inline T1 VectorAdd(const T1& vec1, const T2& vec2)
{
return (T1)vec_add(vec1, (T1)vec2);
}
//! \brief Shift two vectors left
//! \tparam C shift byte count
//! \tparam T1 vector type
//! \tparam T2 vector type
//! \param vec1 the first vector
//! \param vec2 the second vector
//! \details VectorShiftLeft() concatenates vec1 and vec2 and returns a
//! new vector after shifting the concatenation by the specified number
//! of bytes. Both vec1 and vec2 are cast to uint8x16_p8. The return
//! vector is the same type as vec1.
//! \details On big endian machines VectorShiftLeft() is vec_sld(a, b,
//! c). On little endian machines VectorShiftLeft() is translated to
//! vec_sld(b, a, 16-c). You should always call the function as
//! if on a big endian machine as shown below.
//!
//! uint8x16_p8 r0 = {0};
//! uint8x16_p8 r1 = VectorLoad(ptr);
//! uint8x16_p8 r5 = VectorShiftLeft<12>(r0, r1);
//!
//! \sa Is vec_sld
//! endian sensitive? on Stack Overflow
//! \since Crypto++ 6.0
template
inline T1 VectorShiftLeft(const T1& vec1, const T2& vec2)
{
#if defined(IS_LITTLE_ENDIAN)
return (T1)vec_sld((uint8x16_p8)vec2, (uint8x16_p8)vec1, 16-C);
#else
return (T1)vec_sld((uint8x16_p8)vec1, (uint8x16_p8)vec2, C);
#endif
}
//! \brief One round of AES encryption
//! \tparam T1 vector type
//! \tparam T2 vector type
//! \param state the state vector
//! \param key the subkey vector
//! \details VectorEncrypt performs one round of AES encryption of state
//! using subkey key. The return vector is the same type as vec1.
//! \since Crypto++ 6.0
template
inline T1 VectorEncrypt(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vcipher((VectorType)state, (VectorType)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vcipher((VectorType)state, (VectorType)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
//! \brief Final round of AES encryption
//! \tparam T1 vector type
//! \tparam T2 vector type
//! \param state the state vector
//! \param key the subkey vector
//! \details VectorEncryptLast performs the final round of AES encryption
//! of state using subkey key. The return vector is the same type as vec1.
//! \since Crypto++ 6.0
template
inline T1 VectorEncryptLast(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vcipherlast((VectorType)state, (VectorType)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vcipherlast((VectorType)state, (VectorType)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
//! \brief One round of AES decryption
//! \tparam T1 vector type
//! \tparam T2 vector type
//! \param state the state vector
//! \param key the subkey vector
//! \details VectorDecrypt performs one round of AES decryption of state
//! using subkey key. The return vector is the same type as vec1.
//! \since Crypto++ 6.0
template
inline T1 VectorDecrypt(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vncipher((VectorType)state, (VectorType)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vncipher((VectorType)state, (VectorType)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
//! \brief Final round of AES decryption
//! \tparam T1 vector type
//! \tparam T2 vector type
//! \param state the state vector
//! \param key the subkey vector
//! \details VectorDecryptLast performs the final round of AES decryption
//! of state using subkey key. The return vector is the same type as vec1.
//! \since Crypto++ 6.0
template
inline T1 VectorDecryptLast(const T1& state, const T2& key)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T1)__vncipherlast((VectorType)state, (VectorType)key);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T1)__builtin_crypto_vncipherlast((VectorType)state, (VectorType)key);
#else
CRYPTOPP_ASSERT(0);
#endif
}
//! \brief SHA256 Sigma functions
//! \tparam func function
//! \tparam subfunc sub-function
//! \tparam T vector type
//! \param vec the block to transform
//! \details VectorSHA256 selects sigma0, sigma1, Sigma0, Sigma1 based on
//! func and subfunc. The return vector is the same type as vec.
//! \since Crypto++ 6.0
template
inline T VectorSHA256(const T& vec)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T)__vshasigmaw((uint32x4_p8)vec, func, subfunc);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T)__builtin_crypto_vshasigmaw((uint32x4_p8)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
//! \brief SHA512 Sigma functions
//! \tparam func function
//! \tparam subfunc sub-function
//! \tparam T vector type
//! \param vec the block to transform
//! \details VectorSHA512 selects sigma0, sigma1, Sigma0, Sigma1 based on
//! func and subfunc. The return vector is the same type as vec.
//! \since Crypto++ 6.0
template
inline T VectorSHA512(const T& vec)
{
#if defined(CRYPTOPP_XLC_VERSION)
return (T)__vshasigmad((uint64x2_p8)vec, func, subfunc);
#elif defined(CRYPTOPP_GCC_VERSION)
return (T)__builtin_crypto_vshasigmad((uint64x2_p8)vec, func, subfunc);
#else
CRYPTOPP_ASSERT(0);
#endif
}
#endif // CRYPTOPP_ALTIVEC_AVAILABLE
NAMESPACE_END
#endif // CRYPTOPP_PPC_CRYPTO_H