresentation //! \param modulus congruence class modulus //! \note The modulus must be odd. MontgomeryRepresentation(const Integer &modulus); //! \brief Clone a MontgomeryRepresentation //! \returns pointer to a new MontgomeryRepresentation //! \details Clone effectively copy constructs a new MontgomeryRepresentation. The caller is //! responsible for deleting the pointer returned from this method. virtual ModularArithmetic * Clone() const {return new MontgomeryRepresentation(*this);} bool IsMontgomeryRepresentation() const {return true;} Integer ConvertIn(const Integer &a) const {return (a<<(WORD_BITS*m_modulus.reg.size()))%m_modulus;} Integer ConvertOut(const Integer &a) const; const Integer& MultiplicativeIdentity() const {return m_result1 = Integer::Power2(WORD_BITS*m_modulus.reg.size())%m_modulus;} const Integer& Multiply(const Integer &a, const Integer &b) const; const Integer& Square(const Integer &a) const; const Integer& MultiplicativeInverse(const Integer &a) const; Integer CascadeExponentiate(const Integer &x, const Integer &e1, const Integer &y, const Integer &e2) const {return AbstractRing::CascadeExponentiate(x, e1, y, e2);} void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const {AbstractRing::SimultaneousExponentiate(results, base, exponents, exponentsCount);} private: Integer m_u; mutable IntegerSecBlock m_workspace; }; NAMESPACE_END #endif