// ppc-crypto.h - written and placed in public domain by Jeffrey Walton //! \file ppc-crypto.h //! \brief Support functions for PowerPC and Power8 vector operations //! \details This header provides an agnostic interface into GCC and //! IBM XL C/C++ compilers modulo their different built-in functions //! for accessing vector intructions. //! \details The abstractions are necesssary to support back to GCC 4.8. //! GCC 4.8 and 4.9 are still popular, and they are the default //! compiler for GCC112, GCC118 and others on the compile farm. Older //! IBM XL C/C++ compilers also experience it due to lack of //! vec_xl_be support on some platforms. Modern compilers //! provide best support and don't need many of the little hacks below. //! \since Crypto++ 6.0 #ifndef CRYPTOPP_PPC_CRYPTO_H #define CRYPTOPP_PPC_CRYPTO_H #include "config.h" #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING) # include # undef vector # undef pixel # undef bool #endif NAMESPACE_BEGIN(CryptoPP) #if defined(CRYPTOPP_ALTIVEC_AVAILABLE) || defined(CRYPTOPP_DOXYGEN_PROCESSING) typedef __vector unsigned char uint8x16_p8; typedef __vector unsigned int uint32x4_p8; typedef __vector unsigned long long uint64x2_p8; // Use 8x16 for documentation because it is used frequently #if defined(CRYPTOPP_XLC_VERSION) typedef uint8x16_p8 VectorType; #elif defined(CRYPTOPP_GCC_VERSION) typedef uint64x2_p8 VectorType; #endif #if defined(CRYPTOPP_DOXYGEN_PROCESSING) //! \brief Default vector typedef //! \details IBM XL C/C++ provides equally good support for all vector types, //! including uint8x16_p8. GCC provides good support for //! uint64x2_p8. VectorType is typedef'd accordingly to //! minimize casting to and from buit-in function calls. # define VectorType ... #endif //! \brief Reverse a 16-byte array //! \param src the byte array //! \details ReverseByteArrayLE reverses a 16-byte array on a little endian //! system. It does nothing on a big endian system. //! \since Crypto++ 6.0 inline void ReverseByteArrayLE(byte src[16]) { #if defined(CRYPTOPP_XLC_VERSION) && defined(IS_LITTLE_ENDIAN) vec_st(vec_reve(vec_ld(0, src)), 0, src); #elif defined(IS_LITTLE_ENDIAN) const uint8x16_p8 mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0}; const uint8x16_p8 zero = {0}; vec_vsx_st(vec_perm(vec_vsx_ld(0, src), zero, mask), 0, src); #endif } //! \brief Reverse a vector //! \tparam T vector type //! \param src the vector //! \details Reverse() endian swaps the bytes in a vector //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 template inline T Reverse(const T& src) { const uint8x16_p8 mask = {15,14,13,12, 11,10,9,8, 7,6,5,4, 3,2,1,0}; const uint8x16_p8 zero = {0}; return vec_perm(src, zero, mask); } //! \brief Loads a vector from a byte array //! \param src the byte array //! \details Loads a vector in big endian format from a byte array. //! VectorLoadBE will swap endianess on little endian systems. //! \note VectorLoadBE() does not require an aligned array. //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 inline VectorType VectorLoadBE(const uint8_t src[16]) { #if defined(CRYPTOPP_XLC_VERSION) return (VectorType)vec_xl_be(0, (uint8_t*)src); #else # if defined(IS_LITTLE_ENDIAN) return (VectorType)Reverse(vec_vsx_ld(0, (uint8_t*)src)); # else return (VectorType)vec_vsx_ld(0, (uint8_t*)src); # endif #endif } //! \brief Loads a vector from a byte array //! \param src the byte array //! \param off offset into the src byte array //! \details Loads a vector in big endian format from a byte array. //! VectorLoadBE will swap endianess on little endian systems. //! \note VectorLoadBE does not require an aligned array. //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 inline VectorType VectorLoadBE(int off, const uint8_t src[16]) { #if defined(CRYPTOPP_XLC_VERSION) return (VectorType)vec_xl_be(off, (uint8_t*)src); #else # if defined(IS_LITTLE_ENDIAN) return (VectorType)Reverse(vec_vsx_ld(off, (uint8_t*)src)); # else return (VectorType)vec_vsx_ld(off, (uint8_t*)src); # endif #endif } ////////////////////////////////////////////////////////////////// //! \brief Loads a vector from a byte array //! \param src the byte array //! \details Loads a vector in big endian format from a byte array. //! VectorLoad will swap endianess on little endian systems. //! \note VectorLoad does not require an aligned array. //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 inline VectorType VectorLoad(const byte src[16]) { return (VectorType)VectorLoadBE((uint8_t*)src); } //! \brief Loads a vector from a byte array //! \param src the byte array //! \param off offset into the src byte array //! \details Loads a vector in big endian format from a byte array. //! VectorLoad will swap endianess on little endian systems. //! \note VectorLoad does not require an aligned array. //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 inline VectorType VectorLoad(int off, const byte src[16]) { return (VectorType)VectorLoadBE(off, (uint8_t*)src); } //! \brief Loads a vector from a byte array //! \param src the byte array //! \details Loads a vector from a byte array. //! VectorLoadKey does not swap endianess on little endian systems. //! \note VectorLoadKey does not require an aligned array. //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 inline VectorType VectorLoadKey(const byte src[16]) { #if defined(CRYPTOPP_XLC_VERSION) return (VectorType)vec_xl(0, (uint8_t*)src); #else return (VectorType)vec_vsx_ld(0, (uint8_t*)src); #endif } //! \brief Loads a vector from a 32-bit word array //! \param src the 32-bit word array //! \details Loads a vector from a 32-bit word array. //! VectorLoadKey does not swap endianess on little endian systems. //! \note VectorLoadKey does not require an aligned array. //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 inline VectorType VectorLoadKey(const word32 src[4]) { #if defined(CRYPTOPP_XLC_VERSION) return (VectorType)vec_xl(0, (uint8_t*)src); #else return (VectorType)vec_vsx_ld(0, (uint8_t*)src); #endif } //! \brief Loads a vector from a byte array //! \param src the byte array //! \param off offset into the src byte array //! \details Loads a vector from a byte array. //! VectorLoadKey does not swap endianess on little endian systems. //! \note VectorLoadKey does not require an aligned array. //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 inline VectorType VectorLoadKey(int off, const byte src[16]) { #if defined(CRYPTOPP_XLC_VERSION) return (VectorType)vec_xl(off, (uint8_t*)src); #else return (VectorType)vec_vsx_ld(off, (uint8_t*)src); #endif } //! \brief Stores a vector to a byte array //! \tparam T vector type //! \param src the vector //! \param dest the byte array //! \details Stores a vector in big endian format to a byte array. //! VectorStoreBE will swap endianess on little endian systems. //! \note VectorStoreBE does not require an aligned array. //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 template inline void VectorStoreBE(const T& src, uint8_t dest[16]) { #if defined(CRYPTOPP_XLC_VERSION) vec_xst_be((uint8x16_p8)src, 0, (uint8_t*)dest); #else # if defined(IS_LITTLE_ENDIAN) vec_vsx_st(Reverse((uint8x16_p8)src), 0, (uint8_t*)dest); # else vec_vsx_st((uint8x16_p8)src, 0, (uint8_t*)dest); # endif #endif } //! \brief Stores a vector to a byte array //! \tparam T vector type //! \param src the vector //! \param off offset into the dest byte array //! \param dest the byte array //! \details Stores a vector in big endian format to a byte array. //! VectorStoreBE will swap endianess on little endian systems. //! \note VectorStoreBE does not require an aligned array. //! \sa Reverse(), VectorLoadBE(), VectorLoad(), VectorLoadKey() //! \since Crypto++ 6.0 template inline void VectorStoreBE(const T& src, int off, uint8_t dest[16]) { #if defined(CRYPTOPP_XLC_VERSION) vec_xst_be((uint8x16_p8)src, off, (uint8_t*)dest); #else # if defined(IS_LITTLE_ENDIAN) vec_vsx_st(Reverse((uint8x16_p8)src), off, (uint8_t*)dest); # else vec_vsx_st((uint8x16_p8)src, off, (uint8_t*)dest); # endif #endif } //! \brief Stores a vector to a byte array //! \tparam T vector type //! \param src the vector //! \param dest the byte array //! \details Stores a vector in big endian format to a byte array. //! VectorStore will swap endianess on little endian systems. //! \note VectorStore does not require an aligned array. //! \since Crypto++ 6.0 template inline void VectorStore(const T& src, byte dest[16]) { // Do not call VectorStoreBE. It slows us down by about 0.5 cpb on LE. #if defined(CRYPTOPP_XLC_VERSION) vec_xst_be((uint8x16_p8)src, 0, (uint8_t*)dest); #else # if defined(IS_LITTLE_ENDIAN) vec_vsx_st(Reverse((uint8x16_p8)src), 0, (uint8_t*)dest); # else vec_vsx_st((uint8x16_p8)src, 0, (uint8_t*)dest); # endif #endif } //! \brief Stores a vector to a byte array //! \tparam T vector type //! \param src the vector //! \param off offset into the dest byte array //! \param dest the byte array //! \details Stores a vector in big endian format to a byte array. //! VectorStore will swap endianess on little endian systems. //! \note VectorStore does not require an aligned array. //! \since Crypto++ 6.0 template inline void VectorStore(const T& src, int off, byte dest[16]) { // Do not call VectorStoreBE. It slows us down by about 0.5 cpb on LE. #if defined(CRYPTOPP_XLC_VERSION) vec_xst_be((uint8x16_p8)src, off, (uint8_t*)dest); #else # if defined(IS_LITTLE_ENDIAN) vec_vsx_st(Reverse((uint8x16_p8)src), off, (uint8_t*)dest); # else vec_vsx_st((uint8x16_p8)src, off, (uint8_t*)dest); # endif #endif } //! \brief Permutes two vectors //! \tparam T1 vector type //! \tparam T2 vector type //! \param vec1 the first vector //! \param vec2 the second vector //! \param mask vector mask //! \details VectorPermute returns a new vector from vec1 and vec2 //! based on mask. mask is an uint8x16_p8 type vector. The return //! vector is the same type as vec1. //! \since Crypto++ 6.0 template inline T1 VectorPermute(const T1& vec1, const T1& vec2, const T2& mask) { return (T1)vec_perm(vec1, vec2, (uint8x16_p8)mask); } //! \brief XOR two vectors //! \tparam T1 vector type //! \tparam T2 vector type //! \param vec1 the first vector //! \param vec2 the second vector //! \details VectorXor returns a new vector from vec1 and vec2. The return //! vector is the same type as vec1. //! \since Crypto++ 6.0 template inline T1 VectorXor(const T1& vec1, const T2& vec2) { return (T1)vec_xor(vec1, (T1)vec2); } //! \brief Add two vector //! \tparam T1 vector type //! \tparam T2 vector type //! \param vec1 the first vector //! \param vec2 the second vector //! \details VectorAdd returns a new vector from vec1 and vec2. //! vec2 is cast to the same type as vec1. The return vector //! is the same type as vec1. //! \since Crypto++ 6.0 template inline T1 VectorAdd(const T1& vec1, const T2& vec2) { return (T1)vec_add(vec1, (T1)vec2); } //! \brief Shift two vectors left //! \tparam C shift byte count //! \tparam T1 vector type //! \tparam T2 vector type //! \param vec1 the first vector //! \param vec2 the second vector //! \details VectorShiftLeft() concatenates vec1 and vec2 and returns a //! new vector after shifting the concatenation by the specified number //! of bytes. Both vec1 and vec2 are cast to uint8x16_p8. The return //! vector is the same type as vec1. //! \details On big endian machines VectorShiftLeft() is vec_sld(a, b, //! c). On little endian machines VectorShiftLeft() is translated to //! vec_sld(b, a, 16-c). You should always call the function as //! if on a big endian machine as shown below. //!
//!    uint8x16_p8 r0 = {0};
//!    uint8x16_p8 r1 = VectorLoad(ptr);
//!    uint8x16_p8 r5 = VectorShiftLeft<12>(r0, r1);
//! 
//! \sa Is vec_sld //! endian sensitive? on Stack Overflow //! \since Crypto++ 6.0 template inline T1 VectorShiftLeft(const T1& vec1, const T2& vec2) { #if defined(IS_LITTLE_ENDIAN) return (T1)vec_sld((uint8x16_p8)vec2, (uint8x16_p8)vec1, 16-C); #else return (T1)vec_sld((uint8x16_p8)vec1, (uint8x16_p8)vec2, C); #endif } //! \brief One round of AES encryption //! \tparam T1 vector type //! \tparam T2 vector type //! \param state the state vector //! \param key the subkey vector //! \details VectorEncrypt performs one round of AES encryption of state //! using subkey key. The return vector is the same type as vec1. //! \since Crypto++ 6.0 template inline T1 VectorEncrypt(const T1& state, const T2& key) { #if defined(CRYPTOPP_XLC_VERSION) return (T1)__vcipher((VectorType)state, (VectorType)key); #elif defined(CRYPTOPP_GCC_VERSION) return (T1)__builtin_crypto_vcipher((VectorType)state, (VectorType)key); #else CRYPTOPP_ASSERT(0); #endif } //! \brief Final round of AES encryption //! \tparam T1 vector type //! \tparam T2 vector type //! \param state the state vector //! \param key the subkey vector //! \details VectorEncryptLast performs the final round of AES encryption //! of state using subkey key. The return vector is the same type as vec1. //! \since Crypto++ 6.0 template inline T1 VectorEncryptLast(const T1& state, const T2& key) { #if defined(CRYPTOPP_XLC_VERSION) return (T1)__vcipherlast((VectorType)state, (VectorType)key); #elif defined(CRYPTOPP_GCC_VERSION) return (T1)__builtin_crypto_vcipherlast((VectorType)state, (VectorType)key); #else CRYPTOPP_ASSERT(0); #endif } //! \brief One round of AES decryption //! \tparam T1 vector type //! \tparam T2 vector type //! \param state the state vector //! \param key the subkey vector //! \details VectorDecrypt performs one round of AES decryption of state //! using subkey key. The return vector is the same type as vec1. //! \since Crypto++ 6.0 template inline T1 VectorDecrypt(const T1& state, const T2& key) { #if defined(CRYPTOPP_XLC_VERSION) return (T1)__vncipher((VectorType)state, (VectorType)key); #elif defined(CRYPTOPP_GCC_VERSION) return (T1)__builtin_crypto_vncipher((VectorType)state, (VectorType)key); #else CRYPTOPP_ASSERT(0); #endif } //! \brief Final round of AES decryption //! \tparam T1 vector type //! \tparam T2 vector type //! \param state the state vector //! \param key the subkey vector //! \details VectorDecryptLast performs the final round of AES decryption //! of state using subkey key. The return vector is the same type as vec1. //! \since Crypto++ 6.0 template inline T1 VectorDecryptLast(const T1& state, const T2& key) { #if defined(CRYPTOPP_XLC_VERSION) return (T1)__vncipherlast((VectorType)state, (VectorType)key); #elif defined(CRYPTOPP_GCC_VERSION) return (T1)__builtin_crypto_vncipherlast((VectorType)state, (VectorType)key); #else CRYPTOPP_ASSERT(0); #endif } //! \brief SHA256 Sigma functions //! \tparam func function //! \tparam subfunc sub-function //! \tparam T vector type //! \param vec the block to transform //! \details VectorSHA256 selects sigma0, sigma1, Sigma0, Sigma1 based on //! func and subfunc. The return vector is the same type as vec. //! \since Crypto++ 6.0 template inline T VectorSHA256(const T& vec) { #if defined(CRYPTOPP_XLC_VERSION) return (T)__vshasigmaw((uint32x4_p8)vec, func, subfunc); #elif defined(CRYPTOPP_GCC_VERSION) return (T)__builtin_crypto_vshasigmaw((uint32x4_p8)vec, func, subfunc); #else CRYPTOPP_ASSERT(0); #endif } //! \brief SHA512 Sigma functions //! \tparam func function //! \tparam subfunc sub-function //! \tparam T vector type //! \param vec the block to transform //! \details VectorSHA512 selects sigma0, sigma1, Sigma0, Sigma1 based on //! func and subfunc. The return vector is the same type as vec. //! \since Crypto++ 6.0 template inline T VectorSHA512(const T& vec) { #if defined(CRYPTOPP_XLC_VERSION) return (T)__vshasigmad((uint64x2_p8)vec, func, subfunc); #elif defined(CRYPTOPP_GCC_VERSION) return (T)__builtin_crypto_vshasigmad((uint64x2_p8)vec, func, subfunc); #else CRYPTOPP_ASSERT(0); #endif } #endif // CRYPTOPP_ALTIVEC_AVAILABLE NAMESPACE_END #endif // CRYPTOPP_PPC_CRYPTO_H