// nbtheory.h - originally written and placed in the public domain by Wei Dai
//! \file nbtheory.h
//! \brief Classes and functions for number theoretic operations
#ifndef CRYPTOPP_NBTHEORY_H
#define CRYPTOPP_NBTHEORY_H
#include "cryptlib.h"
#include "integer.h"
#include "algparam.h"
NAMESPACE_BEGIN(CryptoPP)
// obtain pointer to small prime table and get its size
CRYPTOPP_DLL const word16 * CRYPTOPP_API GetPrimeTable(unsigned int &size);
// ************ primality testing ****************
//! \brief Generates a provable prime
//! \param rng a RandomNumberGenerator to produce keying material
//! \param bits the number of bits in the prime number
//! \returns Integer() meeting Maurer's tests for primality
CRYPTOPP_DLL Integer CRYPTOPP_API MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
//! \brief Generates a provable prime
//! \param rng a RandomNumberGenerator to produce keying material
//! \param bits the number of bits in the prime number
//! \returns Integer() meeting Mihailescu's tests for primality
//! \details Mihailescu's methods performs a search using algorithmic progressions.
CRYPTOPP_DLL Integer CRYPTOPP_API MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int bits);
//! \brief Tests whether a number is a small prime
//! \param p a candidate prime to test
//! \returns true if p is a small prime, false otherwise
//! \details Internally, the library maintains a table fo the first 32719 prime numbers
//! in sorted order. IsSmallPrime() searches the table and returns true if p is
//! in the table.
CRYPTOPP_DLL bool CRYPTOPP_API IsSmallPrime(const Integer &p);
//!
//! \returns true if p is divisible by some prime less than bound.
//! \details TrialDivision() true if p is divisible by some prime less than bound. bound not be
//! greater than the largest entry in the prime table, which is 32719.
CRYPTOPP_DLL bool CRYPTOPP_API TrialDivision(const Integer &p, unsigned bound);
// returns true if p is NOT divisible by small primes
CRYPTOPP_DLL bool CRYPTOPP_API SmallDivisorsTest(const Integer &p);
// These is no reason to use these two, use the ones below instead
CRYPTOPP_DLL bool CRYPTOPP_API IsFermatProbablePrime(const Integer &n, const Integer &b);
CRYPTOPP_DLL bool CRYPTOPP_API IsLucasProbablePrime(const Integer &n);
CRYPTOPP_DLL bool CRYPTOPP_API IsStrongProbablePrime(const Integer &n, const Integer &b);
CRYPTOPP_DLL bool CRYPTOPP_API IsStrongLucasProbablePrime(const Integer &n);
// Rabin-Miller primality test, i.e. repeating the strong probable prime test
// for several rounds with random bases
CRYPTOPP_DLL bool CRYPTOPP_API RabinMillerTest(RandomNumberGenerator &rng, const Integer &w, unsigned int rounds);
//! \brief Verifies a prime number
//! \param p a candidate prime to test
//! \returns true if p is a probable prime, false otherwise
//! \details IsPrime() is suitable for testing candidate primes when creating them. Internally,
//! IsPrime() utilizes SmallDivisorsTest(), IsStrongProbablePrime() and IsStrongLucasProbablePrime().
CRYPTOPP_DLL bool CRYPTOPP_API IsPrime(const Integer &p);
//! \brief Verifies a prime number
//! \param rng a RandomNumberGenerator for randomized testing
//! \param p a candidate prime to test
//! \param level the level of thoroughness of testing
//! \returns true if p is a strong probable prime, false otherwise
//! \details VerifyPrime() is suitable for testing candidate primes created by others. Internally,
//! VerifyPrime() utilizes IsPrime() and one-round RabinMillerTest(). If the candiate passes and
//! level is greater than 1, then 10 round RabinMillerTest() primality testing is performed.
CRYPTOPP_DLL bool CRYPTOPP_API VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level = 1);
//! \class PrimeSelector
//! \brief Application callback to signal suitability of a cabdidate prime
class CRYPTOPP_DLL PrimeSelector
{
public:
const PrimeSelector *GetSelectorPointer() const {return this;}
virtual bool IsAcceptable(const Integer &candidate) const =0;
};
//! \brief Finds a random prime of special form
//! \param p an Integer reference to receive the prime
//! \param max the maximum value
//! \param equiv the equivalence class based on the parameter mod
//! \param mod the modulus used to reduce the equivalence class
//! \param pSelector pointer to a PrimeSelector function for the application to signal suitability
//! \returns true if and only if FirstPrime() finds a prime and returns the prime through p. If FirstPrime()
//! returns false, then no such prime exists and the value of p is undefined
//! \details FirstPrime() uses a fast sieve to find the first probable prime
//! in {x | p<=x<=max and x%mod==equiv}
CRYPTOPP_DLL bool CRYPTOPP_API FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector);
CRYPTOPP_DLL unsigned int CRYPTOPP_API PrimeSearchInterval(const Integer &max);
CRYPTOPP_DLL AlgorithmParameters CRYPTOPP_API MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength);
// ********** other number theoretic functions ************
inline Integer GCD(const Integer &a, const Integer &b)
{return Integer::Gcd(a,b);}
inline bool RelativelyPrime(const Integer &a, const Integer &b)
{return Integer::Gcd(a,b) == Integer::One();}
inline Integer LCM(const Integer &a, const Integer &b)
{return a/Integer::Gcd(a,b)*b;}
inline Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
{return a.InverseMod(b);}
// use Chinese Remainder Theorem to calculate x given x mod p and x mod q, and u = inverse of p mod q
CRYPTOPP_DLL Integer CRYPTOPP_API CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u);
// if b is prime, then Jacobi(a, b) returns 0 if a%b==0, 1 if a is quadratic residue mod b, -1 otherwise
// check a number theory book for what Jacobi symbol means when b is not prime
CRYPTOPP_DLL int CRYPTOPP_API Jacobi(const Integer &a, const Integer &b);
// calculates the Lucas function V_e(p, 1) mod n
CRYPTOPP_DLL Integer CRYPTOPP_API Lucas(const Integer &e, const Integer &p, const Integer &n);
// calculates x such that m==Lucas(e, x, p*q), p q primes, u=inverse of p mod q
CRYPTOPP_DLL Integer CRYPTOPP_API InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u);
inline Integer ModularExponentiation(const Integer &a, const Integer &e, const Integer &m)
{return a_exp_b_mod_c(a, e, m);}
// returns x such that x*x%p == a, p prime
CRYPTOPP_DLL Integer CRYPTOPP_API ModularSquareRoot(const Integer &a, const Integer &p);
// returns x such that a==ModularExponentiation(x, e, p*q), p q primes,
// and e relatively prime to (p-1)*(q-1)
// dp=d%(p-1), dq=d%(q-1), (d is inverse of e mod (p-1)*(q-1))
// and u=inverse of p mod q
CRYPTOPP_DLL Integer CRYPTOPP_API ModularRoot(const Integer &a, const Integer &dp, const Integer &dq, const Integer &p, const Integer &q, const Integer &u);
// find r1 and r2 such that ax^2 + bx + c == 0 (mod p) for x in {r1, r2}, p prime
// returns true if solutions exist
CRYPTOPP_DLL bool CRYPTOPP_API SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p);
// returns log base 2 of estimated number of operations to calculate discrete log or factor a number
CRYPTOPP_DLL unsigned int CRYPTOPP_API DiscreteLogWorkFactor(unsigned int bitlength);
CRYPTOPP_DLL unsigned int CRYPTOPP_API FactoringWorkFactor(unsigned int bitlength);
// ********************************************************
//! \class PrimeAndGenerator
//! \brief Generator of prime numbers of special forms
class CRYPTOPP_DLL PrimeAndGenerator
{
public:
//! \brief Construct a PrimeAndGenerator
PrimeAndGenerator() {}
//! \brief Construct a PrimeAndGenerator
//! \param delta +1 or -1
//! \param rng a RandomNumberGenerator derived class
//! \param pbits the number of bits in the prime p
//! \details PrimeAndGenerator() generates a random prime p of the form 2*q+delta, where delta is 1 or -1 and q is
//! also prime. Internally the constructor calls Generate(delta, rng, pbits, pbits-1).
//! \pre pbits > 5
//! \warning This PrimeAndGenerator() is slow because primes of this form are harder to find.
PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits)
{Generate(delta, rng, pbits, pbits-1);}
//! \brief Construct a PrimeAndGenerator
//! \param delta +1 or -1
//! \param rng a RandomNumberGenerator derived class
//! \param pbits the number of bits in the prime p
//! \param qbits the number of bits in the prime q
//! \details PrimeAndGenerator() generates a random prime p of the form 2*r*q+delta, where q is also prime.
//! Internally the constructor calls Generate(delta, rng, pbits, qbits).
//! \pre qbits > 4 && pbits > qbits
PrimeAndGenerator(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits)
{Generate(delta, rng, pbits, qbits);}
//! \brief Generate a Prime and Generator
//! \param delta +1 or -1
//! \param rng a RandomNumberGenerator derived class
//! \param pbits the number of bits in the prime p
//! \param qbits the number of bits in the prime q
//! \details Generate() generates a random prime p of the form 2*r*q+delta, where q is also prime.
void Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned qbits);
//! \brief Retrieve first prime
//! \returns Prime() returns the prime p.
const Integer& Prime() const {return p;}
//! \brief Retrieve second prime
//! \returns SubPrime() returns the prime q.
const Integer& SubPrime() const {return q;}
//! \brief Retrieve the generator
//! \returns Generator() returns the the generator g.
const Integer& Generator() const {return g;}
private:
Integer p, q, g;
};
NAMESPACE_END
#endif